JPH10182504A - Separation of inorganic component in insulating oil - Google Patents

Separation of inorganic component in insulating oil

Info

Publication number
JPH10182504A
JPH10182504A JP35851996A JP35851996A JPH10182504A JP H10182504 A JPH10182504 A JP H10182504A JP 35851996 A JP35851996 A JP 35851996A JP 35851996 A JP35851996 A JP 35851996A JP H10182504 A JPH10182504 A JP H10182504A
Authority
JP
Japan
Prior art keywords
alkali metal
insulating oil
oil
hydroxide
inorganic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35851996A
Other languages
Japanese (ja)
Other versions
JP3918182B2 (en
Inventor
Masashi Kamiyama
昌士 神山
Tetsuo Otsuka
哲郎 大塚
Akira Ariizumi
彰 有泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP35851996A priority Critical patent/JP3918182B2/en
Publication of JPH10182504A publication Critical patent/JPH10182504A/en
Application granted granted Critical
Publication of JP3918182B2 publication Critical patent/JP3918182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently separate an inorganic component in an insulating oil without forming a tarry substance to obstruct a post-processing operation, by making an alkali metal, etc., in a specific insulating oil into an alkali metal hydroxide and treating under a prescribed condition. SOLUTION: In separating an inorganic component remaining in an insulating oil when a contained organic halogen compound such as a polychlorinated biphenyl is subjected to dehalogenation decomposition treatment with an alkali metal or a basic alkali metal compound, the alkali metal or the basic alkali metal compound in the insulating oil is made into an alkali metal hydroxide, which is solidified by introducing a carbon dioxide gas into the insulating oil in the presence of 0.2 to 1.6mol of water based on 1mol of the alkali metal hydroxide and removed to separate the inorganic component in the insulating oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機ハロゲン化合
物、たとえば、ポリ塩素化ビフェニール(以下、PCB
と略記する)類等の有機ハロゲン化合物を塩基性アルカ
リ金属化合物等により、脱ハロゲン分解させて処理する
方法に関するものである。
The present invention relates to an organic halogen compound such as polychlorinated biphenyl (hereinafter referred to as PCB).
Abbreviated) and the like by dehalogenating decomposition with a basic alkali metal compound or the like.

【0002】[0002]

【従来技術】有機溶媒中で、有機ハロゲン化合物をアル
カリ金属分散体により脱ハロゲン分解させる方法が特開
昭49-82570等に記載されている。しかしながら、より具
体的に、汚染除去された電気絶縁油(以下、油ともい
う)等を再生有効利用する為の後処理方法の報告は少な
く、より効率的に再生処理する方法の開発が望まれてい
た。
2. Description of the Related Art JP-A-49-82570 describes a method for dehalogenating an organic halogen compound with an alkali metal dispersion in an organic solvent. However, more specifically, there have been few reports on post-treatment methods for reusing and effectively using decontaminated electric insulating oil (hereinafter also referred to as oil) and the like, and development of a more efficient method of regenerating treatment is desired. I was

【0003】汚染除去された電気絶縁油は、燃料油など
として有効利用されることが望まれている。処理油中の
高い無機成分濃度は、燃焼炉を安定に効率よく運転する
ための妨げとなる。更に、残存する塩素イオンは燃焼に
よりダイオキシン等が生成する原因となるとの見方もあ
ることから、処理油中から無機成分を分離する方法は重
要な技術である。
It is desired that the decontaminated electric insulating oil be used effectively as fuel oil and the like. The high concentration of inorganic components in the treated oil hinders stable and efficient operation of the combustion furnace. Furthermore, since there is a view that the remaining chlorine ions may cause the generation of dioxins and the like by combustion, a method of separating inorganic components from the treated oil is an important technique.

