JPH10174888A - Quality controlling method of ion exchanger - Google Patents

Quality controlling method of ion exchanger

Info

Publication number
JPH10174888A
JPH10174888A JP8338459A JP33845996A JPH10174888A JP H10174888 A JPH10174888 A JP H10174888A JP 8338459 A JP8338459 A JP 8338459A JP 33845996 A JP33845996 A JP 33845996A JP H10174888 A JPH10174888 A JP H10174888A
Authority
JP
Japan
Prior art keywords
ion
ion exchange
ion exchanger
exchange capacity
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8338459A
Other languages
Japanese (ja)
Inventor
Takeshi Takai
雄 高井
Kunio Fujiwara
邦夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8338459A priority Critical patent/JPH10174888A/en
Publication of JPH10174888A publication Critical patent/JPH10174888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To grasp an ion exchange capacity of an ion exchanger within a short period by measuring a bonding water amount of an ion exchange group of the ion exchanger or measuring a high frequency impedance of the ion exchanger. SOLUTION: In an adsorption model of a strongly acidic cation exchanger having a sulfone group and a water molecule, there are a combined water layer as the first layer around the sulfone group, an adhered water layer largely changed by temp..humidity as the outmost side and a quasi-combined water layer having an intermediate character between both layers. Amounts of these adsorbed water are largely changed depending on the ion exchange capacity, the temp..humidity of an environment of measurement, a proportion of H type, a kind of salt type, etc. At the time of obtaining an information about the ion exchange capacity, the understanding of the ion exchange capacity of the ion exchanger is executed by measuring the combined water amount of the exchange group. In this way, the measuring time is reduced, a corresponding with a practical exchange capacity is improved and a quality control of the ion exchanger is accurately executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換樹脂を
はじめとする種々の形状のイオン交換体の品質管理方法
に関するものである。特に、イオン交換体のイオン交換
容量測定を迅速に行うことによるイオン交換体の品質管
理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quality control method for ion exchangers of various shapes including an ion exchange resin. In particular, the present invention relates to a method for quality control of an ion exchanger by rapidly measuring the ion exchange capacity of the ion exchanger.

【0002】[0002]

【従来の技術】イオン交換樹脂は水処理の脱塩分野、例
えば純水製造に使用され、既に50年以上の歴史があ
る。また、イオン交換膜も製塩分野に使用され始め、イ
オン交換樹脂に劣らぬ歴史がある。最近は繊維状のイオ
ン交換体が開発され、実用化が始まった。これらイオン
交換体はそれぞれの形状、適用先などの仕様に基づく品
質管理が行われているが、その主たる機能であるイオン
交換能力を測定することが品質管理の中心課題であるこ
とには変わりがない。イオン交換能力とは主にイオン交
換基の量、即ちイオン交換容量を示す。
BACKGROUND OF THE INVENTION Ion exchange resins are used in the desalination field of water treatment, for example in the production of pure water, and have a history of more than 50 years. In addition, ion exchange membranes have begun to be used in the field of salt production, and have a history comparable to ion exchange resins. Recently, fibrous ion exchangers have been developed and commercialized. Quality control of these ion exchangers is performed based on the specifications such as their shape and application.However, measuring the ion exchange capacity, which is the main function, is still the central issue of quality control. Absent. The ion exchange capacity mainly indicates the amount of ion exchange groups, that is, the ion exchange capacity.

【0003】イオン交換樹脂は数m3から数10m3の反
応容器の中でスチレンやジビニルベンゼンなどの重合性
単量体を温度や圧力をコントロールしながら重合させ、
さらにスルホン基やアミノ基などのイオン交換基を導入
して製造している。したがって、一バッチ数m3から数
10m3のイオン交換樹脂が製造される。通常、イオン
交換樹脂の形状は直径0.4〜0.6mmの真球状であ
り、均一に攪拌されていれば、その中から数点をサンプ
リングし、イオン交換容量を測定することによって、そ
のロットの代表値を得ることができる。
[0003] In an ion exchange resin, a polymerizable monomer such as styrene or divinylbenzene is polymerized in a reaction vessel of several m 3 to several tens m 3 while controlling the temperature and pressure.
Further, it is manufactured by introducing ion exchange groups such as a sulfone group and an amino group. Thus, the ion-exchange resin having 10 m 3 from a number of batches m 3 is produced. Usually, the shape of the ion exchange resin is a true spherical shape having a diameter of 0.4 to 0.6 mm. If the resin is uniformly stirred, several points are sampled from the sample and the ion exchange capacity is measured to determine the lot. Can be obtained.

