JP4018173B2 - Separation of inorganic components in electrical insulating oil - Google Patents

Separation of inorganic components in electrical insulating oil Download PDF

Info

Publication number
JP4018173B2
JP4018173B2 JP15750996A JP15750996A JP4018173B2 JP 4018173 B2 JP4018173 B2 JP 4018173B2 JP 15750996 A JP15750996 A JP 15750996A JP 15750996 A JP15750996 A JP 15750996A JP 4018173 B2 JP4018173 B2 JP 4018173B2
Authority
JP
Japan
Prior art keywords
oil
electrical insulating
insulating oil
inorganic components
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15750996A
Other languages
Japanese (ja)
Other versions
JPH09313804A (en
Inventor
彰 有泉
哲郎 大塚
道典 武林
昌士 神山
勝也 奥家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP15750996A priority Critical patent/JP4018173B2/en
Publication of JPH09313804A publication Critical patent/JPH09313804A/en
Application granted granted Critical
Publication of JP4018173B2 publication Critical patent/JP4018173B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Organic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は有害ハロゲン化合物、たとえば、ポリ塩化ビフェニール(以下、PCBと略記する)類等のハロゲン化合物を塩基性アルカリ金属化合物により、脱ハロゲン分解させて処理する方法に関するものである。
【0002】
【従来の技術】
有機溶媒中で、ハロゲン化合物をアルカリ金属分散体により脱ハロゲン分解させる方法が特開昭49-82570等に記載されている。しかしながら、より具体的に、汚染除去された電気絶縁油(以下、油とも記す)等を再生有効利用する為の後処理方法の報告は少なく、より効率的に再生処理する方法の開発が望まれていた。
【0003】
汚染除去された電気絶縁油は、燃料油などとして有効利用されることが望まれている。処理油中の高い無機成分濃度は、燃焼炉を安定に効率よく運転するための妨げとなる。更に、残存する塩素イオンは燃焼によりダイオキシン等が生成する原因となるとの見方もあることから、処理油中から無機成分を分離する方法は重要な技術である。
【0004】
一般に、油中の無機成分を分離する方法として、ろ過による方法、水洗後分液する方法がある。しかしながら、ろ過による方法は、大量の汚染油を処理するには効率が悪く、遠心分離する方法は装置が高価であり、処理コストの面で困難である。水洗後分液する方法に関しては、油層と水層の分液性に問題があった。いずれも有効な無機成分分離法とは言えなかった。
【0005】
【発明が解決しようとする課題】
有害ハロゲン化合物で汚染された電気絶縁油を、塩基性アルカリ金属化合物等により脱ハロゲン分解する方法において、本発明は汚染除去された油中の無機成分を効率よく分離除去する方法を提供する。
【0006】
【課題を解決するための手段】
本発明は、
(1)含有する有害ハロゲン化合物を塩基性アルカリ金属化合物により脱ハロゲン分解処理された電気絶縁油と水を混合し、40℃以上100℃以下の温度で静置した後、分液する事を特徴とする、有害ハロゲン化合物を脱ハロゲン分解処理された電気絶縁油中の無機成分分離方法。
(2)電気絶縁油がトランスオイル(JIS C2320に規定)である前記(1)に記載の方法である。
【0007】
本発明における有害ハロゲン化合物は例えば、PCB、ダイオキシン類、ジベンゾフラン類、ポリ塩素化ベンゼン、塩化メチレン等である。
【0008】
塩基性アルカリ金属化合物としては、アルカリ金属、例えば、ナトリウム、カリウム、リチウム、ルビジュウム、セシウム。アルカリ金属水酸化物、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウム。アルカリ金属アルコキシド、例えば、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、t−ブトキシカリウム。アルカリ金属水素化物、例えば、リチウムアルミニウムハイドライド、ソジウムハイドライド等である。
【0009】
電気絶縁油としては、パラフィン系油、アルキルベンゼン系油、及びそれらの混合物等であり、たとえば、JIS C2320に規定するトランスオイル、1種、2、4種、5種、7種、であり、これらの劣化したものも含み、また劣化したものとの混合物も含む。
【0010】
分離される無機成分は、脱ハロゲン分解に使用される塩基性アルカリ金属化合物と有害ハロゲン化合物から生成するアルカリ金属塩化物、残存した塩基性アルカリ金属化合物、及び、使用した塩基性化合物の加水分解物等であり、具体的には、塩化ナトリウム、塩化カリウム、水酸化ナトリウム、水酸化カリウム等である。
【0011】
脱ハロゲン分解反応の条件は、目的の有害ハロゲン化合物が脱塩素化され、無害化される条件である必要があるが、これは使用される塩基性アルカリ金属化合物により異なる。油中の無機成分を良好に分離するためには、油と塩基性アルカリ金属化合物との化学反応や、有害ハロゲン化合物が沈殿物となる重合反応の起こりにくい条件が望ましい。塩基性アルカリ金属化合物として金属ナトリウム分散体を用いた場合には、反応温度は30℃以上150℃以下であり、通常、40℃以上100℃以下である。有害ハロゲン化合物濃度は分解反応容器中で1%以下が望ましい。
【0012】
無害化処理された油と混合される水の量は、油中に含まれる無機成分を溶解するのに十分な量であれば特に制限は無いが、分液の操作性、装置の大きさ等により、処理油100重量部に対して、5重量部から200重量部が望ましい。水中には、塩類やアルコール類が入っていてもよい。水中に食塩が入っていると分離がよくなる場合がある。
【0013】
油と水の混合の撹拌にかける時間は長いほど良いが、撹拌装置の能力等を考慮し決定される。40rpmから200rpmの撹拌羽根等の撹拌装置を有する100Lから600Lの容器であれば、15分から1時間である。
水と混合後、静置する時の温度は、常圧で40℃以上100℃以下が望ましく、より好ましくは45℃以上80℃以下である。
静置にかける時間は種々の条件により異なるが、通常10分から1時間である。
【0014】
【実施例】
以下に実施例により説明するが、本発明はこれに限定されるものではない。
〔実施例1〕
