JPH11183460A - Filler for liquid chromatography, production and use thereof - Google Patents

Filler for liquid chromatography, production and use thereof

Info

Publication number
JPH11183460A
JPH11183460A JP9347654A JP34765497A JPH11183460A JP H11183460 A JPH11183460 A JP H11183460A JP 9347654 A JP9347654 A JP 9347654A JP 34765497 A JP34765497 A JP 34765497A JP H11183460 A JPH11183460 A JP H11183460A
Authority
JP
Japan
Prior art keywords
liquid chromatography
polyvinyl alcohol
coating
group
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9347654A
Other languages
Japanese (ja)
Inventor
Kazuaki Muranaka
和昭 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9347654A priority Critical patent/JPH11183460A/en
Publication of JPH11183460A publication Critical patent/JPH11183460A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enhance reproducibility, performance of analysis and durability while facilitating the method for synthesizing an ion exchanger by introducing a cationic exchange group to the hydroxy group of the coating phase of porous particle crosslinked with polyvinyl alcohol. SOLUTION: Porous gel obtained by adding divinyl benzene monomer to polyvinyl alcohol and polymerizing them is subjected to crosslinking coating of polyvinyl alcohol using glutaldehyde, or the like, as crosslinking agent. The coating quantity is preferably 5-40 wt.% of the porous get. The coating gel is caused to react on benzaldehyde-2, 4-sodium disulfide or glyoxyl acid and a sulfuric acid group or a carboxylic acid group is introduced through acetal reaction on the hydroxy group of the coating layer. Alternatively, carboxylic acid group may be introduced through ester reaction using a multifunctional carboxylic acid. The filler of liquid chromatography thus produced is employed in the analysis of protein or inorganic cation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、カチオン交換体の液体
クロマトグラフィー用充填剤及びその製造方法及びその
使用法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a packing material for liquid chromatography of a cation exchanger, a method for producing the same, and a method for using the same.

【0002】[0002]

【従来の技術】近年、例えば吸着剤、化粧品、塗料、建
築材料、医薬、分析化学等の分野で種々の重合体粒子が
用いられている。分析化学における高速液体クロマトグ
ラフィーの分野のなかで、イオン交換能を有する充填剤
としては、有機ポリマー基材やシラン処理剤を用い表面
改質したシリカ基材等の表面にイオン交換基を導入した
充填剤が用いられている。有機ポリマー基材のイオン交
換体作製方法としては、後にイオン交換基を導入するた
めの官能基を有するモノマーと、基材の強度を保つため
の多官能モノマーとをラジカル共重合した基材を用い、
その表面にイオン交換基が導入されている。
2. Description of the Related Art In recent years, various polymer particles have been used in the fields of adsorbents, cosmetics, paints, building materials, pharmaceuticals, analytical chemistry, and the like. In the field of high-performance liquid chromatography in analytical chemistry, ion-exchange groups were introduced on the surface of organic polymer substrates and silica substrates that had been surface-modified using silane treatment agents, etc. Fillers are used. As a method for preparing an ion exchanger of an organic polymer base material, a base material obtained by radically copolymerizing a monomer having a functional group for introducing an ion exchange group later and a polyfunctional monomer for maintaining the strength of the base material is used. ,
Ion exchange groups are introduced on the surface.

【0003】スルホン酸型カチオン交換体の合成方法と
して、スチレン・ジビニルベンゼン共重合体微粒子をス
ルホン化する方法や、グリシジルメタクリレートと架橋
性モノマーの共重合体微粒子を作成し、グリシジル基を
直接スルホン化する方法、又はグリシジル基にアリルア
ルコールを導入しスルホン化する方法等が実施されてい
る。またカルボン酸型カチオン交換体の作製方法とし
て、グリシジルメタクリレートと架橋性モノマーの共重
合体微粒子を作製し、粒子表面に水酸基を発生した後に
αークロロ酢酸等を導入する方法、シリカゲルにブタジ
エンーマレイン酸共重合樹脂を架橋被覆する方法、スチ
レン系重合体に多官能エポキシ化合物と多官能カルボン
酸を被覆硬化する方法等が実施されている。
[0003] As a method of synthesizing a sulfonic acid type cation exchanger, a method of sulfonating styrene-divinylbenzene copolymer fine particles or a method of preparing copolymer fine particles of glycidyl methacrylate and a crosslinkable monomer to directly sulfonate glycidyl groups are used. Or a method of introducing an allyl alcohol into a glycidyl group and sulfonating the glycidyl group. In addition, as a method for preparing a carboxylic acid type cation exchanger, a method of preparing copolymer fine particles of glycidyl methacrylate and a crosslinkable monomer, generating a hydroxyl group on the particle surface, and then introducing α-chloroacetic acid, etc., butadiene-maleic acid on silica gel A method of crosslinking and coating a copolymer resin, a method of coating and curing a styrene-based polymer with a polyfunctional epoxy compound and a polyfunctional carboxylic acid, and the like have been implemented.

【0004】これらのカチオン交換体は、タンパク質、
アミノ酸、無機カチオン類及びアミン類分析等のカラム
充填剤として用いられている。
[0004] These cation exchangers include proteins,
It is used as a column packing for analysis of amino acids, inorganic cations and amines.