【0004】一般に、油中のアルカリ金属水酸化物等の
無機成分を分離する方法として、オイルと水を混合した
後分液する方法があるが、水洗による方法では必ず排水
が生じる。排水処理の困難な状況や、排水の保管量に制
約のある場合には無機成分を固体状で分離する方法が望
ましい。また、電気絶縁油の酸化度(JIS C 2101)によっ
ては、水洗操作により、水層や水層と油層との界面付近
にオイルの劣化成分と思われるタール状物が生成し、そ
れが反応容器や配管内に付着する事があり、反応容器等
の洗浄が必要な場合があった。この様なタール状物が生
成せず且つ無機成分を固体状で分離できる油中の無機成
分分離法の開発が望まれていた。
In general, as a method for separating inorganic components such as alkali metal hydroxides in oil, there is a method in which oil and water are mixed and then liquid separation is performed. In situations where wastewater treatment is difficult or when the amount of wastewater stored is limited, a method of separating inorganic components in a solid state is desirable. In addition, depending on the degree of oxidation of the electrical insulating oil (JIS C 2101), the water washing operation generates a tar-like substance, which is considered to be an oil-deteriorating component, in the water layer or near the interface between the water layer and the oil layer. In some cases, it may adhere to the pipes or pipes, and it may be necessary to wash the reaction vessel or the like. It has been desired to develop a method for separating inorganic components in oil, which does not produce such tar-like substances and can separate inorganic components in a solid state.

【0005】[0005]

【発明が解決しようとする課題】有機ハロゲン化合物で
汚染された電気絶縁油を塩基性アルカリ金属化合物等に
より脱ハロゲン分解する方法において、本発明は汚染除
去された油中の無機成分を効率よく分離除去する方法を
提供することを目的とする。
SUMMARY OF THE INVENTION In a method for dehalogenating and decomposing electric insulating oil contaminated with an organic halogen compound with a basic alkali metal compound or the like, the present invention efficiently separates inorganic components in the decontaminated oil. It is intended to provide a method for removal.

【0006】[0006]

【課題を解決するための手段】本発明は、含有する有機
ハロゲン化合物をアルカリ金属又は塩基性アルカリ金属
化合物により脱ハロゲン分解処理したときに電気絶縁油
中に残存する無機成分の分離方法において、電気絶縁油
中のアルカリ金属又は塩基性アルカリ金属化合物をアル
カリ金属水酸化物とし次いでアルカリ金属水酸化物1モ
ルに対して0.2モルから1.6モルの水共存下に電気
絶縁油中に炭酸ガスを吹き込む事により固形化し除去す
る事を特徴とする電気絶縁油中の無機成分分離方法であ
る。
SUMMARY OF THE INVENTION The present invention relates to a method for separating inorganic components remaining in an electric insulating oil when an organic halogen compound contained is subjected to a dehalogenation decomposition treatment with an alkali metal or a basic alkali metal compound. The alkali metal or basic alkali metal compound in the insulating oil is converted into an alkali metal hydroxide, and then carbonated into the electric insulating oil in the presence of 0.2 to 1.6 moles of water per mole of the alkali metal hydroxide. This is a method for separating inorganic components in electric insulating oil, characterized by solidifying and removing the gas by blowing gas.

【0007】[0007]

【発明の実施の形態】本発明における有機ハロゲン化合
物は例えば、PCB、ダイオキシン類、ハロゲンを有する
ジベンゾフラン類、ポリ塩素化ベンゼン、塩化メチレン
等の有害有機ハロゲン化合物である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The organic halogen compounds in the present invention are, for example, harmful organic halogen compounds such as PCB, dioxins, halogen-containing dibenzofurans, polychlorinated benzene, and methylene chloride.

【0008】アルカリ金属としては、例えば、ナトリウ
ム、カリウム、リチウム、ルビジュウム、セシウムであ
り、塩基性アルカリ金属化合物としては、例えば、水酸
化ナトリウム、水酸化カリウム、水酸化リチウム、水酸
化ルビジウム、水酸化セシウムのようなアルカリ金属水
酸化物、ナトリウムメトキシド、ナトリウムエトキシ
ド、ナトリウムプロポキシド、ナトリウムブトキシド、
カリウムメトキシド、t−ブトキシカリウムのようなア
ルカリ金属アルコキシド、リチウムアルミニウムハイド
ライド、ソジウムハイドライドのようなアルカリ金属水
素化物等である。
Examples of the alkali metal include sodium, potassium, lithium, rubidium and cesium, and examples of the basic alkali metal compound include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide and hydroxide. Alkali metal hydroxides such as cesium, sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide,
Alkali metal alkoxides such as potassium methoxide and potassium t-butoxide; and alkali metal hydrides such as lithium aluminum hydride and sodium hydride.

【0009】アルカリ金属水酸化物としては、水酸化ナ
トリウム、水酸化カリウム、水酸化リチウム、水酸化ル
ビジウム、水酸化セシウム等である。
Examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide and the like.