150Lの反応容器にトランスオイル100Lを仕込み、平均塩素付加数が4のPCBであるKC400(コンデンサー内容物)40gを溶解させ、撹拌下(190rpm)、窒素ガスを流し50℃まで加熱した。トランスオイルを溶媒として作った金属ナトリウム分散体液(Na濃度10%)を5kg滴下した。続いて水800gを1時間かけて滴下し、
脱ハロゲン分解反応を完結させると共に、残存の金属ナトリウムを分解させた。反応液中に水を20L加え液温を50℃に再加熱し、1時間撹拌した。撹拌終了後、
50℃で15分静置し分液したところ、水層とオイル層は十分に分離していた。水分濃度をカールフイッシャー水分量計、NaOH濃度を抽出と中和滴定を組み合わせた方法、塩素イオン濃度を、友成 明久、日本化学雑誌、第83巻 第6号(1962),693の方法により調べた。油層中の水分濃度は0.17%、NaOH濃度は190ppm、塩素イオン濃度は検出限界以下(検出限界5ppm)、油の回収率は99%であった。
【0015】
〔実施例2〕
150Lの反応容器にトランスオイル100Lを仕込み、KC400(コンデンサー内容物)40gを溶解させ、撹拌下(190rpm)、窒素ガスを流し50℃まで加熱した。トランスオイルを溶媒として作った金属ナトリウム分散体液(Na濃度10%)を3.8kg滴下した。続いて水200gを1時間かけて滴下し、脱ハロゲン分解反応を完結させた。500Lの別の反応容器に10%食塩水200Lを仕込み、撹拌下、窒素ガスを流して前の反応液をその中に滴下、残存の金属ナトリウムを分解させた。反応液滴下終了後、1時間撹拌し、その間に10%塩酸を加えて中和した。液温を50℃に加熱し、30分静置し分液したところ、水層とオイル層は十分に分離していた。油層中の水分濃度は0.5%、塩素イオン濃度は300ppm、油の回収率は99%であった。
【0016】
〔比較例1〕
分液前の液温を30℃とした以外は、実施例1と同様の操作を行った所、水層と油層は全く分離していなかった。
【0017】
〔比較例2〕
分液前の液温を30℃とした以外は、実施例2と同様の操作を行った所、水層と油層とが混じった中間層が10L生成していた。油の回収率は96%であった。
【0018】
【発明の効果】
塩基性アルカリ金属化合物等により脱ハロゲン分解し、汚染除去された油中の無機成分を、効率よく安価に分離除去できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating halogen compounds such as harmful halogen compounds such as polychlorinated biphenyls (hereinafter abbreviated as PCB) by dehalogenation decomposition with a basic alkali metal compound.
[0002]
[Prior art]
JP-A-49-82570 and the like describe a method of dehalogenating a halogen compound with an alkali metal dispersion in an organic solvent. However, more concretely, there are few reports of post-treatment methods for reusing and effectively using decontaminated electrical insulating oil (hereinafter also referred to as oil), and the development of a more efficient reprocessing method is desired. It was.
[0003]
It is desired that the electrical insulating oil that has been decontaminated is effectively used as a fuel oil or the like. The high concentration of inorganic components in the treated oil hinders stable and efficient operation of the combustion furnace. Furthermore, since there is a view that residual chlorine ions cause dioxins and the like to be generated by combustion, a method for separating inorganic components from the treated oil is an important technique.
[0004]
In general, as a method for separating inorganic components in oil, there are a method by filtration and a method of separating after washing with water. However, the method by filtration is not efficient for processing a large amount of contaminated oil, and the method of centrifuging is expensive in terms of the processing cost because the apparatus is expensive. Regarding the method of separating after washing with water, there was a problem in the separation properties of the oil layer and the aqueous layer. None of these were effective inorganic component separation methods.
[0005]
[Problems to be solved by the invention]
In a method for dehalogenating and decomposing an electrically insulating oil contaminated with a harmful halogen compound with a basic alkali metal compound or the like, the present invention provides a method for efficiently separating and removing inorganic components in the decontaminated oil.
[0006]
[Means for Solving the Problems]
The present invention