【0004】従来イオン交換容量の分析方法は、一定量
のイオン交換体を採取し、食塩、酸およびアルカリ等の
薬品を使用して、中和滴定を行うという方法を採用して
きた。この方法は確実で再現性のある方法として現在も
行われているが、この方法による時には酸やアルカリの
廃液が発生したり、分析結果が判明するのに数時間を要
するなどの問題があり、実用的に満足し得るものではな
かった。また、この方法は従来のイオン交換樹脂のイオ
ン交換容量分析方法を踏襲しており、実状にそぐわない
点も多々指摘されている。一方、近年になって繊維状イ
オン交換体が開発され、それを織布・不織布状に成形加
工して、水処理用フィルター、空気処理用フィルター、
廃棄物の処理など多用途への展開が急に加速されてき
た。このような用途へのイオン交換体素材の供給は普通
長尺の布で行われる。長尺のイオン交換体は製造工程に
もよるが、長さおよび幅方向で品質を管理する必要があ
る。この点が、従来のイオン交換樹脂の品質管理と異な
るところである。現在は、一定の長さと幅方向、例えば
長さ50mm幅50mmで分析用サンプルを数枚採取
し、湿式分析してイオン交換容量を測定しているが、分
析検体数が多く、時間と手間が多くかかるという問題が
あった。
Conventionally, the ion exchange capacity has been analyzed by taking a certain amount of ion exchanger and performing a neutralization titration using chemicals such as salt, acid and alkali. Although this method is still used as a reliable and reproducible method, there are problems such as the generation of acid and alkali waste liquids and the time required for analysis results to be several hours, etc. It was not practically satisfactory. In addition, this method follows a conventional method for analyzing the ion exchange capacity of an ion exchange resin, and has been pointed out in many ways that it does not fit the actual situation. On the other hand, in recent years, a fibrous ion exchanger has been developed and formed into a woven or non-woven fabric, which is then subjected to a water treatment filter, an air treatment filter, and the like.
The development to various uses such as waste treatment has been rapidly accelerated. The supply of the ion exchanger material for such an application is usually performed with a long cloth. Although the length of the ion exchanger depends on the manufacturing process, it is necessary to control the quality in the length and width directions. This point is different from the quality control of the conventional ion exchange resin. Currently, several samples for analysis are collected in a fixed length and width direction, for example, 50 mm in length and 50 mm in width, and the ion exchange capacity is measured by wet analysis, but the number of analysis samples is large, and time and labor are large. There was a problem that it took a lot.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の問題点
なく、短時間でイオン交換体のイオン交換容量を把握す
るイオン交換体の品質管理方法を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for quality control of an ion exchanger which can grasp the ion exchange capacity of the ion exchanger in a short time without the above-mentioned problems.

【0006】[0006]

【問題点を解決するための手段】上記目的は、本発明方
法に従って、イオン交換体のイオン交換基の結合水量を
測定することにより、また、イオン交換体の高周波イン
ピーダンスを測定することにより、イオン交換容量を把
握することを特徴とするイオン交換体の品質管理方法に
よって達成される。
SUMMARY OF THE INVENTION The object of the present invention is to measure the amount of bound water of an ion exchange group of an ion exchanger and the high frequency impedance of the ion exchanger according to the method of the present invention. This is achieved by a quality control method of an ion exchanger characterized by grasping the exchange capacity.

【0007】[0007]

【発明の実施の形態】本発明はイオン交換体の品質管理
を該イオン交換体のイオン交換基の結合水量を測定する
ことにより、また、該イオン交換体の高周波インピーダ
ンスを測定することによりイオン交換容量を把握する方
法であるが、更に、(1)前記イオン交換体の形状が繊
維、繊維の集合体、ビーズ、膜、中空糸、粉末それらの
加工品より選ばれた場合、(2)前記イオン交換体が放
射線グラフト重合法を利用して製造されたものである場
合、に特に効果がある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention controls the quality of an ion exchanger by measuring the amount of bound water of an ion exchange group of the ion exchanger and measuring the high-frequency impedance of the ion exchanger. (1) When the shape of the ion exchanger is selected from fibers, aggregates of fibers, beads, membranes, hollow fibers, powders, and the like, (2) This is particularly effective when the ion exchanger is produced using a radiation graft polymerization method.