【0010】電気絶縁油としては、パラフィン系油、ア
ルキルベンゼン系油等であり、たとえば、JIS C2320に
規定するトランスオイル、1種、2種、4種、5種、7
種等であり、これらの混合物、これらの劣化したものも
含む。
Examples of the electric insulating oil include paraffinic oils and alkylbenzene oils. For example, transformer oils specified in JIS C2320, 1, 2, 4, 5, 7
Species, etc., and also includes these mixtures and their deteriorated ones.

【0011】分離される無機成分は、脱ハロゲン分解に
使用されるアルカリ金属もしくは塩基性アルカリ金属化
合物と有機ハロゲン化合物から生成するアルカリ金属ハ
ロゲン化物、残存したアルカリ金属もしくは塩基性アル
カリ金属化合物、使用したアルカリ金属もしくは塩基性
アルカリ金属化合物の加水分解物等であり、たとえば、
塩化ナトリウム、塩化カリウム、水酸化ナトリウム、水
酸化カリウム等である。
The inorganic components to be separated include alkali metal or basic alkali metal compounds used for dehalogenation decomposition, alkali metal halides formed from organic halogen compounds, and residual alkali metal or basic alkali metal compounds. Hydrolysates of alkali metal or basic alkali metal compounds and the like, for example,
Sodium chloride, potassium chloride, sodium hydroxide, potassium hydroxide and the like.

【0012】脱ハロゲン分解反応は、目的の有機ハロゲ
ン化合物が脱塩素化される条件である必要があるが、こ
れは使用されるアルカリ金属もしくは塩基性アルカリ金
属化合物により異なる。油中の無機成分を良好に分離す
るためには、油とアルカリ金属もしくは塩基性アルカリ
金属化合物との化学反応の起こりにくい条件が望まし
い。アルカリ金属である金属ナトリウム分散体を用いた
場合には、反応温度は30℃以上 150℃以下であり、通
常、40℃以上 100℃以下である。
The dehalogenation decomposition reaction needs to be performed under conditions under which the target organic halogen compound is dechlorinated, and this depends on the alkali metal or basic alkali metal compound used. In order to satisfactorily separate the inorganic components in the oil, it is desirable that the oil does not easily react with the alkali metal or basic alkali metal compound. When a sodium metal dispersion as an alkali metal is used, the reaction temperature is from 30 ° C to 150 ° C, and usually from 40 ° C to 100 ° C.

【0013】残存したアルカリ金属もしくは塩基性アル
カリ金属化合物をアルカリ金属水酸化物とする方法は既
知の方法を適用することができる。例えば、塩基性アル
カリ金属化合物と水を反応させることでアルカリ金属水
酸化物とすることが可能である。またアルカリ金属もし
くは塩基性アルカリ金属化合物と水との反応が急激に進
行し作業上問題となる場合は、アルコール類、例えば、
メタノール、エタノール、イソプロパノール、ブタノー
ル、及びこれらの混合物と、アルカリ金属もしくは塩基
性アルカリ金属化合物を反応させた後、水と反応させる
事も可能である。また水に反応を穏やかにする化合物、
例えば、水酸化ナトリウム、水酸化カリウム、アルコー
ル類等を混合する事も可能である。アルカリ金属もしく
は塩基性アルカリ金属化合物として、アルカリ金属水酸
化物を用いた場合は、当然のことながらこの操作は不要
である。
A known method can be applied as a method for converting the remaining alkali metal or basic alkali metal compound into an alkali metal hydroxide. For example, an alkali metal hydroxide can be obtained by reacting a basic alkali metal compound with water. Further, when the reaction between the alkali metal or basic alkali metal compound and water progresses rapidly and poses a problem in work, alcohols, for example,
After reacting an alkali metal or basic alkali metal compound with methanol, ethanol, isopropanol, butanol, or a mixture thereof, it is also possible to react with water. A compound that moderates the reaction to water,
For example, it is possible to mix sodium hydroxide, potassium hydroxide, alcohols and the like. When an alkali metal hydroxide is used as the alkali metal or basic alkali metal compound, this operation is, of course, unnecessary.