(1) It is characterized in that the harmful halogen compound contained is mixed with an electrical insulating oil that has been dehalogenated and decomposed with a basic alkali metal compound and water, allowed to stand at a temperature of 40 ° C to 100 ° C, and then separated. And a method for separating inorganic components in an electrical insulating oil obtained by dehalogenating a harmful halogen compound.
(2) The method according to (1), wherein the electrical insulating oil is transformer oil (specified in JIS C2320).
[0007]
Examples of the harmful halogen compound in the present invention include PCB, dioxins, dibenzofurans, polychlorinated benzene, and methylene chloride.
[0008]
Examples of the basic alkali metal compound include alkali metals such as sodium, potassium, lithium, rubidium and cesium. Alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide. Alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, potassium t-butoxide. Alkali metal hydrides such as lithium aluminum hydride and sodium hydride.
[0009]
Examples of the electrical insulating oil include paraffinic oils, alkylbenzene oils, and mixtures thereof, such as trans oils defined in JIS C2320, 1, 2, 4, 5, and 7. In addition, a deteriorated product and a mixture with a deteriorated product are also included.
[0010]
Inorganic components to be separated include alkali metal chlorides generated from basic alkali metal compounds and harmful halogen compounds used for dehalogenation decomposition, residual basic alkali metal compounds, and hydrolysates of the basic compounds used. Specifically, sodium chloride, potassium chloride, sodium hydroxide, potassium hydroxide and the like.
[0011]
The conditions for the dehalogenation decomposition reaction must be such that the target harmful halogen compound is dechlorinated and detoxified, but this depends on the basic alkali metal compound used. In order to separate the inorganic components in the oil satisfactorily, it is desirable that the chemical reaction between the oil and the basic alkali metal compound and the polymerization reaction in which the harmful halogen compound becomes a precipitate hardly occur. When a metal sodium dispersion is used as the basic alkali metal compound, the reaction temperature is 30 ° C. or higher and 150 ° C. or lower, and usually 40 ° C. or higher and 100 ° C. or lower. The concentration of harmful halogen compounds is preferably 1% or less in the decomposition reaction vessel.
[0012]
The amount of water mixed with the detoxified oil is not particularly limited as long as it is sufficient to dissolve the inorganic components contained in the oil, but the operability of liquid separation, the size of the device, etc. Therefore, 5 to 200 parts by weight is desirable with respect to 100 parts by weight of the treated oil. Salts and alcohols may be contained in the water. Separation may be better if salt is in the water.
[0013]
The longer it takes to stir the mixture of oil and water, the better. However, it is determined in consideration of the ability of the stirrer. In the case of a 100 L to 600 L container having a stirring device such as a stirring blade of 40 rpm to 200 rpm, the time is 15 minutes to 1 hour.
The temperature at the time of standing after mixing with water is preferably 40 ° C. or more and 100 ° C. or less, more preferably 45 ° C. or more and 80 ° C. or less at normal pressure.
