JPH10176234A - Cemented carbide, its production, and cemented carbide tool - Google Patents

Cemented carbide, its production, and cemented carbide tool

Info

Publication number
JPH10176234A
JPH10176234A JP8334343A JP33434396A JPH10176234A JP H10176234 A JPH10176234 A JP H10176234A JP 8334343 A JP8334343 A JP 8334343A JP 33434396 A JP33434396 A JP 33434396A JP H10176234 A JPH10176234 A JP H10176234A
Authority
JP
Japan
Prior art keywords
raw material
cemented carbide
powder
wlp
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8334343A
Other languages
Japanese (ja)
Other versions
JP3428333B2 (en
Inventor
Hideki Moriguchi
秀樹 森口
Akihiko Ikegaya
明彦 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP33434396A priority Critical patent/JP3428333B2/en
Publication of JPH10176234A publication Critical patent/JPH10176234A/en
Application granted granted Critical
Publication of JP3428333B2 publication Critical patent/JP3428333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a cemented carbide which has superior hardness and toughness and in which laminar WC crystalline grains are formed. SOLUTION: A Wc powder (raw material A) whose average grain size is regulated to 0.6-1μm in crushing and mixing stages, a WC powder (raw material B) whose average grain size is regulated to a value two or more times that of the raw material A in crushing and mixing stages, and a powder (raw material C) of at least one metal selected from Co, Ni, Cr, Fe, and Mo are used as raw material powders and sintered at >=1500 deg.C. In an arbitrary cross-sectional structure of this cemented carbide, when Ws, Wsp, WL, WLp, and W represent the area of carbide tungsten (WC) crystalline grains of <=1μm grain size, the area of WC crystalline grains of >=2 aspect ratio among the above Ws, the area of WC crystalline grains of >1μm grain size, the area of WC crystalline grains of >=2 aspect ratio among the above WL, and the area of all the WC crystalline grains, respectively, the following conditions are satisfied: the value of Ws/W is 0.1-0.4; the value of WLp/WL is 0.1-0.7; and the value of (WLp/ WL)/(Wsp/Ws) is >2. It is desirable to use the cemented carbide satisfying WLp/WL>=0.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は切削工具、ビットな
どの耐衝撃工具、ロールや製缶工具などの塑性加工用工
に用いられる硬度と靱性のバランスに優れたWC基超硬合
金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a WC-based cemented carbide having an excellent balance between hardness and toughness used for impact-resistant tools such as cutting tools and bits, and plastic working such as rolls and can-making tools.

【0002】[0002]

【従来の技術】従来より、WCを主体とした結晶粒と、Co
あるいはNiのような鉄族金属を主体とする結合相からな
る超硬合金は、その優れた硬度、靱性、剛性率のため、
各種の切削工具や耐摩工具などに用いられてきた。しか
し、近年、超硬合金の用途が拡大するにつれて、一段と
優れた硬度、靱性を有するWC超硬合金へのニーズが高ま
ってきた。
2. Description of the Related Art Conventionally, WC-based crystal grains and Co
Alternatively, a cemented carbide composed of a binder phase mainly composed of an iron group metal such as Ni is excellent in hardness, toughness, rigidity,
It has been used for various cutting tools and wear-resistant tools. However, in recent years, as the uses of cemented carbides have expanded, the need for WC cemented carbides having even higher hardness and toughness has increased.

【0003】このようなニーズに対して、特開平2-4723
9号公報、特開平2-138434号公報、特開平2-274827号公
報、特開平5-339659号公報ではWC結晶粒の粒形状を板状
とし、従来の超硬合金よりもさらに硬度と靱性に優れた
ものとする提案がなされている。
In response to such needs, Japanese Patent Laid-Open No.
No. 9, JP-A-2-138434, JP-A-2-74827, JP-A-5-339659 in the plate shape of the WC crystal grains, hardness and toughness than conventional hard metal alloy It has been proposed to be excellent.

【0004】前記特開平5-339659号公報には、超硬合金
中に存在するWC結晶粒の15%以上が1〜10μmの最大寸法
で最小寸法の2倍以上である板状のWC結晶粒からなるも
のが開示されている。また、特開平7-278719号公報、あ
るいは特開平8-199285号公報には、最小寸法に対する最
大寸法の比(アスペクト比と称す。すなわち、WCを主体
とする結晶粒と鉄族金属を主体とする結合相からなる超
硬合金が板状のWC結晶粒を含有している場合、超硬合金
の任意の断面を走査型電子顕微鏡で観察したとき、該任
意断面での個々の板状WC結晶粒の最大寸法の最小寸法に
対する比率をいう。)が、3〜20である板状WC結晶粒を
含有しているものが開示されている。
JP-A-5-339659 discloses plate-like WC grains in which at least 15% of WC grains present in a cemented carbide have a maximum dimension of 1 to 10 μm and a minimum dimension of twice or more. Are disclosed. Further, JP-A-7-278719 or JP-A-8-199285 discloses a ratio of a maximum dimension to a minimum dimension (referred to as an aspect ratio. That is, a crystal grain mainly composed of WC and an iron group metal mainly). When the cemented carbide composed of the binder phase containing the WC contains plate-like WC crystal grains, when an arbitrary cross section of the cemented carbide is observed with a scanning electron microscope, individual plate-like WC crystals at the arbitrary cross section are observed. It is disclosed that the sheet contains plate-like WC grains having a ratio of the largest dimension of the grains to the smallest dimension of 3 to 20).

【0005】[0005]

【発明が解決しようとする課題】上記のような提案では
合金の特性をある程度向上させることができたが、特殊
な原料粉末や製造法を利用するため、製造コストが高価
なものとなり、且つ板状WC結晶粒の生成量も不安定で、
したがってその合金特性が不安定なものであった。
In the above proposal, the properties of the alloy could be improved to some extent. However, the use of a special raw material powder and a manufacturing method makes the manufacturing cost expensive and increases The amount of WC crystal grains is also unstable,
Therefore, the alloy characteristics were unstable.

【0006】しかもこれらの板状WC結晶粒の生成で靱性
の改善は、ある程度達成されたが、板状WCの生成でWC結
晶粒が粗大化すると合金は低硬度となるため、硬度と靱
性の両立したWC超硬合金の開発が望まれていた。
Although the toughness has been improved to some extent by the formation of these plate-like WC grains, the alloy becomes low in hardness when the WC grains are coarsened by the formation of the plate-like WC, so that the hardness and toughness are reduced. The development of a compatible WC cemented carbide was desired.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らはこ
のような従来の板状WC結晶粒含有超硬合金の問題点を克
服するため、種々の研究を行い、性能バラツキの小さい
硬度、靱性に優れた超硬合金を製造することに成功し
た。つまり、任意の断面組織において、粒径が1μm以下
の炭化タングステン結晶粒の面積をWs、Wsのうちアス
ペクト比が2以上の炭化タングステンの面積をWsp、粒
径が1μmを越える炭化タングステン結晶粒の面積をW
L、WLのうちアスペクト比が2以上の炭化タングステン
の面積をWLp,全ての炭化タングステン結晶粒の面積をW
としたときに、WL/Wが0.6〜0.9、WLp/WLが0.1〜0.
7、(WLp/WL)/(Wsp/Ws)>2とすることにより、
前記板状WCの問題点が解決できることを見出したもので
ある。
In order to overcome the problems of the conventional plate-like WC crystal grain-containing cemented carbide, the present inventors have conducted various studies and found that the hardness, the performance variation of which is small. We succeeded in producing cemented carbide with excellent toughness. That is, in an arbitrary cross-sectional structure, the area of the tungsten carbide grains having a grain size of 1 μm or less is Ws, the area of the tungsten carbide having an aspect ratio of 2 or more among Ws is Wsp, and the area of the tungsten carbide grains having a grain size of more than 1 μm is Ws. Area W
The area of tungsten carbide having an aspect ratio of 2 or more among L and WL is WLp, and the area of all tungsten carbide crystal grains is W
When WL / W is 0.6 to 0.9, WLp / WL is 0.1 to 0.
7. By setting (WLp / WL) / (Wsp / Ws)> 2,
It has been found that the problem of the plate-like WC can be solved.