【0005】[0005]

【発明が解決しようとする課題】有機ポリマー系の微粒
子を用いたカチオン交換体は、液体クロマトグラフィー
に用いた場合、水系溶離液を使用してもシリカ系微粒子
と比較して耐性が高いことから広く用いられている。し
かしこの微粒子を充填剤として用いる場合、充填剤と測
定サンプルの疎水的相互作用を低減する必要から、親水
性の微粒子を用いなければならない。従って微粒子を作
製する際に親水性モノマーを用いる必要があり、この事
により液体クロマトグラフィー用充填剤としての機械的
強度を保つことが難しくなっている。この充填剤をカラ
ムに充填する場合にも充填剤機械的強度上の制約がある
ために、充填可能なカラム長さや充填剤の粒径に制限を
受け、分離性能上も制約を受けている。
The cation exchanger using fine particles of an organic polymer has a higher resistance when used in liquid chromatography than a silica-based fine particle even when an aqueous eluent is used. Widely used. However, when these fine particles are used as a filler, hydrophilic fine particles must be used because it is necessary to reduce the hydrophobic interaction between the filler and the measurement sample. Therefore, it is necessary to use a hydrophilic monomer when preparing the fine particles, which makes it difficult to maintain the mechanical strength as a filler for liquid chromatography. Even when the column is filled with the packing material, there are restrictions on the mechanical strength of the packing material, so that the length of the column that can be packed and the particle size of the packing material are limited, and the separation performance is also limited.

【0006】また合成方法の面では、親水性のアクリル
系共重合体微粒では、基材を作製する重合工程、基材の
表面をイオン交換基導入を行うために水酸基を発生させ
る親水化工程、及びイオン交換基を導入する工程等多段
階が必要であるという課題がある。特に親水化工程は、
反応が定量的に進行する工程ではなく、再現性に乏しい
ことが知られており、また得られるカチオン交換体の交
換容量も十分ではないという課題がある。
In terms of the synthesis method, in the case of hydrophilic acrylic copolymer fine particles, a polymerization step for preparing a base material, a hydrophilization step for generating a hydroxyl group in order to introduce an ion exchange group into the surface of the base material, In addition, there is a problem that multiple steps such as a step of introducing an ion exchange group are required. In particular, the hydrophilization step
It is not a step in which the reaction proceeds quantitatively, and it is known that reproducibility is poor. Further, there is a problem that the exchange capacity of the obtained cation exchanger is not sufficient.

【0007】スルホン酸型スチレン系微粒子では、先に
スチレンとジビニルベンゼン共重合体微粒子を作製し、
これを発煙硫酸等を用いてスルホン化するために、イオ
ン交換基導入量のコントロールが非常に難しく、スルホ
ン酸以外の官能基を導入することがスルホン化工程での
安定性上の制約から困難であるという課題もある。
In the case of sulfonic acid type styrene fine particles, styrene and divinylbenzene copolymer fine particles are first prepared,
Since this is sulfonated using fuming sulfuric acid or the like, it is very difficult to control the amount of ion-exchange group introduced, and it is difficult to introduce a functional group other than sulfonic acid due to stability restrictions in the sulfonation process. There is also a problem.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
について検討した結果、ポリビニルアルコールを架橋被
覆した多孔質粒子の該被覆層の水酸基にカチオン交換基
を有する粒子であれば、合成方法が容易でしかも合成再
現性に優れ、得られた微粒子の物性として機械的強度及
び化学的安定性に優れた微粒子を作製することが可能で
あり、これを液体クロマトグラフィー用充填剤として用
いた場合にも優れた性能を有することを見いだし本発明
を完成するに至った。また本発明のイオン交換基導入方
法は種々の基材に対して使用することができ、カチオン
交換基導入方法として優れた方法であることを見い出し
た。以下本発明の液体クロマトグラフィー用充填剤及び
その製造方法及び使用法について説明する。
Means for Solving the Problems As a result of studying the above problems, the inventors of the present invention have found that, if porous particles crosslinked and coated with polyvinyl alcohol have a cation exchange group in the hydroxyl group of the coating layer, the synthesis method It is possible to produce fine particles with excellent mechanical reproducibility and excellent mechanical strength and chemical stability as physical properties of the obtained fine particles, and this is used as a filler for liquid chromatography. Thus, the present invention was found to have excellent performance, and the present invention was completed. Further, the method for introducing an ion exchange group of the present invention can be used for various substrates, and has been found to be an excellent method for introducing a cation exchange group. Hereinafter, the packing material for liquid chromatography of the present invention and its production method and use method will be described.