【0014】アルカリ金属水酸化物と電気絶縁油中で共
存させる水の量はモル比換算でアルカリ金属水酸化物1
モルに対して0.2モルから1.6モルであり、より好
ましくは、0.4モルから1.3モルである。共存させ
る水の量が少なすぎる場合はアルカリ金属水酸化物と炭
酸ガスとの反応が進行しにくくなり、多すぎる場合は無
機成分を含む水分が濾液中に混入し濾過等により無機成
分を十分に分離できなくなる。
The amount of water coexisting in the electrical insulating oil with the alkali metal hydroxide is calculated as a molar ratio of the alkali metal hydroxide 1
It is from 0.2 mol to 1.6 mol, more preferably from 0.4 mol to 1.3 mol, per mol. When the amount of coexisting water is too small, the reaction between the alkali metal hydroxide and the carbon dioxide gas becomes difficult to progress, and when too much, the water containing the inorganic component is mixed into the filtrate and the inorganic component is sufficiently removed by filtration or the like. It cannot be separated.

【0015】電気絶縁油中に吹き込まれる炭酸ガスの量
は反応させるアルカリ金属水酸化物の量により決定され
る。アルカリ金属水酸化物を完全にアルカリ金属炭酸塩
とするためにはアルカリ金属水酸化物に対して等モル以
上の炭酸ガス量が必要である。炭酸ガスとの反応を早く
進行させたい場合は、炭酸ガス吹き込み量を増やす、気
液界面面積を増やす、反応容器中の炭酸ガス圧を上げる
等の方法を適用する事が可能である。反応温度は特に制
限はないが、電気絶縁油の熱分解や低温での固形化が起
こらない温度範囲にするべきである。反応時の電気絶縁
油の撹拌は、一般的な撹拌羽根等の撹拌装置を使用でき
る。攪拌速度には特に制限は無いが、充分な撹拌を行う
ことで気液界面面積を増やし、反応時間を短くすること
が可能である。アルカリ金属水酸化物と炭酸ガスとの反
応生成物は主にアルカリ金属炭酸水素塩であり、アルカ
リ金属水酸化物に比較して水への溶解性が低いため、電
気絶縁油中に懸濁した結晶となる。
The amount of carbon dioxide gas blown into the electric insulating oil is determined by the amount of the alkali metal hydroxide to be reacted. In order to completely convert an alkali metal hydroxide into an alkali metal carbonate, an amount of carbon dioxide gas equal to or more than an equimolar amount to the alkali metal hydroxide is required. When it is desired to accelerate the reaction with carbon dioxide, it is possible to apply a method such as increasing the amount of carbon dioxide blown, increasing the gas-liquid interface area, or increasing the pressure of carbon dioxide in the reaction vessel. The reaction temperature is not particularly limited, but should be within a temperature range in which thermal decomposition of the electric insulating oil and solidification at a low temperature do not occur. The stirring of the electric insulating oil at the time of the reaction can be performed by using a general stirring device such as a stirring blade. The stirring speed is not particularly limited, but by performing sufficient stirring, the gas-liquid interface area can be increased and the reaction time can be shortened. The reaction product of the alkali metal hydroxide and carbon dioxide is mainly an alkali metal bicarbonate, and has a lower solubility in water than the alkali metal hydroxide, so it has been suspended in an electrical insulating oil. It becomes a crystal.

【0016】電気絶縁油中に懸濁した無機成分を除去す
る方法としては濾過や遠心分離といった一般的な方法を
用いることができる。
As a method for removing the inorganic components suspended in the electric insulating oil, a general method such as filtration or centrifugation can be used.

【0017】[0017]