The time for standing still varies depending on various conditions, but is usually 10 minutes to 1 hour.
[0014]
【Example】
Examples are described below, but the present invention is not limited thereto.
[Example 1]
In a 150 L reaction vessel, 100 L of transformer oil was charged and 40 g of KC400 (condenser contents), which is a PCB with an average chlorine addition number of 4, was dissolved, and heated to 50 ° C. with nitrogen gas flowing under stirring (190 rpm). 5 kg of metal sodium dispersion liquid (Na concentration 10%) prepared using trans oil as a solvent was added dropwise. Subsequently, 800 g of water was dropped over 1 hour,
The dehalogenation decomposition reaction was completed and the remaining metallic sodium was decomposed. 20 L of water was added to the reaction solution, the solution temperature was reheated to 50 ° C., and the mixture was stirred for 1 hour. After stirring,
When the solution was allowed to stand at 50 ° C. for 15 minutes for separation, the aqueous layer and the oil layer were sufficiently separated. Moisture concentration is measured by Karl Fischer moisture meter, NaOH concentration is extracted by neutralization titration, and chloride ion concentration is examined by the method of Tomonari Akihisa, Nihon Chemical Journal, Vol. 83, No. 6 (1962), 693. It was. The water concentration in the oil layer was 0.17%, the NaOH concentration was 190ppm, the chlorine ion concentration was below the detection limit (detection limit 5ppm), and the oil recovery rate was 99%.
[0015]
[Example 2]
A 150 L reaction vessel was charged with 100 L of transformer oil, 40 g of KC400 (condenser contents) was dissolved, and the mixture was heated to 50 ° C. with nitrogen gas flowing under stirring (190 rpm). 3.8 kg of sodium metal dispersion liquid (Na concentration 10%) prepared using trans oil as a solvent was added dropwise. Subsequently, 200 g of water was added dropwise over 1 hour to complete the dehalogenation decomposition reaction. Into another 500 L reaction vessel, 200 L of 10% saline was charged, and under stirring, nitrogen gas was allowed to flow and the previous reaction solution was dropped therein to decompose the remaining metallic sodium. After completion of the reaction, the mixture was stirred for 1 hour, and neutralized by adding 10% hydrochloric acid during that time. When the liquid temperature was heated to 50 ° C. and left to stand for 30 minutes for liquid separation, the water layer and the oil layer were sufficiently separated. The water concentration in the oil layer was 0.5%, the chlorine ion concentration was 300 ppm, and the oil recovery rate was 99%.
[0016]
[Comparative Example 1]
The water layer and the oil layer were not separated at all when the same operation as in Example 1 was performed except that the liquid temperature before liquid separation was set to 30 ° C.
[0017]
[Comparative Example 2]
Except that the liquid temperature before liquid separation was 30 ° C., the same operation as in Example 2 was performed, and 10 L of an intermediate layer in which the water layer and the oil layer were mixed was produced. The oil recovery was 96%.
[0018]
【The invention's effect】
Inorganic components in oil dehalogenated and decontaminated with a basic alkali metal compound or the like can be separated and removed efficiently and inexpensively.