【0009】本発明の液体クロマトグラフィー用充填剤
は、ポリビニルアルコールが架橋被覆された多孔質粒子
の該被覆層にカチオン交換基を有する微粒子である。多
孔質粒子に架橋被覆されたポリビニルアルコールとして
は、架橋前の物性として多孔質粒子の細孔特性に及ぼす
影響を小さくする目的から重合度2400以下、特に好
ましくは1700以下である。架橋ポリビニルアルコー
ルの多孔質粒子に対する割合は、粒子の親水性を保つ必
要性から5重量%以上が好ましく、又液体クロマトグラ
フィーに用いた場合の性能上の観点から40重量%以下
が好ましい。ポリビニルアルコールの架橋構造として
は、エーテル結合を介した架橋構造が、液体クロマトグ
ラフィー用充填剤として用いた場合、充填剤の耐水性が
良好であることから好適である。カチオン交換基が結合
している構造としては、架橋被覆されたポリビニルアル
コールの残存水酸基にエーテル結合又はエステル結合を
介して結合している構造が望ましい。
[0009] The packing material for liquid chromatography of the present invention is a fine particle having a cation exchange group in the coating layer of porous particles crosslinked and coated with polyvinyl alcohol. The degree of polymerization of the polyvinyl alcohol coated with the crosslinked porous particles is 2400 or less, particularly preferably 1700 or less, in order to reduce the influence of the physical properties before crosslinking on the pore characteristics of the porous particles. The ratio of the crosslinked polyvinyl alcohol to the porous particles is preferably 5% by weight or more from the viewpoint of maintaining the hydrophilicity of the particles, and is preferably 40% by weight or less from the viewpoint of performance when used in liquid chromatography. As a crosslinked structure of polyvinyl alcohol, a crosslinked structure via an ether bond is preferable when used as a filler for liquid chromatography, because the water resistance of the filler is good. As the structure to which the cation exchange group is bonded, a structure in which the residual hydroxyl group of the crosslinked and coated polyvinyl alcohol is bonded via an ether bond or an ester bond is desirable.

【0010】多孔質粒子としては、架橋被覆するポリビ
ニルアルコール樹脂との間に化学結合を生成し得る官能
基を有している必要はく、一例としてスチレン・ジビニ
ルベンゼン共重合体、スチレン・ビスマレイミド共重合
体、ジビニルベンゼン重合体、グリシジルメタクリレー
ト・エチレングリコールジメタクリレート共重合体、2
−ヒドロキシエチルメタクリレート・エチレングリコー
ルジメタクリレート共重合体、エチレングリコールジメ
タクリレート重合体、グリシジルメタクリレート・ジビ
ニルベンゼン共重合体、2−ヒドロキシエチルメタクリ
レート・ジビニルベンゼン共重合体、(無水)マレイン
酸・ジビニルベンゼン共重合体、イタコン酸・ジビニル
ベンゼン共重合体、マレイミド・ジビニルベンゼン共重
合体、架橋糖等の有機ポリマー系多孔質粒子やシリカゲ
ル、酸化チタン、酸化ジルコニヤ、アルミナ等の無機系
多孔質粒子を例示できる。液体クロマトグラフィー用充
填剤用としては、機械的強度及び耐溶剤性等の面から、
スチレン系多孔質粒子を用いることが好ましい。
The porous particles do not need to have a functional group capable of forming a chemical bond with the polyvinyl alcohol resin to be cross-linked, and examples thereof include a styrene-divinylbenzene copolymer and a styrene-bismaleimide. Copolymer, divinylbenzene polymer, glycidyl methacrylate / ethylene glycol dimethacrylate copolymer, 2
-Hydroxyethyl methacrylate / ethylene glycol dimethacrylate copolymer, ethylene glycol dimethacrylate polymer, glycidyl methacrylate / divinylbenzene copolymer, 2-hydroxyethyl methacrylate / divinylbenzene copolymer, (anhydrous) maleic acid / divinylbenzene copolymer Examples thereof include organic polymer porous particles such as polymers, itaconic acid / divinylbenzene copolymer, maleimide / divinylbenzene copolymer, and crosslinked sugar, and inorganic porous particles such as silica gel, titanium oxide, zirconium oxide, and alumina. . For packing materials for liquid chromatography, in terms of mechanical strength and solvent resistance,
It is preferable to use styrene-based porous particles.

【0011】本発明の液体クロマトグラフィー用充填剤
の製造方法としては、多孔質粒子にポリビニルアルコー
ルを架橋被覆する工程及び該被覆層の水酸基にカチオン
交換基を導入する工程からなるが、先にポリビニルアル
コールカチオン交換基を導入した後に多孔質粒子に該ポ
リビニルアルコールを架橋被覆する方法も用いることが
できる。
The process for producing the packing material for liquid chromatography of the present invention comprises the steps of cross-linking and coating porous particles with polyvinyl alcohol and introducing a cation exchange group into the hydroxyl group of the coating layer. A method of cross-linking the porous particles with the polyvinyl alcohol after introducing the alcohol cation exchange group can also be used.

【0012】多孔質粒子にポリビニルアルコールを架橋
被覆する工程では、まず多孔質粒子をポリビニルアルコ
ールの水溶液中に分散し、架橋剤及び必要に応じて触媒
を添加し、ポリビニルアルコールを多孔質粒子状に架橋
被覆する。ポリビニルアルコールの多孔質粒子に対する
割合は、40重量%以上では多孔質粒子が凝集してしま
うため、40重量%以下が好ましい。この時用いられる
架橋剤としてはグルタルアルデヒド、テレフタルアルデ
ヒド等のジアルデヒド類やエピクロルヒドリンを例示す
ることができる。
In the step of cross-linking and coating the porous particles with polyvinyl alcohol, first, the porous particles are dispersed in an aqueous solution of polyvinyl alcohol, a cross-linking agent and, if necessary, a catalyst are added, and the polyvinyl alcohol is formed into porous particles. Cross-link coating. When the ratio of polyvinyl alcohol to the porous particles is 40% by weight or more, the porous particles are aggregated. Examples of the crosslinking agent used at this time include dialdehydes such as glutaraldehyde and terephthalaldehyde and epichlorohydrin.