【0008】以下、本発明を詳細に説明する。本発明者
らは、イオン交換体のイオン交換容量をいかに把握する
かについて鋭意研究の結果、イオン交換体は親水性で、
その周囲には水を吸着しており、その吸着状態は次のモ
デルのようになっているという知見を得た。例えば、ス
ルホン基を有する強酸性カチオン交換体と水分子の吸着
のモデルは第1図のように考えられる。即ち、スルホン
基の周りの第1層は、強固に吸着した結合水層、最外側
には温度・湿度により大きく変わる付着水層があり、両
者の間には中間的性格をもつ準結合水層があると考えら
れる。これら吸着水の量はイオン交換容量、測定環境の
温度・湿度、H型の割合、塩型の種類などによって大き
く変わる。この吸着した水分子に由来する物理量、例え
ば、重量、含水率、直流に対する電気抵抗などを測定す
ることによって、イオン交換容量についての情報を得る
ことができる。しかしながら、重量、含水率、直流抵抗
などは測定環境に大きく左右される物理量であるため、
恒温・恒湿の部屋で平衡値に達するまで分析用サンプル
を静置してから測定しなければならず、このためには長
時間を要し好ましくない。
Hereinafter, the present invention will be described in detail. The present inventors have conducted intensive studies on how to grasp the ion exchange capacity of the ion exchanger, and as a result, the ion exchanger is hydrophilic,
It was found that water was adsorbed around it, and the adsorption state was as shown in the following model. For example, a model of adsorption of a water molecule and a strongly acidic cation exchanger having a sulfone group can be considered as shown in FIG. That is, the first layer around the sulfone group has a strongly adsorbed bound water layer, and the outermost layer has an attached water layer that varies greatly depending on the temperature and humidity. It is thought that there is. The amount of the adsorbed water greatly varies depending on the ion exchange capacity, the temperature and humidity of the measurement environment, the ratio of the H type, the type of the salt type, and the like. Information about the ion exchange capacity can be obtained by measuring a physical quantity derived from the adsorbed water molecules, for example, a weight, a water content, an electric resistance to a direct current, and the like. However, since the weight, moisture content, DC resistance, etc. are physical quantities greatly influenced by the measurement environment,
The analysis sample must be allowed to stand until the equilibrium value is reached in a room of constant temperature and humidity before measurement, which requires a long time, which is not preferable.

【0009】第1図における結合水はH型の割合によっ
て大きく変化するため、本発明においては、この交換基
の結合水量を測定することにより該イオン交換体のイオ
ン交換容量の把握を行うものであり、この量を温度・湿
度に依存する付着水と無関係に測定することにより測定
時間の短縮化をすることができるばかりでなく、実際の
交換容量との対応も良くなり、イオン交換体の品質管理
ができる。本発明においては、更に水の誘電率が著しく
高いことを利用し、イオン交換体の高周波インピーダン
スを測定することにより結合水の量の変化を知り、イオ
ン交換容量を把握することができる。
Since the bound water in FIG. 1 varies greatly depending on the proportion of H-form, in the present invention, the ion exchange capacity of the ion exchanger is determined by measuring the amount of bound water of the exchange group. Yes, by measuring this amount independently of the attached water that depends on temperature and humidity, not only the measurement time can be shortened, but also the correspondence with the actual exchange capacity is improved, and the quality of the ion exchanger is improved. Can manage. In the present invention, utilizing the fact that the dielectric constant of water is extremely high, the change in the amount of bound water can be known by measuring the high-frequency impedance of the ion exchanger, and the ion exchange capacity can be determined.