【0008】すなわち、Ws/Wが0.1〜0.4とすることに
より、粒径が1μmよりも小さい微粒の高硬度WCが存在す
るように制御し、WLp/WLが0.1〜0.7とすることによ
り、粒径が1μmよりも大きい粗粒の靱性に優れた板状WC
の存在比率を高め、(WLp/WL)/(Wsp/Ws)>2とす
ることにより粗粒WC側での板状WCの存在率を微粒WC側よ
りも大きくすることで、硬度と靱性がともに優れた超硬
合金とすることができる。
That is, by controlling Ws / W to be 0.1 to 0.4, it is controlled so that fine hard WC having a particle size smaller than 1 μm is present, and by setting WLp / WL to be 0.1 to 0.7, the particle size is controlled. Plate-shaped WC with excellent toughness of coarse grains with diameter larger than 1μm
The hardness and toughness are increased by increasing the abundance ratio of WC to (WLp / WL) / (Wsp / Ws)> 2 to increase the abundance of plate-like WC on the coarse WC side compared to the fine WC side. Both can be excellent cemented carbides.

【0009】この理由は、靱性に優れた粗粒の板状WCと
硬度に優れた微粒の粒状WCの存在比率を制御し、それぞ
れのWCに靱性と硬度の機能を分担させることによるもの
である。
The reason for this is that the existence ratio of coarse-grained plate-like WC having excellent toughness and fine-grained granular WC having excellent hardness is controlled, and each WC shares functions of toughness and hardness. .

【0010】なお、Ws/Wが0.1〜0.4としたのは、この
値が0.1よりも小さいと硬度に優れた微粒の高硬度WCの
存在比率が低くなり硬度が低下するとともに、0.4より
も大きいと微粒の高硬度WCの存在比率が高くなり過ぎて
靱性の低下をまねくためである。
The reason why Ws / W is set to 0.1 to 0.4 is that if this value is smaller than 0.1, the proportion of high-hardness WC of fine particles having excellent hardness is reduced, the hardness is reduced, and Ws / W is larger than 0.4. This is because the existence ratio of high-hardness WC of fine particles becomes too high, which leads to a decrease in toughness.

【0011】また、WLp/WLが0.1〜0.7としたのは、こ
の値が0.1よりも小さいと板状WCの存在比率が低下して
靱性向上の効果が期待できず、0.7よりも大きくするこ
とは工業的に難しいためである。
The reason why WLp / WL is set to 0.1 to 0.7 is that if this value is smaller than 0.1, the existence ratio of the plate-like WC is reduced, and the effect of improving the toughness cannot be expected. Is industrially difficult.

【0012】さらに、前記WLp、WL、Wsp、Wsが(W
Lp/WL)/(Wsp/Ws)>2なる関係としたのは、この範
囲であると亀裂進展抑止効果の大きい粒径が1μmよりも
大きい粗粒の板状WCの存在比率が高まり、粒径が1μm以
下の微粒の高硬度のWCの無用な板状化が抑制され、靱性
負担機能と硬度負担機能の役割分担がなされることで、
硬度、靱性のバランスに優れた超硬合金とすることがで
きるためである。
Further, the aforementioned WLp, WL, Wsp and Ws are (W
The relationship of Lp / WL) / (Wsp / Ws)> 2 was set in this range because the existence ratio of plate-like WC of coarse particles having a large effect of inhibiting crack growth and having a particle size larger than 1 μm was increased, Unnecessary plate-formation of high-hardness WC of fine particles with a diameter of 1 μm or less is suppressed, and the roles of the toughness burden function and the hardness burden function are shared,
This is because a cemented carbide having an excellent balance between hardness and toughness can be obtained.

【0013】さらに、前記WLp/WLが0.3以上である場
合には特に優れた靱性を有する超硬合金とすることがで
き、好ましい。これは、粒径が1μmよりも大きい粗粒の
靱性に優れた板状WCの存在比率が高まるためである。な
お、ここで、WCの結晶粒径はWCが多角形の場合は対角線
の最大長さで示し、三角形の場合は辺の最大長さとし
た。
Further, when the ratio WLp / WL is 0.3 or more, a cemented carbide having particularly excellent toughness can be obtained, which is preferable. This is because the existence ratio of plate-like WC having excellent toughness of coarse particles having a particle size larger than 1 μm is increased. Note that, here, the crystal grain size of the WC is represented by the maximum length of a diagonal line when the WC is a polygon, and the maximum length of a side when the WC is a triangle.

【0014】以上のような超硬合金からなる工具等の製
品の表面に、さらにIVa,Va,VIa族元素,Alか
ら選ばれた少なくとも一種の炭化物、窒化物、酸化物、
ホウ化物及びこれらの固溶体、あるいはダイヤモンド、
DCL、CBNから選ばれた少なくとも一層以上の被覆膜を設
けると、これらを切削工具や耐摩工具として用いた場合
に、合金母材が優れた硬度と靱性のバランスを有するた
め、特に優れた性能を発揮することができる。
On the surface of a product such as a tool made of a cemented carbide as described above, at least one kind of carbides, nitrides, oxides selected from the group consisting of IVa, Va, VIa group elements and Al;
Borides and their solid solutions, or diamonds,
When at least one coating film selected from DCL and CBN is provided, when these are used as cutting tools or wear-resistant tools, the alloy base material has an excellent balance between hardness and toughness, so particularly excellent performance Can be demonstrated.

【0015】特に20μm以上の被覆膜を従来のWC基超硬
合金上に被覆した場合には、被覆膜が亀裂の発生を助長
(グリフィスの予亀裂の働き)すると考えられ、そのた
め超硬合金における耐欠損性の低下が見られたけれど
も、本発明の超硬合金では亀裂進展の抑制効果の高い粒
径が1μm以上の粗粒の板状WCの存在割合を制御している
ため、優れた耐欠損性を実現できる。
In particular, when a coating film having a thickness of 20 μm or more is coated on a conventional WC-based cemented carbide, it is considered that the coating film promotes the generation of cracks (the function of pre-cracking of Griffith). Although the fracture resistance of the alloy was reduced, the cemented carbide of the present invention is excellent because the grain size having a high effect of suppressing crack growth controls the existence ratio of coarse platy WC of 1 μm or more. High fracture resistance.