【0013】ジアルデヒドを架橋剤として用いる場合に
は、塩酸、硫酸等の無機酸を添加し触媒として用いるこ
とで、架橋反応を速やかに進行させることができる。反
応温度としては、室温以上100度以下が好適である。
エピクロルヒドリンを架橋剤に用いる場合は、ポリビニ
ルアルコール及びエピクロルヒドリンの混合水溶液に多
孔質粒子を分散し、苛性ソーダ等の無機塩基水溶液を滴
下し、架橋反応を進行させれば良い。無機塩基の量とし
ては、エピクロルヒドリンの当量〜1.5倍当量の範囲
が好ましい。反応温度としては、室温下にて無機塩基を
滴下し、滴下終了後に70度程度に加熱して架橋反応を
終結させることが例示できる。ポリビニルアルコールを
架橋被覆した多孔質粒子は、反応終了後、純水を用いて
洗浄することにより反応触媒や塩類を取り除くことがで
きる。
When dialdehyde is used as a cross-linking agent, the cross-linking reaction can be promptly advanced by adding an inorganic acid such as hydrochloric acid or sulfuric acid and using it as a catalyst. The reaction temperature is preferably from room temperature to 100 degrees.
When epichlorohydrin is used as a crosslinking agent, the crosslinking reaction may be advanced by dispersing porous particles in a mixed aqueous solution of polyvinyl alcohol and epichlorohydrin and dropping an aqueous solution of an inorganic base such as caustic soda. The amount of the inorganic base is preferably in the range of the equivalent of epichlorohydrin to 1.5 equivalents. The reaction temperature can be exemplified by dropping an inorganic base at room temperature and heating to about 70 ° C. after the dropping to terminate the crosslinking reaction. After the completion of the reaction, the porous particles coated with polyvinyl alcohol by crosslinking can be washed with pure water to remove the reaction catalyst and salts.

【0014】多孔質粒子に架橋被覆されたポリビニルア
ルコール被覆層の水酸基にカチオン交換基を導入する工
程は、カチオン交換基を有するアルデヒド化合物をアセ
タール化反応により該被覆層水酸基に導入する方法又は
多官能カルボン酸化合物をエステル化反応により該被覆
樹脂層に導入する工程である。
The step of introducing a cation exchange group into the hydroxyl group of the polyvinyl alcohol coating layer cross-linked to the porous particles may be a method of introducing an aldehyde compound having a cation exchange group into the coating layer hydroxyl group by an acetalization reaction or a polyfunctional compound. This is a step of introducing a carboxylic acid compound into the coating resin layer by an esterification reaction.

【0015】カチオン交換基を有するアルデヒド化合物
をアセタール化反応により導入する方法は、多孔質粒子
に架橋被覆されたポリビニルアルコールの水酸基とカチ
オン交換基を有するアルデヒド化合物のアルデヒド基の
脱水によるアセタール化反応によりカチオン交換基を導
入する方法である。ここで用いられるカチオン交換基を
有するアルデヒド化合物の例としては、グリオキシル
酸、カルボキシベンズアルデヒド類、ベンズアルデヒド
スルホン酸類、ベンズアルデヒドジスルホン酸類、ナフ
チルアルデヒドスルホン酸類等を例示できる。アセター
ル化反応は酸触媒を用い反応を速やかに進行させること
ができる。酸触媒の例としては、塩酸、硫酸、ベンゼン
スルホン酸、トルエンスルホン酸等を例示できる。反応
形態としてはポリビニルアルコールが架橋被覆された多
孔質粒子を溶媒中に分散し、カチオン交換基を有するア
ルデヒド化合物及び酸触媒を溶解しアセタール化反応を
進行させる方法、又は該多孔質粒子及び該アルデヒド化
合物及び酸触媒を揮発性溶媒中に分散溶解し該揮発性溶
媒を留去した後に加熱することによりアセタール化反応
を進行させる反応形態を例示できる。
The method of introducing an aldehyde compound having a cation exchange group by an acetalization reaction is a method of acetalization reaction by dehydration of aldehyde groups of an aldehyde compound having a cation exchange group and hydroxyl groups of polyvinyl alcohol crosslinked and coated on porous particles. This is a method of introducing a cation exchange group. Examples of the aldehyde compound having a cation exchange group used herein include glyoxylic acid, carboxybenzaldehydes, benzaldehyde sulfonic acids, benzaldehyde disulfonic acids, and naphthyl aldehyde sulfonic acids. The acetalization reaction can proceed quickly using an acid catalyst. Examples of the acid catalyst include hydrochloric acid, sulfuric acid, benzenesulfonic acid, and toluenesulfonic acid. As a reaction mode, polyvinyl alcohol cross-linked porous particles are dispersed in a solvent, and an aldehyde compound having a cation exchange group and an acid catalyst are dissolved to allow an acetalization reaction to proceed, or the porous particles and the aldehyde A reaction form in which a compound and an acid catalyst are dispersed and dissolved in a volatile solvent, and the volatile solvent is distilled off, followed by heating to progress the acetalization reaction can be exemplified.