【0010】本発明においてイオン交換基の結合水量を
測定するには、例えば上記高周波インピーダンスを測定
する以外に、ある温度条件での重量を測定する方法等が
ある。また、本発明において高周波インピーダンスとは
数百KHz〜数十MHzの高周波を用いて、インピーダ
ンス関連パラメーター、即ちインピーダンスの絶対値
(Z)、インダクタンス(L)、容量(C)、損失係数
(D)、Q(Quality factor)、リアクタンスおよび位
相角(θ)あるいは並列抵抗(Rp)等のいずれかを意
味している。即ち、本発明においては上記のような高周
波を用いて、上記D、Q、Z、L、C、θあるいはRp
といったインピーダンスパラメーターのいずれかを例え
ばインピーダンスメーター、ブリッジ法、共振法、I−
V法、ネットワーク解析法、自動平衡ブリッジ法等によ
り測定するものであり、これによりイオン交換体の交換
基に由来する水分、特に結合水の量を選択的に測定する
ことができる。例えばイオン交換容量とQの間には直線
関係があり、これを利用して該交換容量を把握すること
ができる。
In the present invention, in order to measure the amount of bound water of the ion-exchange group, for example, there is a method of measuring weight under a certain temperature condition in addition to measuring the high-frequency impedance. In the present invention, high-frequency impedance refers to impedance-related parameters, that is, absolute value (Z), inductance (L), capacitance (C), and loss coefficient (D) using a high frequency of several hundred KHz to several tens of MHz. , Q (Quality Factor), reactance and phase angle (θ) or parallel resistance (Rp). That is, in the present invention, the above D, Q, Z, L, C, θ or Rp
Any of the impedance parameters such as impedance meter, bridge method, resonance method, I-
The measurement is performed by the V method, network analysis method, automatic equilibrium bridge method, or the like, whereby the amount of water derived from the exchange group of the ion exchanger, particularly the amount of bound water can be selectively measured. For example, there is a linear relationship between ion exchange capacity and Q, which can be used to determine the exchange capacity.

【0011】また、本発明においてイオン交換体の形状
はいずれの形状でも本発明に適用できるが、単繊維、単
繊維の集合体、それらの加工品である織布・不織布やさ
らにその成形加工品(例えば、フィルター等)、粉末・
粒子、それらの加工品(例えば、樹脂等)、ビーズ、
膜、中空糸膜それらの加工品(例えば、中空糸モジュー
ルなど)、発泡体などの空隙性材料やその加工品(例え
ば、スポンジ等)より選ばれたものが用いられる。特
に、重量が軽量であること、水の吸・脱着速度が大き
く、成形加工が容易であるところから、繊維、繊維の集
合体である織布・不織布、それらの加工品が最適の素材
形状である。
In the present invention, any shape of the ion exchanger can be applied to the present invention. However, single fibers, aggregates of single fibers, woven or nonwoven fabrics which are processed products thereof, and molded products thereof are also provided. (For example, filters), powder
Particles, their processed products (eg, resin, etc.), beads,
A membrane, a hollow fiber membrane, a processed product thereof (for example, a hollow fiber module), a porous material such as a foam, and a processed product thereof (for example, a sponge) are used. In particular, because of its light weight, high water absorption / desorption speed, and ease of molding, fibers, woven and nonwoven fabrics that are aggregates of fibers, and their processed products are optimally shaped. is there.

【0012】本発明において、適用し得るイオン交換体
としては、上記記載のスルホン基を有する強酸性カチオ
ン交換体だけでなく、他のイオン交換基を有するイオン
交換体例えばカルボキシル基を有する弱酸性カチオン交
換体、四級アンモニウム基を有する強塩基性アニオン交
換体、三級アミノ基を有する弱塩基性アニオン交換体又
はイミノジ酢酸基やポリアミノ基等のキレート基を含む
キレート交換体等があげられる。
In the present invention, applicable ion exchangers include not only the strongly acidic cation exchanger having a sulfone group described above, but also other ion exchangers having an ion exchange group such as a weakly acidic cation having a carboxyl group. Examples include an exchanger, a strongly basic anion exchanger having a quaternary ammonium group, a weakly basic anion exchanger having a tertiary amino group, and a chelate exchanger containing a chelating group such as an iminodiacetic acid group or a polyamino group.