【0016】本発明の超硬合金を製造する方法として
は、特に限定を設けないが、好ましい方法としては次の
方法を挙げることができる。すなわち、粉砕、混合工程
で平均粒径が0.6〜1μmとなるWC粉末(原料A)と粉
砕、混合工程で平均粒径が原料Aの2倍以上となるWC粉
末(原料B)とCo、Ni、Cr、Fe、Moから選ばれた少なく
とも一種の金属(原料C)を各々原料粉末として用い、
1500℃以上の温度で焼結することにより、本発明の超硬
合金を安定して製造することができる。
The method for producing the cemented carbide of the present invention is not particularly limited, but the following method can be mentioned as a preferable method. That is, a WC powder (raw material A) having an average particle diameter of 0.6 to 1 μm in the pulverizing and mixing steps, and a WC powder (raw material B) having an average particle diameter twice or more that of the raw material A in the pulverizing and mixing steps, and Co, Ni , Cr, Fe, at least one metal selected from Mo (raw material C) is used as each raw material powder,
By sintering at a temperature of 1500 ° C. or more, the cemented carbide of the present invention can be manufactured stably.

【0017】なお、粉砕、混合工程で原料Aと、原料
B、原料Cを原料粉末として用い、好ましくは1500℃以
上の温度で焼結することにより、アスペクト比が2以上
のWC結晶粒を含有する超硬合金を作製することができる
が、本方法では特開平2-47239号公報、特開平2-51408号
公報特開平2-138434号公報、特開平2-274827号公報、特
開平7-252555号公報、特開平7-278719号公報、特開平7-
292426号公報、特開平7-316688号公報、特開平8-120352
号公報、特開平8-143987号公報、特開平8-209201号公報
のように特殊な原料粉末を用いる必要がなく、又特開平
5-339659号公報のようにWC粉末を0.5μm以下まで粉砕す
ることを必要とせず、すなわち、市販されているWC原料
粒径に近いWC粉末を過度に粉砕することなく利用するた
め、余分な粉砕時での粉砕・混合装置(アトライター)
からの異物混入やWC粉末の酸化現象を抑制できるため、
優れた特性の超硬合金を安価に安定して製造することが
できる。
The raw material A, the raw material B, and the raw material C are used as raw material powders in the pulverization and mixing steps, and are preferably sintered at a temperature of 1500 ° C. or more to contain WC crystal grains having an aspect ratio of 2 or more. It is possible to produce a cemented carbide, but in this method JP-A-2-47239, JP-A-2-51408 JP-A-2-138434, JP-A-2-74827, JP-A-7- 252555, JP-A-7-278719, JP-A-7-278719
292426, JP-A-7-316688, JP-A-8-120352
JP, JP-A-8-143987 and JP-A-8-209201 do not require the use of special raw material powders, and
No need to pulverize WC powder to 0.5 μm or less as in 5-339659, that is, to use WC powder close to the commercially available WC raw material particle size without excessive pulverization, Grinding and mixing equipment (attritor) during grinding
WC powder and oxidation of WC powder
A cemented carbide having excellent characteristics can be stably manufactured at low cost.

【0018】本方法により、安定して板状WC結晶粒を含
有する超硬合金を製造できる原因は必ずしも明らかでは
ないが、板状WC結晶粒が成長する機構として、WCの液相
への溶解再析出現象が主であると考えられ、本製造法の
ように粉砕、混合後の原料WC粉末の平均粒径(フィッシ
ャーサブシーブサイザー粒径とも称され、JIS H 2116に
よる装置で測定した平均粒径のことである。以下同
じ。)が2倍以上、好ましくは3倍以上異なる2種類のWC
粉末を原料として用いることにより、WCの溶解再析出
(微粒のWCが液相中に溶解し、粗粒WC上に再析出する現
象)のための駆動力が向上し、板状WC結晶粒が生成しや
すくなるとともに、原料Bとして添加した粗粒WCが原料
粉末内に均一に存在することによって、局所的な板状WC
の成長が抑制されて、粉末ロットの違いや焼結ロットな
どの違いに関係なく、板状WC結晶粒が焼結体内で安定し
て生成することができるためであると思われる。
The reason why the present method can produce a cemented carbide containing plate-like WC grains stably is not always clear, but the mechanism by which the plate-like WC grains grow is the dissolution of WC in the liquid phase. The re-precipitation phenomenon is considered to be the main factor, and the average particle size of the raw material WC powder after pulverization and mixing (also called the Fischer sub-sieve sizer, as measured by an apparatus according to JIS H 2116) Two types of WCs whose diameters differ by more than twice, preferably more than three times
By using powder as a raw material, the driving force for dissolution and re-precipitation of WC (fine WC is dissolved in the liquid phase and re-precipitated on coarse WC) is improved, and plate-like WC crystal grains are reduced. Not only is it easy to produce, but also because the coarse WC added as the raw material B is uniformly present in the raw material powder,
This is presumably because the growth of WC is suppressed and plate-like WC crystal grains can be stably generated in the sintered body regardless of the difference between the powder lot and the sintering lot.

【0019】従来の製造法でも、何らかの問題で粉砕工
程で均一な粉砕が行われず、結果的にWC粒度分布が大き
くなることで、板状WC結晶粒の生成が促進され、α2と
呼ばれる異常に粗大なWC結晶粒が生成することは報告さ
れていたが、粗粒側のWCの粒度管理がなされていないた
め、安定した板状WC結晶粒の生成が行えなかった。
Even in the conventional production method, uniform pulverization is not performed in the pulverization step due to some problems, and as a result, the WC particle size distribution is increased, thereby promoting the generation of plate-like WC crystal grains, resulting in an abnormal condition called α2. Although it was reported that coarse WC grains were generated, stable WC crystal grains could not be generated because the grain size of WC on the coarse side was not controlled.

【0020】これに対し、本発明の方法では原料Aと原
料Bの配合比および原料Aと原料Bの平均粒度差を管理
することで、WC結晶粒の形状、粒度分布などの組織制御
が可能である特徴を有する。さらに、本発明の方法では
欠陥の少ない特性の優れた粗粒WCを原料Bとして用いた
場合、このWCを溶解再析出現象を利用させて成長させる
ことになるので、半導体製造で有名なブリッジマン法の
ように、欠陥の少ない特性の優れた板状WCを生成させる
ことができる利点がある。
On the other hand, in the method of the present invention, by controlling the compounding ratio of the raw material A and the raw material B and the average particle size difference between the raw material A and the raw material B, it is possible to control the structure of the WC crystal grains such as the shape and the particle size distribution. It has the following features. Further, in the method of the present invention, when coarse WC having excellent properties with few defects is used as the raw material B, the WC is grown by utilizing the re-deposition phenomenon. As in the method, there is an advantage that a plate-like WC having excellent characteristics with few defects can be generated.