【実施例】以下に実施例により説明するが、本発明はこ
れに限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0018】実施例1 300mlの反応容器に熱劣化したトランスオイル( 酸
化度TVA=0.9mgKOH/g)250mlを仕込み、平均塩素付加数が
4の PCBである KC400(コンデンサー内容物)100mgを
溶解させ、撹拌下(190rpm)、窒素ガスを流し50℃まで加
熱した後、トランスオイルを溶媒として作った金属ナト
リウム分散体液(Na濃度10%)を14.8g滴下した。2時間
50℃で保持した後、PCB濃度を ECD検出器付きガスク
ロマトグラフにより分析し、PCBが完全に分解してい
る事を確認した。続いて水2gを1時間かけて滴下し、残
存の金属ナトリウムを分解した。反応溶液全体を空冷し
つつガラスボールフィルターG1を用いて溶液中に炭酸
ガスを50ml/minの流速で2時間吹き込み、金属ナトリ
ウムの加水分解物である水酸化ナトリウムを炭酸ガスと
反応させ炭酸水素ナトリウムとした。このときの反応容
器内圧は大気圧であった。無機成分が結晶状態で懸濁し
ているトランスオイルを濾紙(5C、9cm)により濾
過し、懸濁成分をトランスオイルから分離した。オイル
を含浸している濾収固形分は10g 、オイルの回収量は 2
60mlであった。濾収した固形分を100ml のヘキサンで洗
浄し濾過後風乾して重量を測定したところ6.58g であっ
た。回収したトランスオイルの酸化度をJIS C 2101の方
法により調べたところ0.3mgKOH/gであった。オイル中の
ナトリウムの濃度を水による抽出と原子吸光分析を組み
合わせた方法により測定した所、0.1ppm以下であった。
オイル中の塩素イオン濃度を水による抽出と硝酸銀溶液
による滴定を組み合わせた方法により行ったところ、オ
イル中の塩素イオン濃度は濾過前が200ppm、濾過後が1p
pm以下であった。
Example 1 A 300 ml reaction vessel was charged with 250 ml of thermally degraded transformer oil (oxidation degree TVA = 0.9 mg KOH / g), and 100 mg of KC400 (condenser content), which is a PCB having an average chlorine addition number of 4, was dissolved. After the mixture was heated to 50 ° C. while flowing nitrogen gas under stirring (190 rpm), 14.8 g of a metallic sodium dispersion liquid (Na concentration: 10%) prepared using trans oil as a solvent was added dropwise. 2 hours
After maintaining at 50 ° C., the PCB concentration was analyzed by gas chromatography with an ECD detector, and it was confirmed that the PCB was completely decomposed. Subsequently, 2 g of water was added dropwise over 1 hour to decompose the remaining metallic sodium. While the entire reaction solution is air-cooled, carbon dioxide gas is blown into the solution using a glass ball filter G1 at a flow rate of 50 ml / min for 2 hours, so that sodium hydroxide, which is a hydrolyzate of metallic sodium, is reacted with carbon dioxide gas to cause sodium hydrogen carbonate. And At this time, the internal pressure of the reaction vessel was atmospheric pressure. The trans-oil in which the inorganic component was suspended in a crystalline state was filtered with a filter paper (5C, 9 cm) to separate the suspended component from the trans-oil. 10 g of filtered solids impregnated with oil, 2 g of oil recovered
It was 60 ml. The solid collected by filtration was washed with 100 ml of hexane, filtered, air-dried, and weighed to find 6.58 g. When the degree of oxidation of the recovered trans oil was examined by the method of JIS C 2101, it was 0.3 mgKOH / g. When the concentration of sodium in the oil was measured by a method combining water extraction and atomic absorption spectrometry, it was 0.1 ppm or less.
When the chloride ion concentration in the oil was determined by a method combining extraction with water and titration with a silver nitrate solution, the chloride ion concentration in the oil was 200 ppm before filtration and 1 p after filtration.
pm or less.