【0013】本発明においては、いずれの方法により製
造したイオン交換体も使用し得るが、グラフト重合体が
好ましく、特に放射線グラフト重合法により製造したも
のが好ましい。グラフト重合体は、例えばポリエチレ
ン、ポリプロピレンなどのポリオレフィン等の幹ポリマ
ーとポリメタクリル酸グリシジル(GMA)、ポリアク
リル酸、ポリスチレン等の枝ポリマーとのグラフト共重
合体があげられる。ポリアクリル酸はイオン交換基を有
するモノマーを重合させたものであり、GMAやスチレ
ンはグラフト重合の後でイオン交換基を導入できるモノ
マーである。枝ポリマーはグリシジル基等の例えば、亜
硫酸塩と反応してイオン交換基であるスルホン酸を形成
可能な官能基を有したものが好ましい。また、スチレン
を濃硫酸等でスルホン化したものが好ましい。放射線グ
ラフト重合法に用いられる放射線としては、γ線、電子
線が好ましく、幹ポリマーの種類に応じて適宜その照射
量を設定することができる。電子線により処理された幹
ポリマーは公知の方法により枝ポリマーとなるコモノマ
ーとグラフト重合反応に供されるが、好ましくは放射線
照射された幹ポリマーをコモノマー溶液に浸漬して反応
させることが挙げられる。このグラフト重合反応の条
件、例えば、温度、コモノマーの溶液における溶剤の種
類、コモノマーの濃度、反応時間等は適宜選定される。
また、グラフト率は前記反応条件等を選定することによ
り適宜設定され得るが、通常20〜250%の範囲であ
る。また、得られた共重合体にイオン交換基を形成する
反応は、従来公知の方法を適宜用いることができる。
In the present invention, an ion exchanger produced by any of the methods can be used, but a graft polymer is preferable, and a product produced by a radiation graft polymerization method is particularly preferable. Examples of the graft polymer include a graft copolymer of a trunk polymer such as polyolefin such as polyethylene and polypropylene and a branch polymer such as polyglycidyl methacrylate (GMA), polyacrylic acid, and polystyrene. Polyacrylic acid is obtained by polymerizing a monomer having an ion exchange group, and GMA and styrene are monomers capable of introducing an ion exchange group after graft polymerization. The branched polymer preferably has a functional group such as a glycidyl group, which can react with a sulfite to form a sulfonic acid as an ion exchange group. Further, styrene which is sulfonated with concentrated sulfuric acid or the like is preferable. The radiation used in the radiation graft polymerization method is preferably a γ-ray or an electron beam, and the irradiation amount can be appropriately set according to the type of the trunk polymer. The stem polymer treated with the electron beam is subjected to a graft polymerization reaction with a comonomer to be a branch polymer by a known method. Preferably, the irradiated stem polymer is immersed in a comonomer solution and reacted. Conditions for the graft polymerization reaction, for example, temperature, type of solvent in a comonomer solution, comonomer concentration, reaction time, and the like are appropriately selected.
Further, the graft ratio can be appropriately set by selecting the above reaction conditions and the like, and is usually in the range of 20 to 250%. In addition, the reaction for forming an ion exchange group in the obtained copolymer can be appropriately performed by a conventionally known method.

【0014】放射線グラフト重合法により製造したイオ
ン交換体は、グラフト鎖にイオン交換基が導入されてい
る。グラフト鎖は同一イオン交換基の電荷による反発お
よびその周りの結合水や吸着水により、互いに伸び上が
ろうとしている。スルホン基の再生型(H型)の場合、
水の量が多いので、この伸び上がりが最大である。放射
線グラフト重合法は分子設計が容易で基材の表面だけで
なく、内部にもグラフト鎖を導入でき、イオン交換体に
おいてはイオン交換基の数が多いほど良いので、基材の
内部にもグラフト鎖を導入する重合法を選択するのが好
ましい。本発明方法は、アンモニアなどの気体を吸着す
る場合などに利用し得る。
The ion exchanger produced by the radiation graft polymerization method has an ion exchange group introduced into a graft chain. The graft chains are about to extend each other due to repulsion by the charge of the same ion exchange group and bound water or absorbed water around the same. In the case of a regenerated type (H type) of a sulfone group,
Due to the large amount of water, this growth is greatest. Radiation graft polymerization is easy in molecular design and can introduce graft chains not only on the surface of the substrate but also inside it. In ion exchangers, the larger the number of ion exchange groups, the better. It is preferred to select a polymerization method to introduce the chains. The method of the present invention can be used, for example, when adsorbing a gas such as ammonia.