【0016】以下、カチオン交換基を有するアルデヒド
化合物をアセタール化反応により導入する方法を合成法
別に、その一例を示す。
The following is an example of a method for introducing an aldehyde compound having a cation exchange group by an acetalization reaction according to a synthesis method.

【0017】a:カチオン交換基を有するアルデヒド化
合物をベンゼン、トルエン等の水と共沸可能であり且つ
アルデヒド化合物と非反応性の溶媒に溶解し、この溶液
にポリビニルアルコールを架橋被覆した多孔質粒子を分
散する。硫酸、ベンゼンスルホン酸、トルエンスルホン
酸等の微量の酸触媒を添加した後に、加熱しアセタール
化反応により生成する水を該溶媒との共沸により取り除
く。その後粒子を濾取し、カチオン交換基を有するアル
デヒド化合物の良溶媒で洗浄を行い、アルコールなどの
酸触媒の良溶媒を用いてさらに洗浄し、最終的に水に置
換する。
A: Porous particles obtained by dissolving an aldehyde compound having a cation exchange group in a solvent which can be azeotroped with water such as benzene or toluene and which is not reactive with the aldehyde compound, and which is cross-linked and coated with polyvinyl alcohol. Disperse. After adding a trace amount of an acid catalyst such as sulfuric acid, benzenesulfonic acid or toluenesulfonic acid, the mixture is heated to remove water generated by the acetalization reaction by azeotropic distillation with the solvent. Thereafter, the particles are collected by filtration, washed with a good solvent of an aldehyde compound having a cation exchange group, further washed with a good solvent of an acid catalyst such as alcohol, and finally replaced with water.

【0018】b:カチオン交換基を有するアルデヒド化
合物及び硫酸、ベンゼンスルホン酸、トルエンスルホン
酸等の微量の酸触媒が溶解可能な低沸点の溶媒に溶解
し、ポリビニルアルコールを架橋被覆した多孔質粒子を
分散する。その後溶媒を留去する。続いて混合物を80
度以上、好ましくは100度以上130度以下で加熱す
ることにより、アセタール化反応により生成する水を取
り除く。冷却後、カチオン交換基を有するアルデヒド化
合物の良溶媒に粒子を分散し、粒子を濾取し、該溶媒を
用いて洗浄を行い、アルコールなどの酸触媒の良溶媒を
用いてさらに洗浄し、最終的に水に置換する。
B: Porous particles obtained by dissolving in an aldehyde compound having a cation exchange group and a low boiling point solvent capable of dissolving a small amount of an acid catalyst such as sulfuric acid, benzenesulfonic acid and toluenesulfonic acid and crosslinking-coating polyvinyl alcohol. Spread. Then the solvent is distilled off. The mixture is then
By heating at a temperature of at least 100 degrees, preferably at least 100 degrees and at most 130 degrees, water generated by the acetalization reaction is removed. After cooling, the particles are dispersed in a good solvent of an aldehyde compound having a cation exchange group, the particles are collected by filtration, washed with the solvent, further washed with a good solvent of an acid catalyst such as alcohol, and finally washed. Replace with water.

【0019】c:カチオン交換基を有するアルデヒド化
合物及びポリビニルアルコールを架橋被覆した多孔質粒
子を2規定以上の塩酸、硫酸等の水溶液中に分散、溶解
し、室温下撹拌する。その後粒子を濾取し、カチオン交
換基を有するアルデヒド化合物の良溶媒で洗浄を行い、
アルコールなどの酸触媒の良溶媒を用いてさらに洗浄
し、最終的に水に置換する。
C: The porous particles coated with an aldehyde compound having a cation exchange group and polyvinyl alcohol by cross-linking are dispersed and dissolved in an aqueous solution of 2N or more hydrochloric acid, sulfuric acid or the like, and stirred at room temperature. Thereafter, the particles are collected by filtration, and washed with a good solvent for an aldehyde compound having a cation exchange group,
Further washing is performed using a good solvent of an acid catalyst such as alcohol, and finally the water is replaced.

【0020】d:カチオン交換基を有するアルデヒド化
合物及びポリビニルアルコールを架橋被覆した多孔質粒
子を水に分散、溶解する。塩酸、硫酸等の酸触媒を用い
て溶液のpHを2程度に調節する。その後40度以上、
好ましくは60度以上100度以下で加熱する。その後
粒子を濾取し、カチオン交換基を有するアルデヒド化合
物の良溶媒で洗浄を行い、アルコールなどの酸触媒の良
溶媒を用いてさらに洗浄し、最終的に水に置換する。
D: The porous particles coated with an aldehyde compound having a cation exchange group and polyvinyl alcohol by crosslinking are dispersed and dissolved in water. The pH of the solution is adjusted to about 2 using an acid catalyst such as hydrochloric acid or sulfuric acid. After that, over 40 degrees,
Preferably, heating is performed at a temperature of 60 degrees or more and 100 degrees or less. Thereafter, the particles are collected by filtration, washed with a good solvent of an aldehyde compound having a cation exchange group, further washed with a good solvent of an acid catalyst such as alcohol, and finally replaced with water.