【0021】しかも、本製造法では原料Aの少なくとも
一部に使用済み超硬合金をリサイクル法(亜鉛処理法や
高温処理法等による。)でリサイクルしたWC粉末を使用
することができ、従来の製造法によるよりも安価に本発
明の超硬合金が製造できるほか、地球環境保護の観点か
らタングステン(W)鉱山の無益な採掘を抑制できる方
策を切り開くことができ、非常に好ましい。従来より、
超硬合金のリサイクル粉末を使用することは試みられて
きたが、性能の低下を招くため、ごく一部に使用される
だけで全面的な採用はなされていないのが現状であっ
た。
In addition, in the present production method, WC powder obtained by recycling used cemented carbide by at least a part of the raw material A by a recycling method (such as a zinc treatment method or a high temperature treatment method) can be used. This is very preferable because the cemented carbide of the present invention can be manufactured at a lower cost than by the manufacturing method, and a measure capable of suppressing the useless mining of the tungsten (W) mine can be opened from the viewpoint of global environmental protection. Conventionally,
Attempts have been made to use recycled powders of cemented carbides, but at the present time they have only been used for a very small portion and have not been fully adopted because of their reduced performance.

【0022】リサイクルは、一般に亜鉛処理法で行われ
るが、リサイクルWC粉末の粒度はリサイクルする使用済
み超硬合金のWC結晶粒度に依存するため、特定の粒度の
WC原料を作製ることができず、高温処理法でも処理時に
WC結晶粒が部分的に粒成長するため、その後粉砕したと
してもWC粉末の粒度分布の幅が非常に広くなる問題点を
有していた。このため、これらのリサイクル粉末を使用
して超硬合金を作製すると、WC結晶粒度分布を管理する
ことができないため、性能のバラツキが大きくなる問題
点があった。
Recycling is generally carried out by a zinc treatment method. However, the particle size of the recycled WC powder depends on the WC grain size of the used cemented carbide to be recycled.
WC raw materials cannot be produced, and high-temperature processing
Since the WC crystal grains partially grow, there is a problem that the width of the particle size distribution of the WC powder is very wide even if the WC powder is pulverized thereafter. For this reason, when a cemented carbide is produced using these recycled powders, the WC crystal particle size distribution cannot be controlled, and there has been a problem that the dispersion of the performance becomes large.

【0023】これに対して、本発明の製造法では、リサ
イクル原料である使用済み超硬合金から再生された粒径
0.6〜1μmの範囲のリサイクル粉末を、焼結過程で液相
中に溶解させ、より平均粒径の大きい原料B上に再析出
させることにより、作製した焼結体の板状WC結晶の粒径
を原料BのWC粉末粒度で制御することになる。このた
め、リサイクル粉末の粒度が最終焼結体の粒径を決定す
ることにはならず、前述の問題点を回避できるのであ
る。
On the other hand, in the production method of the present invention, the particle size regenerated from the used cemented carbide as the recycled material
The recycled powder in the range of 0.6 to 1 μm is dissolved in the liquid phase during the sintering process, and is re-precipitated on the raw material B having a larger average particle size. Is controlled by the WC powder particle size of the raw material B. For this reason, the particle size of the recycled powder does not determine the particle size of the final sintered body, and the above-described problem can be avoided.

【0024】しかも、本方法では前述したように微粒原
料Aは液相に溶解後、粗粒原料B上に再析出するので、
板状WCの特性は粗粒原料Bの特性に依存することにな
り、特性が不安定なリサイクル原料を用いた場合でも優
れた特性を有する焼結体を作製できる。
Further, in the present method, as described above, the fine-grained raw material A is dissolved in the liquid phase and then re-precipitated on the coarse-grained raw material B.
The properties of the plate-like WC depend on the properties of the coarse-grained raw material B, and a sintered body having excellent properties can be produced even when a recycled raw material having unstable characteristics is used.

【0025】なお、ここで、原料Aの混合、粉砕後の平
均粒径を0.6〜1μmに限定した理由について説明する。
これは、0.6μmよりも平均粒径を小さくすると微粒WCの
液相中への溶解度が急激に大きくなり、本発明のWs/W
の値を0.1〜0.4の範囲に制御することが難しくなるため
であり、また、原料Aとしてリサイクル粉を使用する場
合については粉砕による粉末の酸化が激しくなり、焼結
体の強度の低下が起こりやすくなるためである。次に、
粒径が1μmよりも大きいと板状WCの成長が起こりにくく
なるとともにWs/Wの値が小さくなり、焼結体の硬度が
低下するので、このように限定した。
Here, the reason why the average particle size after mixing and grinding of the raw material A is limited to 0.6 to 1 μm will be described.
This is because if the average particle size is smaller than 0.6 μm, the solubility of the fine WC in the liquid phase rapidly increases, and the Ws / W of the present invention is reduced.
This is because it is difficult to control the value of the powder in the range of 0.1 to 0.4, and in the case of using recycled powder as the raw material A, the powder is oxidized vigorously by pulverization, and the strength of the sintered body is reduced. This is because it becomes easier. next,
When the particle size is larger than 1 μm, the growth of plate-like WC becomes difficult to occur and the value of Ws / W becomes small, so that the hardness of the sintered body is reduced.

【0026】なお、原料A、原料BのWC粉末には、市販
のWC原料をそのまま用いることもできるし、予備粉砕に
より粒度調整(原料Aは粒径が0.6〜1μm、原料Bはそ
の2倍以上の平均粒径)した粉末を用いて、ボールミル
などにより軽混合して用いたり、混合、粉砕工程で狙い
とする粒径となるような平均粒径の異なる2種類以上の
市販WC粉末を用いればよい。
As the WC powder of the raw material A and the raw material B, a commercially available WC raw material can be used as it is, or the particle size is adjusted by preliminary pulverization (the raw material A has a particle size of 0.6 to 1 μm, and the raw material B has twice the particle size). Using the powder with the above average particle size), lightly mix it with a ball mill or the like, or use two or more types of commercially available WC powders with different average particle sizes to achieve the target particle size in the mixing and grinding processes. I just need.

【0027】また、この製造法で用いた原料粉末にさら
に原料DとしてIVa,Va,VIa族元素から選ばれ
た少なくとも一種の炭化物、窒化物、炭窒化物若しくは
それらの固溶体(炭化タングステンを除く)を原料粉末
として用いることで、高温特性や耐食性、耐酸化性に優
れた超硬合金を作製することができる。なお、原料Dを
用いた場合、これらの化合物の中にはWCの粒成長抑制効
果の高いものもあり、板状WCが生成しにくくなる場合が
ある。この際には原料Aと原料Bの粒度差が特に大きく
なるように原料、粉砕法を選定すればよい。
Further, in addition to the raw material powder used in this production method, at least one kind of carbide, nitride, carbonitride or a solid solution thereof (excluding tungsten carbide) selected from Group IVa, Va and VIa elements as raw material D By using as a raw material powder, a cemented carbide excellent in high-temperature characteristics, corrosion resistance, and oxidation resistance can be produced. When the raw material D is used, some of these compounds have a high effect of suppressing WC grain growth, so that plate-like WC may not be easily generated. In this case, the raw materials and the pulverizing method may be selected so that the difference in particle size between the raw materials A and B becomes particularly large.

【0028】前記リサイクル原料である使用済み超硬合
金を粉砕したリサイクル粉末から生じたWC粉末の重量W
Rと原料Aの重量WAの比WR/WAが0.3〜1(好ましくは
0.5〜1)である場合には、特に安価に本発明の超硬合金
を作製できるほか、地球環境保護の観点からも好ましい
超硬合金ということができる。
The weight W of the WC powder produced from the recycled powder obtained by grinding the used cemented carbide used as the recycled material
The ratio WR / WA of R and the weight WA of the raw material A is 0.3 to 1 (preferably
In the case of 0.5 to 1), the cemented carbide of the present invention can be produced particularly inexpensively, and it can be said that the cemented carbide is preferable from the viewpoint of global environmental protection.