【0015】[0015]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はこれらの実施例に制約されるもの
ではない。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1 強酸性カチオン交換繊維不織布の製造 目付50g/m2、厚み0.4mm、繊維径約20μmのポリ
エチレン製不織布を窒素雰囲気で電子線(1MeV、1m
A)を100kGy照射した。ついで、この不織布をメタク
リル酸グリシジル溶液に浸漬し、グラフト重合反応を行
い、グラフト率148%を得た。さらに、亜硫酸ナトリ
ウム水溶液でスルホン化し、塩酸で再生後乾燥したとこ
ろ、中性塩分解容量2.81meq/gの強酸性カチオン交
換不織布が得られた。この不織布をAとする。さらに、
グラフト率を変えて25%および81%とし、他の条件
を同様にして、それぞれ0.6meq/g、1.86meq/gの
強酸性カチオン交換不織布が得られた。これらの不織布
をBおよびCとする。 高周波インピーダンスの測定 A、B、Cの不織布をそれぞれ3×6cmに切り、測定セ
ルに入れ、インピーダンスメーターで前記Qを測定し
た。結果を第1表に示す。
Example 1 Production of a strongly acidic cation exchange fiber non-woven fabric A polyethylene non-woven fabric having a basis weight of 50 g / m 2 , a thickness of 0.4 mm, and a fiber diameter of about 20 μm was subjected to electron beam (1 MeV, 1 m) in a nitrogen atmosphere.
A) was irradiated with 100 kGy. Next, this nonwoven fabric was immersed in a glycidyl methacrylate solution to perform a graft polymerization reaction, and a graft ratio of 148% was obtained. Furthermore, when sulfonated with an aqueous sodium sulfite solution, regenerated with hydrochloric acid and dried, a strongly acidic cation exchange nonwoven fabric having a neutral salt decomposition capacity of 2.81 meq / g was obtained. This nonwoven fabric is designated as A. further,
The graft ratio was changed to 25% and 81%, and the other conditions were the same to obtain 0.68 meq / g and 1.86 meq / g strong acidic cation exchange nonwoven fabrics, respectively. These nonwoven fabrics are designated as B and C. Measurement of High-Frequency Impedance The nonwoven fabrics of A, B and C were each cut into 3 × 6 cm, placed in a measurement cell, and the above Q was measured with an impedance meter. The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】イオン交換容量とQの間には直線関係が得
られ、Qの値からイオン交換容量を迅速に把握できるこ
とが分かる。また、測定試料を切り取ってから、測定結
果が判明するまでの所要時間は約30秒であった。
A linear relationship is obtained between the ion exchange capacity and Q, indicating that the ion exchange capacity can be quickly grasped from the value of Q. Moreover, the time required from the time when the measurement sample was cut to the time when the measurement result was found was about 30 seconds.

【0019】実施例2 実施例1で得られた不織布Aをアンモニアガスに暴露
し、イオン交換容量消費率が12%、48%、66%、
91%の不織布を調製した。この不織布の高周液インピ
ーダンスを実施例1と同様に測定したところ、第2表の
結果が得られた。
Example 2 The nonwoven fabric A obtained in Example 1 was exposed to ammonia gas, and the ion exchange capacity consumption rate was 12%, 48%, 66%,
A 91% nonwoven fabric was prepared. When the high-period liquid impedance of this nonwoven fabric was measured in the same manner as in Example 1, the results shown in Table 2 were obtained.

【0020】[0020]

【表2】 [Table 2]

【0021】この結果から明らかなように、イオン交換
容量消費率と前記Qの間には直線関係が得られた。ま
た、測定試料を切り取ってから、測定結果が判明するま
での所要時間は約30秒であった。
As is apparent from the results, a linear relationship was obtained between the ion exchange capacity consumption rate and the Q. Moreover, the time required from the time when the measurement sample was cut to the time when the measurement result was found was about 30 seconds.