Claims (2)

含有するポリ塩化ビフェニール、ダイオキシン類、ジベンゾフラン類、ポリ塩素化ベンゼン、または塩化メチレンのいずれかの有害ハロゲン化合物を、金属ナトリウム分散体により脱ハロゲン分解処理した電気絶縁油に、水を混合し、40℃以上100℃以下の温度で静置した後、分液することを特徴とする、含有する有害ハロゲン化合物を脱ハロゲン分解処理した電気絶縁油中の無機成分分離方法。Water is mixed with an electrical insulating oil obtained by dehalogenating and decomposing a harmful halogen compound of polychlorinated biphenyls, dioxins, dibenzofurans, polychlorinated benzene, or methylene chloride containing metal chloride , A method for separating inorganic components in an electrical insulating oil obtained by dehalogenating and decomposing a harmful halogen compound contained therein, which is separated after standing at a temperature of from 100 ° C. to 100 ° C. 電気絶縁油がトランスオイルである請求項1に記載の方法。  The method of claim 1, wherein the electrical insulating oil is a transformer oil.
JP15750996A 1996-05-29 1996-05-29 Separation of inorganic components in electrical insulating oil Expired - Lifetime JP4018173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15750996A JP4018173B2 (en) 1996-05-29 1996-05-29 Separation of inorganic components in electrical insulating oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15750996A JP4018173B2 (en) 1996-05-29 1996-05-29 Separation of inorganic components in electrical insulating oil

Publications (2)

Publication Number Publication Date
JPH09313804A JPH09313804A (en) 1997-12-09
JP4018173B2 true JP4018173B2 (en) 2007-12-05

Family

ID=15651241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15750996A Expired - Lifetime JP4018173B2 (en) 1996-05-29 1996-05-29 Separation of inorganic components in electrical insulating oil

Country Status (1)

Country Link
JP (1) JP4018173B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169486A (en) * 2008-01-15 2008-07-24 Hitachi Ltd Method and apparatus for regenerating alkali metal dispersant

Also Published As

Publication number Publication date
JPH09313804A (en) 1997-12-09

Similar Documents

Publication Publication Date Title
EP0170714A1 (en) Destruction of polychlorinated biphenyls and other hazardous halogenated hydrocarbons
CA2152473C (en) Process for the chemical decomposition of halogenated organic compounds
NO167494B (en) PROCEDURE FOR DISSOLUTING HALOGENATED ORGANIC COMPOUNDS, SPECIFICALLY APPLICABLE FOR PURIFICATION OF MINERAL OILS
JP4514284B2 (en) Method for treating organohalogen compounds
EP0603400A1 (en) Method of removing halogenated aromatic compound from hydrocarbon oil
JP4018173B2 (en) Separation of inorganic components in electrical insulating oil
JP2001294539A (en) Method for dehalogenating organic halogen compound
JP2002212109A (en) Method for treating organic halide compound
JP4084073B2 (en) Detoxification method for organic halogen compounds
JP2918542B1 (en) Method for treating organic halogen compounds
JPH0426632A (en) Dehydrohalogenation of organic compound
JP2001302552A (en) Method for treating organihalogen compound
JP3918182B2 (en) Method for separating inorganic components in electrical insulating oil
JP3935758B2 (en) Detoxification treatment method and detoxification treatment system for organic halogen compounds
JP2000246002A (en) Method for cleaning solid material contaminated with organic halide and device therefor
JP3933484B2 (en) Detoxification treatment method and detoxification treatment system for organic halogen compound contaminated oil
JP5377419B2 (en) Detoxification method for PCB mixed insulating oil
JP3910883B2 (en) Method and apparatus for decomposing organohalogen compounds
JP2001231882A (en) Method for dehalogenation of organic halogen compound
JP2002035159A (en) Method for treating oil contaminated with organic halogen compound and apparatus for treating it
JP3907938B2 (en) Method for decomposing organic halogen compounds
JP4381575B2 (en) Method for removing salts from dehalogenated products of organohalogen compounds
JP3408390B2 (en) Decomposition method of aromatic halogen compound
JP2665575B2 (en) Reclaimed oil manufacturing method
JP2002012561A (en) Method for treating organohalogen compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term