【0029】なお、原料Aの重量WAと、原料Bの重量
WBの比WA/WBは0.2〜20であるときに特に優れた性能
の超硬合金とすることができる。より好ましいのはその
比WA/WBが1〜10のときである。WA/WBが0.2より小で
あるとアスペクト比が2より大の板状WC結晶を生成しに
くく、20よりも大きいと板状WC結晶粒の生成が不安定で
局部的に粗大な板状WC結晶粒が生成しやすくなる。
When the ratio WA / WB of the weight WA of the raw material A to the weight WB of the raw material B is 0.2 to 20, a cemented carbide having particularly excellent performance can be obtained. More preferred is when the ratio WA / WB is 1-10. If WA / WB is less than 0.2, it is difficult to generate plate-like WC crystals having an aspect ratio of more than 2, and if WA / WB is more than 20, the generation of plate-like WC crystal grains is unstable and locally coarse plate-like WC is formed. Crystal grains are easily formed.

【0030】[0030]

【発明の実施の形態】以下、本発明をどのように実施す
るかを具体的に示した実施例を以下に記載する。 (実施例1) 原料粉末として粉砕効率の高いアトライ
ターを用いて粉砕した平均粒径0.8μmのWC粉末(原料
A)及び同様に粉砕により平均粒径を2μmとしたWC粉末
(原料B)を準備した。さらに、平均粒径1.5μmのCo粉
末、平均粒径1.3μmのNi粉末、平均粒径2μmのFe粉末を
用いて、表1の組成に配合し、通常のボールミルを用い
てアセトン溶媒中で3時間の混合を行った。その後スプ
レードライヤーにて造粒を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment which specifically shows how to carry out the present invention will be described. (Example 1) WC powder having an average particle diameter of 0.8 μm (raw material A) and WC powder having an average particle diameter of 2 μm (raw material B) similarly crushed using an attritor having a high crushing efficiency as the raw material powder. Got ready. Furthermore, using a Co powder having an average particle diameter of 1.5 μm, a Ni powder having an average particle diameter of 1.3 μm, and an Fe powder having an average particle diameter of 2 μm, the mixture was blended into the composition shown in Table 1, and then mixed in an acetone solvent using a normal ball mill. Time mixing was performed. Thereafter, granulation was performed with a spray dryer.

【0031】[0031]

【表1】 [Table 1]

【0032】表1の原料No及びWA/WBの列の数字以外
は、wt%を示す数字である。
The numbers other than the numbers in the columns of the raw material No and WA / WB in Table 1 are numbers indicating wt%.

【0033】なお、表1には、平均粒径が0.6〜1μmで
ある原料Aの重量をWA、平均粒子径が原料Aの2倍以上
である原料Bの重量をWBとしたときのWA/WBの値も示
している。
Table 1 shows that the weight of raw material A having an average particle diameter of 0.6 to 1 μm is represented by WA, and the weight of raw material B having an average particle diameter of at least twice that of raw material A is represented by WA / WB. The value of WB is also shown.

【0034】これらの粉末を1ton/cm2の圧力で金型プレ
スし、真空中で1500℃で1時間保持して焼結を行い、ISO
型番CNMG120408の形状(JIS G 4053に準拠した菱形スロ
ーアウェイチップ)の焼結体を作製した。焼結体は#25
0のタ゛イヤモント゛砥石で研削加工し、タ゛イヤモント゛ペーストを用
いてラッピング処理した後、タ゛イヤモント゛製のビッカース圧
子を用いて50kg荷重で硬度、併せて、同圧子の圧痕隅に
生じる亀裂長より求めるIndentation Fracture法による
破壊靱性の値KIC(MPam1/2)を測定した。
These powders were pressed in a mold at a pressure of 1 ton / cm 2 , sintered at 1500 ° C. for 1 hour in a vacuum, and subjected to ISO.
A sintered body having the shape of a model number CNMG120408 (a diamond-shaped throw-away tip based on JIS G 4053) was produced. The sintered body is # 25
Grinding with Tiremont grinding wheel of 0 and lapping treatment with Tiremont paste The value of fracture toughness K IC (MPam 1/2 ) was measured.

【0035】また、本発明との比較のために原料として
アトライター粉砕により平均粒径を2μmとしたWC粉末、
平均粒径1.5μmのCo粉末、平均粒径1.3μmのNi粉末、平
均粒径2μmのFe粉末を用い、原料No.1、8、9、10と同一
組成に配合し、ボールミルを用いてアセトン溶媒中で3
時間混合し、実施例1と同様にして造粒した粉末も作製
した。この粉末を1ton/cm2の圧力で金型プレスし、真空
中で1380℃で1時間保持して焼結を行い、その試料Noを
それぞれNo.2-1、2-8、2-9、2-10、2-11とした。なお、
アトライター粉砕により平均粒径を0.8μmとしたWC粉末
をWC原料として用いる以外は同様にして作製した焼結体
No.2-7についても同様にして作製し、これらの焼結体の
硬度、破壊靱性を同様にして測定した。
For comparison with the present invention, WC powder having an average particle diameter of 2 μm as a raw material by attritor pulverization was used as a raw material.
Using a Co powder with an average particle size of 1.5 μm, a Ni powder with an average particle size of 1.3 μm, and an Fe powder with an average particle size of 2 μm, blended with the same composition as the raw materials No. 1, 8, 9, and 10, and acetone with a ball mill. 3 in solvent
After mixing for a time, a granulated powder was produced in the same manner as in Example 1. This powder was pressed in a mold at a pressure of 1 ton / cm 2 , sintered at 1380 ° C. for 1 hour in a vacuum and sintered, and the sample Nos. Were No. 2-1, 2-8, 2-9, 2-10 and 2-11. In addition,
A sintered body produced in the same manner except that WC powder with an average particle size of 0.8 μm by attritor grinding is used as a WC raw material
Nos. 2-7 were similarly prepared, and the hardness and fracture toughness of these sintered bodies were measured in the same manner.

【0036】また、WC結晶粒の組織形態を観察するた
め、各焼結体の任意の断面を鏡面加工後、光学顕微鏡又
は走査型電子顕微鏡で5000倍にて3視野撮影した写真を
用いて、粒径1μm以下の微粒のWCと粒径が1μmを越える
粗粒のWCにグループ分けを行った。グループ分けの基準
となる粒度は、多角形のWCの場合は対角線の最大長さ、
三角形の場合は最大辺の長さとした。このように、グル
ープ分けした組織写真を画像処理装置にかけ、粒径1μm
を越える炭化タングステン粒子の総面積WL及び粒径1μ
m以下の炭化タングステン粒子の総面積Ws、またそれら
の結晶粒のうちアスペクト比が2以上の炭化タングステ
ンのそれぞれの総面積WLp、Wspを求めた。これらの測
定結果を表2に示す。
Further, in order to observe the microscopic morphology of WC crystal grains, an arbitrary cross section of each sintered body was mirror-finished, and a photograph taken in three fields of view at 5,000 times with an optical microscope or a scanning electron microscope was used. Fine WC with a particle size of 1 μm or less and coarse WC with a particle size exceeding 1 μm were grouped. The granularity used as the basis for grouping is the maximum length of the diagonal line for polygonal WC,
In the case of a triangle, the length was set to the maximum side length. In this way, the grouped organization photographs were subjected to an image processing device, and the particle size was 1 μm.
Total area WL and particle size of 1μ
The total area Ws of tungsten carbide particles of m or less and the total areas WLp and Wsp of tungsten carbide having an aspect ratio of 2 or more among those crystal grains were determined. Table 2 shows the measurement results.