【0021】多官能カルボン酸化合物をエステル化反応
により該被覆樹脂層に導入する方法は、多孔質粒子に架
橋被覆されたポリビニルアルコールの水酸基と多官能カ
ルボン酸化合物のカルボン酸基の脱水によるエステル化
反応によりカチオン交換基を導入する方法である。ここ
で用いられる多官能カルボン酸としては、脂肪族多官能
カルボン酸の例として、トリカルバニル酸、ブタンテト
ラカルボン酸等を、又芳香族多官能カルボン酸の例とし
て、トリメリット酸、ピロメリット酸等を、又複素環多
官能カルボン酸の例としてテトラヒドロフランテトラカ
ルボン酸等をそれぞれ例示できる。エステル化反応は、
多官能カルボン酸をポリビニルアルコールを架橋被覆し
た多孔質粒子上に分散し加熱することで容易に作成でき
る。
The method of introducing a polyfunctional carboxylic acid compound into the coating resin layer by an esterification reaction is a method of esterifying the hydroxyl groups of polyvinyl alcohol cross-linked to the porous particles and the carboxylic acid groups of the polyfunctional carboxylic acid compound by dehydration. In this method, a cation exchange group is introduced by a reaction. Examples of the polyfunctional carboxylic acids used herein include tricarbanilic acid and butanetetracarboxylic acid as examples of aliphatic polyfunctional carboxylic acids, and trimellitic acid and pyromellitic acid as examples of aromatic polyfunctional carboxylic acids. And tetrahydrofurantetracarboxylic acid as an example of the heterocyclic polyfunctional carboxylic acid. The esterification reaction is
The polyfunctional carboxylic acid can be easily prepared by dispersing the polyfunctional carboxylic acid on the polyvinyl alcohol cross-linked porous particles and heating.

【0022】以下多官能カルボン酸化合物をエステル化
反応により該被覆樹脂層に導入する方法の一例を示す。
多官能カルボン酸が溶解可能な低沸点溶媒に多官能カル
ボン酸を溶解し、該溶液にポリビニルアルコールを架橋
被覆した多孔質粒子を分散する。その後溶媒を留去す
る。続いて混合物を140度以上、好ましくは160度
以上180度以下で加熱することにより、エステル化反
応により生成する水を取り除く。冷却後、多官能カルボ
ン酸化合物の良溶媒に粒子を分散した後に、粒子を濾取
し該溶媒を用いて洗浄を行い、最終的に水に置換する。
The following is an example of a method for introducing a polyfunctional carboxylic acid compound into the coating resin layer by an esterification reaction.
The polyfunctional carboxylic acid is dissolved in a low-boiling solvent in which the polyfunctional carboxylic acid can be dissolved, and the porous particles crosslinked and coated with polyvinyl alcohol are dispersed in the solution. Then the solvent is distilled off. Subsequently, the mixture is heated at 140 ° C. or more, preferably 160 ° C. or more and 180 ° or less to remove water generated by the esterification reaction. After cooling, the particles are dispersed in a good solvent for the polyfunctional carboxylic acid compound, and then the particles are collected by filtration, washed with the solvent, and finally replaced with water.

【0023】以上の方法により得られたカチオン交換基
を有する充填剤は、液体クロマトグラフィー用カラムに
充填し、液体クロマトグラフィー分析に用いることがで
きる。本発明の充填剤を用いることにより、物理的耐久
性の高い充填剤を作製できるため、従来の親水性カチオ
ン交換液体クロマトグラフィー用充填剤では充填剤の物
理的耐久性上の制約から難しかった、カラム長さを長く
することや、充填剤粒径を小さくすることも可能とな
り、液体クロマトグラフィーに用いた場合の分離性能を
向上できる。また、架橋被覆されたポリビニルアルコー
ルにカチオン交換基を導入する方法は、基材の微粒子を
選ばない方法であるため、シリカ、架橋糖、アクリル系
重合体などの微粒子に対するイオン交換基導入反応とし
て有用である。 本発明の充填剤を液体クロマトグラフ
ィー用カラムに充填したカラムは、タンパク質、ペプチ
ドなどの生体高分子のイオン交換法による分析、有機酸
のイオン排除による分析、及び無機カチオン及びアミン
類などのイオンクロマトグラフィーによる分析等に用い
ることができる。
The packing material having a cation exchange group obtained by the above method can be packed in a column for liquid chromatography and used for liquid chromatography analysis. By using the filler of the present invention, it is possible to produce a filler having high physical durability, it was difficult in the conventional filler for hydrophilic cation exchange liquid chromatography due to restrictions on the physical durability of the filler, It is also possible to increase the length of the column and to reduce the particle size of the packing material, thereby improving the separation performance when used in liquid chromatography. In addition, since the method of introducing a cation exchange group into the cross-linked coated polyvinyl alcohol is a method that does not select the fine particles of the base material, it is useful as an ion exchange group introduction reaction for fine particles such as silica, cross-linked sugar, and acrylic polymer. It is. The column in which the packing material of the present invention is packed into a column for liquid chromatography is used for analysis of proteins, peptides, and other biological macromolecules by ion exchange, analysis of organic acids by ion exclusion, and ion chromatography of inorganic cations and amines. It can be used for analysis by photography.