【0019】実施例2 300mlの反応容器に熱劣化したトランスオイル(酸
化度TVA=0.9mgKOH/g)250mlを仕込み、平均塩素付加数が
4の PCBである KC400(コンデンサー内容物)100mg を
溶解させ、撹拌下(190rpm)、窒素ガスを流し50℃まで加
熱した後、トランスオイルを溶媒として作った金属ナト
リウム分散体液(Na濃度10%)を31.3g滴下した。2時間
50℃で保持した後、PCB濃度を ECD検出器付きガスク
ロマトグラフにより分析し、PCBが完全に分解してい
る事を確認した。続いて水5gを1時間かけて滴下し、残
存の金属ナトリウムを分解した。反応溶液全体を空冷し
つつガラスボールフィルターG1を用いて溶液中に炭酸
ガスを50ml/minの流速で2時間吹き込み、金属ナトリ
ウムの加水分解物である水酸化ナトリウムを炭酸ガスと
反応させ炭酸水素ナトリウムとした。このときの反応容
器内圧は大気圧であった。無機成分が結晶状態で懸濁し
ているトランスオイルを濾紙(5C、9cm)により濾
過し、懸濁成分をトランスオイルから分離した。オイル
を含浸している濾収固形分は18.6g 、オイルの回収量は
280ml であった。濾収した固形分を150ml のヘキサンで
洗浄し濾過後風乾して重量を測定したところ12.2g であ
った。回収したトランスオイルの酸化度をJIS C 2101の
方法により調べたところ0.35mgKOH/g であった。オイル
中のナトリウムの濃度を水による抽出と原子吸光分析を
組み合わせた方法により測定した所、0.1ppm以下であっ
た。オイル中の塩素イオン濃度を水による抽出と硝酸銀
溶液による滴定を組み合わせた方法により行ったとこ
ろ、オイル中の塩素イオン濃度は濾過前が198ppm、濾過
後が1ppm以下であった。
Example 2 A 300 ml reaction vessel was charged with 250 ml of thermally degraded transformer oil (oxidation degree TVA = 0.9 mg KOH / g), and 100 mg of KC400 (condenser content), a PCB having an average chlorine addition number of 4, was dissolved. After the mixture was heated to 50 ° C. while flowing nitrogen gas under stirring (190 rpm), 31.3 g of a metal sodium dispersion liquid (Na concentration 10%) prepared using trans oil as a solvent was added dropwise. 2 hours
After maintaining at 50 ° C., the PCB concentration was analyzed by gas chromatography with an ECD detector, and it was confirmed that the PCB was completely decomposed. Subsequently, 5 g of water was added dropwise over 1 hour to decompose the remaining metallic sodium. While the whole reaction solution is air-cooled, carbon dioxide gas is blown into the solution using a glass ball filter G1 at a flow rate of 50 ml / min for 2 hours, so that sodium hydroxide, which is a hydrolyzate of metallic sodium, is reacted with carbon dioxide gas to cause sodium hydrogen carbonate And At this time, the internal pressure of the reaction vessel was atmospheric pressure. The trans-oil in which the inorganic component was suspended in a crystalline state was filtered with a filter paper (5C, 9 cm) to separate the suspended component from the trans-oil. The filtered solid content of oil impregnated is 18.6g, and the amount of recovered oil is
It was 280 ml. The collected solid was washed with 150 ml of hexane, filtered, air-dried, and weighed to find 12.2 g. The degree of oxidation of the recovered transformer oil was determined by the method of JIS C 2101 to be 0.35 mgKOH / g. When the concentration of sodium in the oil was measured by a method combining water extraction and atomic absorption spectrometry, it was 0.1 ppm or less. When the chloride ion concentration in the oil was measured by a method combining extraction with water and titration with a silver nitrate solution, the chloride ion concentration in the oil was 198 ppm before filtration and 1 ppm or less after filtration.

【0020】比較例1 1000 mlの反応容器に熱劣化したトランスオイル( 酸
化度TVA=0.29mgKOH/g)500ml を仕込み、平均塩素付加数
が4の PCBである KC400(コンデンサー内容物)200mg
を溶解させ、撹拌下(190rpm)、窒素ガスを流し50℃まで
加熱した後、トランスオイルを溶媒として作った金属ナ
トリウム分散体液(Na濃度10% )を29g 滴下した。2時
間熟成後、水3gを1時間かけて滴下し、残存の金属ナト
リウムを分解した。その後、水50mlを15分かけて添加し
た。30分の撹拌の後、撹拌を停止し靜置したところ、水
層及び水層とオイル層の界面に高粘度で黒色のタール状
物が生成し一部反応容器内壁に付着した。
Comparative Example 1 A 1000 ml reactor was charged with 500 ml of thermally degraded transformer oil (oxidation degree TVA = 0.29 mg KOH / g), and 200 mg of KC400 (condenser contents), which is a PCB having an average chlorine addition number of 4
Was dissolved and heated to 50 ° C. while flowing nitrogen gas under stirring (190 rpm), and 29 g of a metallic sodium dispersion liquid (Na concentration: 10%) prepared using trans oil as a solvent was added dropwise. After aging for 2 hours, 3 g of water was added dropwise over 1 hour to decompose the remaining metallic sodium. Thereafter, 50 ml of water was added over 15 minutes. After stirring for 30 minutes, when the stirring was stopped and allowed to stand, a high-viscosity black tar-like substance was formed at the aqueous layer and at the interface between the aqueous layer and the oil layer, and partially adhered to the inner wall of the reaction vessel.