【0037】[0037]

【表2】 [Table 2]

【0038】表2の○印は、本発明に該当していること
を示す。
The circles in Table 2 indicate that the present invention is applicable.

【0039】表2の結果より、本発明の方法で作製した
試料No.1-2〜1-6、1-8、1-9、1-10、1-11は、Ws/Wが0.
1〜0.4、WLp/WLが0.1〜0.7の範囲にあり、(WLp/W
L)/(Wsp/Ws)の値も2より大であり、これらの範囲
内にない従来の方法で作製した試料No.1-1、2-1、1-7、
2-7、2-8、2-9、2-10、2-11と比較して優れた硬度、破
壊靱性値を示していることがわかる。
From the results shown in Table 2, the samples Nos. 1-2 to 1-6, 1-8, 1-9, 1-10, and 1-11 produced by the method of the present invention have Ws / W of 0.1.
1 to 0.4, WLp / WL is in the range of 0.1 to 0.7, (WLp / W
The values of L) / (Wsp / Ws) are also larger than 2, and the samples No. 1-1, 2-1, 1-7, and
It can be seen that they show superior hardness and fracture toughness values as compared with 2-7, 2-8, 2-9, 2-10 and 2-11.

【0040】中でも、WLp/WLが0.3以上、原料Aの重
量WAと原料Bの重量WBの比WA/WBが1〜10である試料
No.1-3、1-4、1-5の試料は特に優れた硬度、破壊靱性値
を有していることがわかる。
In particular, a sample in which WLp / WL is 0.3 or more and a ratio WA / WB of the weight WA of the raw material A to the weight WB of the raw material B is 1 to 10.
It turns out that the samples of Nos. 1-3, 1-4 and 1-5 have particularly excellent hardness and fracture toughness values.

【0041】(実施例2) 原料粉末として粉砕効率の
高いアトライターを用いて粉砕した平均粒径0.8μmのWC
粉末(原料A)及び同様に粉砕により平均粒径を2μm、
4μmとしたWC粉末(原料B)を準備した。さらに、平
均粒径1.5μmのCo粉末、平均粒径1.3μmのNi粉末、平均
粒径1.8μmのCr粉末を用いて、表3の組成に配合し、通
常のボールミルを用いてアセトン溶媒中で3時間の混合
を行った。その後スプレードライヤーにて造粒を行っ
た。これらの粉末を1ton/cm2の圧力で金型プレスし、真
空中で1500℃で1時間保持して焼結を行い、ISO型番CNMG
120408の形状(JIS G 4053に準拠した菱形スローアウェ
イチップ)の焼結体を作製した。
Example 2 WC having an average particle size of 0.8 μm was crushed as a raw material powder using an attritor having a high crushing efficiency.
Powder (raw material A) and similarly pulverized to an average particle size of 2 μm,
A WC powder (raw material B) having a size of 4 μm was prepared. Furthermore, using a Co powder having an average particle size of 1.5 μm, a Ni powder having an average particle size of 1.3 μm, and a Cr powder having an average particle size of 1.8 μm, the components were blended into the composition shown in Table 3, and the resulting mixture was mixed with an ordinary ball mill in an acetone solvent. Mixing was performed for 3 hours. Thereafter, granulation was performed with a spray dryer. These powders were pressed in a mold at a pressure of 1 ton / cm 2 , sintered at 1500 ° C for 1 hour in a vacuum, and sintered.
A sintered body having a shape of 120408 (a diamond-shaped throw-away tip conforming to JIS G 4053) was produced.

【0042】[0042]

【表3】 [Table 3]

【0043】表3の原料No.以外の列の数字は、wt%を示
す数字である。
The numbers in the columns other than the raw material No. in Table 3 are numbers indicating wt%.

【0044】次に、これらの試料を実施例1と同様にし
て硬度、破壊靱性及び組織形態の定量化を行った。測定
結果を表4中に示す。
Next, these samples were quantified for hardness, fracture toughness and microstructure in the same manner as in Example 1. The measurement results are shown in Table 4.

【0045】[0045]

【表4】 [Table 4]

【0046】表4の結果より本発明の方法で作製した試
料No.3-13〜3-15の合金特性は本発明の方法によらず作
製した試料No.3-12の合金特性と比較して優れており、
中でも平均粒径が4μmのWC粉末を使用した試料No.3-1
4、3-15の合金特性は特に優れた合金特性を示すことが
確認できた。
From the results shown in Table 4, the alloy properties of Samples Nos. 3-13 to 3-15 produced by the method of the present invention were compared with those of Samples No. 3-12 produced without using the method of the present invention. Excellent
Sample No. 3-1 using WC powder with an average particle size of 4 μm
It was confirmed that the alloy properties of 4, 3-15 exhibited particularly excellent alloy properties.

【0047】これは、Crを含む本組成の合金はWCの粒成
長が抑制されやすいため、従来の方法で作製した試料N
o.3-12では粒径1μmより大きい粗粒のWCの生成量(W
L)が少なく、低靱性であるのに対して、4μmの平均粒
径のWCが添加された合金No.3-14、3-15ではWC原料の平
均粒度差が大きくなった結果、溶解再析出現象が活発と
なり、粒径1μmを越える粒径のWC中でアスペクト比が2
以上となるものの割合が増え、粒径1μmよりも小さなWC
の存在比率(Ws/W)が低下した結果、優れた合金特性
が得られたものと考えられた。
This is because the alloy of the present composition containing Cr easily suppresses the grain growth of WC, so that the sample N prepared by the conventional method was used.
In o.3-12, the amount of coarse WC produced (W
L) and low toughness, whereas alloy Nos. 3-14 and 3-15 to which WC with an average grain size of 4 μm was added, the average grain size difference of the WC raw material was large, The precipitation phenomenon became active, and the aspect ratio was 2 in WC with a particle size exceeding 1 μm.
WC smaller than 1 μm in particle size
It was considered that excellent alloy properties were obtained as a result of the decrease in the abundance ratio (Ws / W).