【0024】[0024]

【発明の実施の形態】以下、実施例により本発明を更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0025】実施例1 撹拌機と還流冷却管及び窒素ガス導入管を装着した2L
の三口セパラブルフラスコをオイルバス中にセットし、
純水400gをいれ、ポリビニルアルコール(PVA2
24、クラレ(株)製)20gを溶解した。これとは別
に、モノマー溶液として高純度ジビニルベンゼンモノマ
ー100g、トルエン20g、イソアミルアルコール1
30g、ベンゾイルパーオキサイド5gを混合し、前記
三口フラスコに投入した。500rpmで撹拌しながら
窒素を導入し、室温下30分撹拌を継続した後、オイル
バス温度を80度に上げ16時間重合を行った。重合終
了後、70度の温水を用いてゲルを洗浄し、さらにアセ
トンを用いて洗浄した。得られたゲルを定法を用い分級
し、中心粒径5μmのゲルを得た。得られたゲルを液体
クロマトグラフィー用カラムに充填し、分子量既知の標
準ポリスチレンの溶出位置を測定することにより、細孔
分布特性を下記条件で調査した。結果を別図1に示す。
Example 1 2 L equipped with a stirrer, a reflux condenser and a nitrogen gas inlet tube
Set the three-neck separable flask in the oil bath,
Add 400 g of pure water and add polyvinyl alcohol (PVA2
24, manufactured by Kuraray Co., Ltd.). Separately, as a monomer solution, 100 g of high-purity divinylbenzene monomer, 20 g of toluene, and 1 g of isoamyl alcohol
30 g and 5 g of benzoyl peroxide were mixed and charged into the three-necked flask. Nitrogen was introduced while stirring at 500 rpm, and stirring was continued at room temperature for 30 minutes. Then, the temperature of the oil bath was increased to 80 ° C, and polymerization was performed for 16 hours. After the polymerization was completed, the gel was washed with 70 ° C. warm water, and further washed with acetone. The obtained gel was classified by a conventional method to obtain a gel having a central particle size of 5 μm. The obtained gel was packed in a column for liquid chromatography, and the elution position of standard polystyrene having a known molecular weight was measured to examine the pore distribution characteristics under the following conditions. The results are shown in FIG.

【0026】(条件) カラム:7.8mm I.D.×30cmL. 溶離液:THF 流速:0.8L/分(CCPD(東ソ−(株)製ポン
プ)を使用) 温度:40度(CO−8020(東ソ−(株)製カラム
オ−ブン)を使用) 検出:UV254nmでの吸光度変化(UV−8020
(東ソ−(株)製検出器使用) 実施例2 撹拌機を接続した三口フラスコをオイルバスにセット
し、純水100mLを入れ、ポリビニルアルコール(P
VA 217C、クラレ(株)製)2.0gを溶解し
た。あらかじめ水に置換した、実施例1で作成したゲル
10g(乾燥)をフラスコ中に入れ室温下で撹拌しなが
ら、グルタルアルデヒド50%溶液(試薬)を0.88
g入れ、次いで1N−塩酸水溶液をpH2.0以下にな
るように約2mL入れた。バス温度を60度に設定し、
4時間撹拌した。反応終了後、ゲルを70度温水で洗浄
し、ポリビニルアルコール被覆ゲルを得た。得られたゲ
ルの細孔特性を実施例1と同様に測定した。測定結果を
図1に合わせて示す。ポリビニルアルコールを架橋被覆
した後も、もとの多孔質粒子の細孔特性に大きな影響を
与えることなく、均一にポリビニルアルコールが架橋被
覆されていることがわかった。
(Conditions) Column: 7.8 mm D. × 30 cmL. Eluent: THF Flow rate: 0.8 L / min (using CCPD (Tosoh Corp. pump)) Temperature: 40 degrees (CO-8020 (Tosoh Corp. column oven)) : Change in absorbance at UV 254 nm (UV-8020
Example 2 A three-necked flask connected to a stirrer was set in an oil bath, 100 mL of pure water was added, and polyvinyl alcohol (P) was used.
2.0 g of VA 217C (manufactured by Kuraray Co., Ltd.). 10 g (dry) of the gel prepared in Example 1, which had been replaced with water in advance, was placed in a flask and stirred at room temperature with a 50% solution of glutaraldehyde (reagent) in 0.88.
g, and then about 2 mL of a 1N aqueous hydrochloric acid solution was added to adjust the pH to 2.0 or less. Set the bath temperature to 60 degrees,
Stir for 4 hours. After the reaction was completed, the gel was washed with warm water at 70 degrees to obtain a polyvinyl alcohol-coated gel. The pore characteristics of the obtained gel were measured in the same manner as in Example 1. The measurement results are shown in FIG. It was found that even after the polyvinyl alcohol was cross-linked, the polyvinyl alcohol was uniformly cross-linked without greatly affecting the pore characteristics of the original porous particles.