【0021】[0021]

【発明の効果】塩基性アルカリ金属化合物等により脱ハ
ロゲン分解し、汚染除去された油中の無機成分を、後処
理操作の妨げとなるタール状物を生じる事無く、効率よ
く分離除去できる。
According to the present invention, inorganic components in oil which have been dehalogenated and decomposed by a basic alkali metal compound or the like and contaminated and removed can be efficiently separated and removed without producing a tar-like substance which hinders a post-treatment operation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含有する有機ハロゲン化合物をアルカリ
金属又は塩基性アルカリ金属化合物により脱ハロゲン分
解処理したときに電気絶縁油中に残存する無機成分の分
離方法において、電気絶縁油中のアルカリ金属又は塩基
性アルカリ金属化合物をアルカリ金属水酸化物とし次い
でアルカリ金属水酸化物1モルに対して0.2モルから
1.6モルの水共存下に電気絶縁油中に炭酸ガスを吹き
込む事により固形化し除去する事を特徴とする電気絶縁
油中の無機成分分離方法。
1. A method for separating an inorganic component remaining in an electric insulating oil when a contained organic halogen compound is dehalogenated and decomposed by an alkali metal or a basic alkali metal compound. The neutral alkali metal compound is converted into an alkali metal hydroxide, and then solidified and removed by blowing carbon dioxide gas into the electric insulating oil in the presence of 0.2 to 1.6 moles of water per mole of the alkali metal hydroxide. A method for separating inorganic components in electric insulating oil.
JP35851996A 1996-12-27 1996-12-27 Method for separating inorganic components in electrical insulating oil Expired - Lifetime JP3918182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35851996A JP3918182B2 (en) 1996-12-27 1996-12-27 Method for separating inorganic components in electrical insulating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35851996A JP3918182B2 (en) 1996-12-27 1996-12-27 Method for separating inorganic components in electrical insulating oil

Publications (2)

Publication Number Publication Date
JPH10182504A true JPH10182504A (en) 1998-07-07
JP3918182B2 JP3918182B2 (en) 2007-05-23

Family

ID=18459744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35851996A Expired - Lifetime JP3918182B2 (en) 1996-12-27 1996-12-27 Method for separating inorganic components in electrical insulating oil

Country Status (1)

Country Link
JP (1) JP3918182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223737A (en) * 2013-05-30 2013-10-31 Chugoku Electric Power Co Inc:The Detoxification device of pcb-mixed insulating oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223737A (en) * 2013-05-30 2013-10-31 Chugoku Electric Power Co Inc:The Detoxification device of pcb-mixed insulating oil

Also Published As

Publication number Publication date
JP3918182B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
US4417977A (en) Removal of PCBS and other halogenated organic compounds from organic fluids
US4602994A (en) Removal of PCBs and other halogenated organic compounds from organic fluids
CA2152473C (en) Process for the chemical decomposition of halogenated organic compounds
WO2009087994A1 (en) Method for dehalogenating aromatic halide
EP0603400A1 (en) Method of removing halogenated aromatic compound from hydrocarbon oil
JP4514284B2 (en) Method for treating organohalogen compounds
JP2001294539A (en) Method for dehalogenating organic halogen compound
JP2002212109A (en) Method for treating organic halide compound
JP3918182B2 (en) Method for separating inorganic components in electrical insulating oil
JPH0426632A (en) Dehydrohalogenation of organic compound
JP4084073B2 (en) Detoxification method for organic halogen compounds
JPH1087519A (en) Dechlorination treatment of polychlorinated aromatic compound
JP2918542B1 (en) Method for treating organic halogen compounds
JP3935758B2 (en) Detoxification treatment method and detoxification treatment system for organic halogen compounds
JP2001302552A (en) Method for treating organihalogen compound
JP2002035159A (en) Method for treating oil contaminated with organic halogen compound and apparatus for treating it
JP2007111661A (en) Regenerating method for dechlorinating catalyst
JP4018173B2 (en) Separation of inorganic components in electrical insulating oil
JP3907938B2 (en) Method for decomposing organic halogen compounds
JPH07289656A (en) Alkali decomposition method for halogenated aromatic compound
JP3408390B2 (en) Decomposition method of aromatic halogen compound
EP0107404A1 (en) Removal of halogenated organic compounds from organic fluids
JP3081176B2 (en) Hazardous chlorine compound removal method
JP2638483B2 (en) Method for treating polychlorinated aromatic compounds
JPH1128443A (en) Method for decomposing halogen compound

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term