【0048】(実施例3) 実施例1で作製した試料N
o.1-1、1-7、1-8〜1-11及び試料No.2-1、2-7、2-8〜2-1
1のCNMG120408形状のチップに0.05Rのホーニング処理
を行った後、表5に示す被覆膜を被覆し、丸棒材の円周
方向に四本の溝を付けた図1に示す形状のSCM435製被削
材4を下記条件で切削テストし、欠損するまでの時間を
測定した。その結果を表5中に記載する。なお、表5の
被覆膜中のDLCはダイヤモンドライクカーボン、CVDは化
学蒸着法、PVDは物理蒸着法を示す。
(Example 3) Sample N prepared in Example 1
o.1-1, 1-7, 1-8 to 1-11 and Sample No.2-1, 2-7, 2-8 to 2-1
1 was subjected to a honing treatment of 0.05R on a CNMG120408-shaped chip, and then coated with a coating film shown in Table 5 and provided with four grooves in the circumferential direction of a round bar material. The work material 4 was subjected to a cutting test under the following conditions, and the time until the chip was broken was measured. The results are shown in Table 5. DLC in the coating film in Table 5 indicates diamond-like carbon, CVD indicates a chemical vapor deposition method, and PVD indicates a physical vapor deposition method.

【0049】[0049]

【表5】 [Table 5]

【0050】表5の欠損に至るまでの時間を測定した結
果より、本発明の試料No.1-1、1-7、1-8〜1-11に被覆し
た試料の工具は従来の方法の試料No.2-1、2-7、2-8〜2-
11に被覆した試料の工具よりも優れた性能を示すことが
わかる。なお、表5中の試料No.1-9のダイヤモンドを立
方晶窒化ホウ素(CBN)にしても同様の結果を得ること
ができた。このように、本発明の超硬合金に被覆した試
料の性能は優れた特性を発揮できることがわかる。
From the results of measuring the time until the defect shown in Table 5, the tools of the samples coated on the samples No. 1-1, 1-7 and 1-8 to 1-11 of the present invention were obtained by the conventional method. Sample No.2-1, 2-7, 2-8 ~ 2-
It can be seen that the performance of the sample coated with No. 11 is superior to that of the tool. Similar results were obtained when the diamond of sample No. 1-9 in Table 5 was changed to cubic boron nitride (CBN). Thus, it can be seen that the performance of the sample coated with the cemented carbide of the present invention can exhibit excellent characteristics.

【0051】(実施例4) 実施例1で作製したNo.4の
原料粉末と同一の組成で、原料Aの一部に使用済み超硬
合金を亜鉛処理法もしくは高温処理法で処理したリサイ
クルWC粉末を使用した原料No.16〜20(表6)を作製し
た。これらを焼結温度を1550℃とする以外は実施例1と
同一の方法で焼結し、硬度、破壊靱性、組織形態を実施
例1と同様にして測定した。その結果を表7に示す。
(Embodiment 4) Recycled WC having the same composition as that of the No. 4 raw material powder prepared in Example 1 and in which a part of the raw material A was treated with a used cemented carbide by zinc treatment or high temperature treatment Raw materials Nos. 16 to 20 (Table 6) using powder were prepared. These were sintered in the same manner as in Example 1 except that the sintering temperature was changed to 1550 ° C., and the hardness, fracture toughness and structure were measured in the same manner as in Example 1. Table 7 shows the results.

【0052】[0052]

【表6】 [Table 6]

【0053】[0053]

【表7】 [Table 7]

【0054】表7の結果より、亜鉛処理法、高温処理法
でリサイクルした粉末を使用した試料4-16〜4-20の合金
特性はリサイクル粉末を用いない試料4-4と同等の優れ
た特性を示していることがわかる。このように、本発明
の方法では、従来、合金特性が劣るため少量しか使用で
きなかったリサイクル粉末をWC粉末の主成分として使用
できるため、これまでの超硬合金の製造法と比較して低
コストで地球環境保護に好ましい超硬合金の製造方法と
いうことができる。
From the results shown in Table 7, the alloy characteristics of Samples 4-16 to 4-20 using the powder recycled by the zinc treatment method and the high-temperature treatment method were as excellent as those of Sample 4-4 using no recycled powder. It turns out that it shows. As described above, in the method of the present invention, recycled powder, which was conventionally used only in a small amount due to poor alloy properties, can be used as a main component of the WC powder. It can be said that it is a method of manufacturing a cemented carbide that is preferable for protecting the global environment at a low cost.

【0055】[0055]

【発明の効果】粉砕、混合工程で平均粒径が0.6〜1μm
となる炭化タングステン(WC)粉末(原料A)と、粉
砕、混合工程で平均粒径が原料Aの2倍以上となる炭化
タングステン(WC)粉末(原料B)、Co、Ni、Cr、Fe、
Moから選ばれた少なくとも一種の金属の粉末(原料C)
を原料粉末として用い、1500℃以上の温度で焼結するこ
とにより、硬度と靱性のバランスに優れた板状WC含有超
硬合金とすることが出来る。
According to the present invention, the average particle size is 0.6 to 1 μm in the pulverization and mixing steps.
Tungsten carbide (WC) powder (raw material A), and tungsten carbide (WC) powder (raw material B) whose average particle diameter is at least twice that of raw material A in the pulverization and mixing steps, Co, Ni, Cr, Fe,
Powder of at least one metal selected from Mo (raw material C)
By using sintering as a raw material powder and sintering at a temperature of 1500 ° C. or higher, a plate-like WC-containing cemented carbide having an excellent balance between hardness and toughness can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】切削試験に用いた被削材の断面形状を示す図で
ある。
FIG. 1 is a diagram showing a cross-sectional shape of a work material used in a cutting test.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金の任意の断面組織において、粒
径が1μm以下の炭化タングステン(WC)結晶粒の面積を
Ws、Wsのうちアスペクト比が2以上の炭化タングステ
ン(WC)結晶粒の面積をWsp、粒径が1μmを越える炭化
タングステン(WC)結晶粒の面積をWL、WLのうちアス
ペクト比が2以上の炭化タングステン(WC)結晶粒の面
積をWLp,全ての炭化タングステン(WC)結晶粒の面積
をWとしたときに、Ws/Wが0.1〜0.4、WLp/WLが0.1
〜0.7、(WLp/WL)/(Wsp/Ws)>2を満たすことを
特徴とする超硬合金。
In an arbitrary sectional structure of a cemented carbide, an area of a tungsten carbide (WC) crystal grain having a grain size of 1 μm or less is represented by Ws, and a tungsten carbide (WC) crystal grain having an aspect ratio of 2 or more among Ws. The area is Wsp, the area of tungsten carbide (WC) grains having a grain size exceeding 1 μm is WL, the area of tungsten carbide (WC) grains having an aspect ratio of 2 or more is WLp, and all areas of tungsten carbide (WC) When the area of a crystal grain is W, Ws / W is 0.1 to 0.4, and WLp / WL is 0.1.
A cemented carbide characterized by satisfying the formula: -0.7, (WLp / WL) / (Wsp / Ws)> 2.
【請求項2】 前記WLp/WLが0.3〜0.7であることを特
徴とする請求項1に記載の超硬合金。
2. The cemented carbide according to claim 1, wherein said WLp / WL is 0.3 to 0.7.
【請求項3】 粉砕、混合工程で平均粒径が0.6〜1μm
となる炭化タングステン(WC)粉末(原料A)と、粉
砕、混合工程で平均粒径が原料Aの2倍以上となる炭化
タングステン(WC)粉末(原料B)、及びコバルト(C
o)、ニッケル(Ni)、クロム(Cr)、鉄(Fe)、モリ
ブデン(Mo)から選ばれた少なくとも一種の金属粉末
(原料C)を原料粉末として用い、1500℃以上の温度で
焼結することを特徴とする請求項1又は請求項2記載の
超硬合金を製造する超硬合金の製造方法。
3. An average particle size of 0.6 to 1 μm in the pulverizing and mixing steps.
Tungsten carbide (WC) powder (raw material A), tungsten carbide (WC) powder (raw material B) whose average particle diameter is at least twice that of raw material A in the pulverization and mixing steps, and cobalt (C)
o), at least one kind of metal powder (raw material C) selected from nickel (Ni), chromium (Cr), iron (Fe) and molybdenum (Mo) is used as a raw material powder and sintered at a temperature of 1500 ° C. or more. A method for manufacturing a cemented carbide for producing the cemented carbide according to claim 1 or claim 2.
【請求項4】 原料Aの重量WAと原料Bの重量WBの比
WA/WBが1〜10であることを特徴とする請求項3記載の
超硬合金の製造法。
4. The method for producing a cemented carbide according to claim 3, wherein the ratio WA / WB of the weight WA of the raw material A to the weight WB of the raw material B is 1 to 10.
【請求項5】 前記原料Aの少なくとも一部に超硬合金
のリサイクル粉末を用いることを特徴とするアスペクト
比が2以上の炭化タングステン(WC)結晶粒を含有する
請求項3又は請求項4記載の超硬合金の製造方法。
5. The raw material A contains tungsten carbide (WC) crystal grains having an aspect ratio of 2 or more, wherein a recycled powder of a cemented carbide is used for at least a part of the raw material A. Production method of cemented carbide.
【請求項6】 前記リサイクル粉末中の炭化タングステ
ン(WC)の重量WRと原料Aの重量WAの比WR/WAが0.3
〜1であることを特徴とする請求項5記載の超硬合金の
製造方法。
6. The ratio WR / WA of the weight WR of tungsten carbide (WC) in the recycled powder to the weight WA of the raw material A is 0.3.
The method for producing a cemented carbide according to claim 5, wherein
【請求項7】 請求項1又は請求項2記載の超硬合金か
らなる工具表面に、IVa、Va、VIa族元素から選
ばれた少なくとも一種の炭化物、窒化物、酸化物、ホウ
化物、これらの固溶体、あるいはアルミナ、ダイヤモン
ド、ダイヤモンドライクカーボン(DLC)、立方晶窒化
ホウ素(CBN)の少なくとも一層以上からなる被覆膜を
設けてなる超硬工具。
7. A tool surface made of the cemented carbide according to claim 1 or 2, wherein at least one of carbides, nitrides, oxides, borides selected from the group consisting of IVa, Va, and VIa group elements, A cemented carbide tool provided with a solid solution or a coating film of at least one of alumina, diamond, diamond-like carbon (DLC), and cubic boron nitride (CBN).
JP33434396A 1996-12-16 1996-12-16 Cemented carbide, its manufacturing method and carbide tool Expired - Lifetime JP3428333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33434396A JP3428333B2 (en) 1996-12-16 1996-12-16 Cemented carbide, its manufacturing method and carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33434396A JP3428333B2 (en) 1996-12-16 1996-12-16 Cemented carbide, its manufacturing method and carbide tool