【0022】[0022]

【発明の効果】本発明は、大量のイオン交換体試料の交
換容量の把握を短時間で行うことができる。また、本発
明は種々の形状のイオン交換体について適用でき、大量
生産のイオン交換体製品の行き届いた品質管理が可能で
ある。
According to the present invention, the exchange capacity of a large amount of ion exchanger samples can be grasped in a short time. In addition, the present invention can be applied to ion exchangers of various shapes, and enables quality control of mass-produced ion exchanger products.

【0023】[0023]

【図面の簡単な説明】[Brief description of the drawings]

【図1】イオン交換基としてスルホン基を有する強酸性
カチオン交換体の官能基部分の水の結合状況を示す図で
ある。
FIG. 1 is a diagram showing the binding state of water in a functional group portion of a strongly acidic cation exchanger having a sulfone group as an ion exchange group.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換体の交換基の結合水量を測定
することにより該イオン交換体のイオン交換容量の把握
を行うことを特徴とするイオン交換体の品質管理方法。
1. A method for controlling the quality of an ion exchanger, comprising measuring the amount of water bound to an exchange group of the ion exchanger to determine the ion exchange capacity of the ion exchanger.
【請求項2】 イオン交換体の高周波インピーダンスを
測定することにより、該イオン交換体のイオン交換容量
の把握を行うことを特徴とするイオン交換体の品質管理
方法。
2. A quality control method for an ion exchanger, comprising measuring an ion exchange capacity of the ion exchanger by measuring a high-frequency impedance of the ion exchanger.
JP8338459A 1996-12-18 1996-12-18 Quality controlling method of ion exchanger Pending JPH10174888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8338459A JPH10174888A (en) 1996-12-18 1996-12-18 Quality controlling method of ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8338459A JPH10174888A (en) 1996-12-18 1996-12-18 Quality controlling method of ion exchanger

Publications (1)

Publication Number Publication Date
JPH10174888A true JPH10174888A (en) 1998-06-30

Family

ID=18318370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8338459A Pending JPH10174888A (en) 1996-12-18 1996-12-18 Quality controlling method of ion exchanger

Country Status (1)

Country Link
JP (1) JPH10174888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723151B2 (en) 2001-09-27 2004-04-20 Ebara Corporation Gas removal method and gas removal filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723151B2 (en) 2001-09-27 2004-04-20 Ebara Corporation Gas removal method and gas removal filter

Similar Documents

Publication Publication Date Title
KR100999048B1 (en) Method for preparing anion-exchange composite membrane containing styrene-based and vinylbenzene-based copolymer
Mizutani Structure of ion exchange membranes
US6670427B1 (en) Template-textured materials, methods for the production and use thereof
JP3261533B2 (en) Seed porous copolymer and ion exchange resin produced therefrom
CN106345324B (en) A kind of preparation method of hydridization amberplex
DE60035603T2 (en) NEW MOLECULAR EMBOSSED POLYMERS PUT ON A SOLID CARRIER
CN103119164A (en) Method and device for concentrating target compounds
Weidman et al. Nanostructured membranes from triblock polymer precursors as high capacity copper adsorbents
JPH0223214B2 (en)
CN101718041A (en) Fiber base protein molecularly imprinted polymer aquagel and preparation method thereof
JPWO2003014205A1 (en) Sintered body, resin particles and method for producing the same
CN108043254A (en) A kind of preparation method of cross-linking type anion-selective membrane
Lee et al. Design of urea-permeable anion-exchange membrane by radiation-induced graft polymerization
KR100542295B1 (en) Preparation of Polyethylene/Polyvinylbenzyl chloride anion-exchange membrane
Kobayashi et al. Preparation of microfiltration membranes containing anion-exchange groups
JPH10174888A (en) Quality controlling method of ion exchanger
KR101162411B1 (en) Cation exchange membrane and process for preparing the same
WO2013089141A1 (en) Protein adsorbent
TW555595B (en) Anion exchangers and processes for preparing them
CN105555405B (en) Anion exchange polymer and the method for being used to prepare ion-exchange polymer
JP3555967B2 (en) Method for producing elution-resistant anion-adsorbing membrane and membrane thereof
KR101170971B1 (en) Cation exchange composite membrane using fabric supports and method for manufacturing the same
Lee et al. Counterions-exchangeable, multifunctional polyelectrolyte fabrics
JPH01207141A (en) Compound adsorbent and its production
JPH11183460A (en) Filler for liquid chromatography, production and use thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050323