Publications (2)

Publication Number Publication Date
JPH10176234A true JPH10176234A (en) 1998-06-30
JP3428333B2 JP3428333B2 (en) 2003-07-22

Family

ID=18276309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33434396A Expired - Lifetime JP3428333B2 (en) 1996-12-16 1996-12-16 Cemented carbide, its manufacturing method and carbide tool

Country Status (1)

Country Link
JP (1) JP3428333B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030096A (en) * 2005-07-27 2007-02-08 Tungaloy Corp Cbn tool
JP2010100882A (en) * 2008-10-22 2010-05-06 Nippon Steel Corp Wear resistant screen and method for producing the same
KR20140103283A (en) * 2011-12-21 2014-08-26 산드빅 인터렉츄얼 프로퍼티 에이비 Method of making a cemented carbide
CN114990405A (en) * 2022-06-15 2022-09-02 李凌祥 High-performance superfine hard alloy and preparation method thereof
WO2023141411A1 (en) * 2022-01-21 2023-07-27 Hyperion Materials & Technologies, Inc. Cemented carbide compositions

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030096A (en) * 2005-07-27 2007-02-08 Tungaloy Corp Cbn tool
JP2010100882A (en) * 2008-10-22 2010-05-06 Nippon Steel Corp Wear resistant screen and method for producing the same
KR20140103283A (en) * 2011-12-21 2014-08-26 산드빅 인터렉츄얼 프로퍼티 에이비 Method of making a cemented carbide
JP2015503034A (en) * 2011-12-21 2015-01-29 サンドビック インテレクチュアル プロパティー アクティエボラーグ Cemented carbide manufacturing method
US9827612B2 (en) 2011-12-21 2017-11-28 Sandvik Intellectual Property Ab Method of making a cemented carbide
WO2023141411A1 (en) * 2022-01-21 2023-07-27 Hyperion Materials & Technologies, Inc. Cemented carbide compositions
CN114990405A (en) * 2022-06-15 2022-09-02 李凌祥 High-performance superfine hard alloy and preparation method thereof
CN114990405B (en) * 2022-06-15 2022-12-06 李凌祥 High-performance superfine hard alloy and preparation method thereof

Also Published As

Publication number Publication date
JP3428333B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
KR100286970B1 (en) Cemented carbide, its production method and cemented carbide tools
AU2006275742B2 (en) Grinding media and methods associated with the same
JP5574566B2 (en) Cubic boron nitride compact
JP2000336437A (en) MANUFACTURE OF WC-Co-BASE CEMENTED CARBINE WITH FINE WC
WO2017191744A1 (en) Cemented carbide and cutting tool
KR102217787B1 (en) Carbide with toughness-increasing structure
JP2006299396A (en) Solid-solution powder and its producing method; ceramic using the solid-solution powder and its producing method; cermet powder including the solid-solution powder and its producing method; and cermet using the cermet powder and its producing method
JP2003518195A (en) Powder mixtures and composite powders, their preparation and their use in composites
JP2000514874A (en) Cemented carbide body with improved wear resistance
JP2009242181A (en) Tungsten carbide powder and method for producing the same
JP2016526102A (en) New manufacturing method of cemented carbide and product obtained thereby
JP5289532B2 (en) Cemented carbide and rotary tool using the same
JP3428333B2 (en) Cemented carbide, its manufacturing method and carbide tool
CN112313354B (en) Cemented carbide with alternative binder
JP3612966B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JP4331958B2 (en) Cemented carbide manufacturing method
JP4889198B2 (en) Cemented carbide, method for producing the same, and rotary tool using the same
JP3950229B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JP4351451B2 (en) Cemented carbide and method for manufacturing the same, and rotary tool using the cemented carbide
JPH0346538B2 (en)
JPH10324943A (en) Ultra-fine cemented carbide, and its manufacture
JP4140930B2 (en) Intragranular dispersion strengthened WC-containing cemented carbide and process for producing the same
JP2004292865A (en) Hard metal superior in fracture resistance and manufacturing method therefor
CN118355136A (en) Cemented carbide composition
JPH01242764A (en) Manufacture of tough cermet tool

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090516

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100516

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term