【0027】撹拌機を接続した三口フラスコをオイルバ
スにセットし、ポリビニルアルコール被覆ゲルを純水1
00mLに分散した分散液をいれ、撹拌しながらベンズ
アルデヒド−2,4−ジスルホン酸ナトリュウム(試
薬)6.33gを加えた。1N−HCl 5mLを加え
た後オイルバスを60度に設定し撹拌しながら4時間加
熱した。室温まで冷却し、グラスフィルターで濾過した
後、メタノール、1N−HCl水溶液、ブリッジ35
1%水溶液、純水の順で洗浄した。イオン交換容量を
0.1N−NaOH水溶液で測定したところ、60μe
q/ゲルmLであった。得られたゲルを4.6mm
I.D.×10cmLカラムに充填し、標準的なタンパ
ク質分離を試みた。測定結果を図2に示す。また測定条
件を下記に示す。(測定条件) 溶離液(A液):20mM酢酸バッファー(NaOHでpH5.0に調整) (B液):20mM酢酸バッファー(pH5.0)+ 0.5M Na2SO4 流速:1.0mL/分 溶離:溶媒グラジエント(A液100%からB液100%まで10分間のリニ ヤグラジエント) カラム温度:室温 サンプル:トリプシノーゲン(シグマ試薬)1mg/mL 濃度5μL リボヌクレアーゼ(シグマ試薬)1mg/mL 濃度5μL チトクロムC(シグマ試薬)1mg/mL 濃度5μL 測定の結果、シャープなピークで短時間にサンプルが分
離能良く分離されていることがわかった。
The three-necked flask connected with the stirrer was set in an oil bath, and the polyvinyl alcohol-coated gel was mixed with pure water 1.
The dispersion dispersed in 00 mL was added, and while stirring, 6.33 g of sodium benzaldehyde-2,4-disulfonate (reagent) was added. After adding 5 mL of 1N-HCl, the oil bath was set at 60 degrees and heated with stirring for 4 hours. After cooling to room temperature and filtering with a glass filter, methanol, 1N-HCl aqueous solution, bridge 35
Washing was performed in the order of a 1% aqueous solution and pure water. When the ion exchange capacity was measured with a 0.1N-NaOH aqueous solution, 60 μe
q / gel mL. 4.6 mm of the obtained gel
I. D. A × 10 cmL column was packed and standard protein separation was attempted. FIG. 2 shows the measurement results. The measurement conditions are shown below. (Measurement conditions) Eluent (Solution A): 20 mM acetate buffer (adjusted to pH 5.0 with NaOH) (Solution B): 20 mM acetate buffer (pH 5.0) +0.5 M Na 2 SO 4 Flow rate: 1.0 mL / Min Elution: solvent gradient (linear gradient from 100% of solution A to 100% of solution B for 10 minutes) Column temperature: room temperature Sample: trypsinogen (Sigma reagent) 1 mg / mL concentration 5 μL ribonuclease (Sigma reagent) 1 mg / mL concentration 5 μL cytochrome Measurement of C (Sigma reagent) 1 mg / mL, concentration 5 μL As a result of the measurement, it was found that the sample was separated in a short time with a sharp peak with good resolution.

【0028】実施例3 実施例2と同様にポリビニルアルコール被覆ゲルを作成
した。なす型フラスコにポリビニルアルコール被覆ゲル
をいれ、メタノールに分散後、ベンズアルデヒド−2,
4−ジスルホン酸ナトリュウム3.5g及び0.5gの
トルエンスルホン酸(試薬)をいれ良く撹拌した後に、
エバポレータにてメタノールを留去した。フラスコを1
10度に設定したオーブンに入れ3時間加熱した。冷却
後、メタノールをフラスコに入れ、ゲルを良く分散した
後にグラスフィルターで濾過した。次いでメタノール、
1N−HCl水溶液、ブリッジ35 1%水溶液、純水
の順で洗浄した。得られたゲルのイオン交換容量を0.
1N−NaOH水溶液を用い測定したところ、197μ
eq/ゲルmLであった。
Example 3 A polyvinyl alcohol-coated gel was prepared in the same manner as in Example 2. A polyvinyl alcohol-coated gel was placed in an eggplant type flask, dispersed in methanol, and then benzaldehyde-2,
After 3.5 g of sodium 4-disulfonate and 0.5 g of toluene sulfonic acid (reagent) were added and stirred well,
Methanol was distilled off with an evaporator. 1 flask
It was placed in an oven set at 10 degrees and heated for 3 hours. After cooling, methanol was put into the flask, and the gel was well dispersed, and then filtered through a glass filter. Then methanol,
It wash | cleaned in order of 1N-HCl aqueous solution, bridge 35 1% aqueous solution, and pure water. The ion exchange capacity of the obtained gel was set to 0.1.
When measured using a 1N-NaOH aqueous solution, 197 μm
eq / mL mL.

【0029】実施例4 実施例1と同様にポリビニルアルコール被覆ゲルを作成
した。なす型フラスコにポリビニルアルコール被覆ゲル
をいれ、メタノールに分散後、グリオキシル酸50wt
%水溶液1.5g及び0.5gのトルエンスルホン酸
(試薬)をいれ良く撹拌した後に、エバポレータにてメ
タノールを留去した。フラスコを110度に設定したオ
ーブンに入れ3時間加熱した。冷却後、メタノールをフ
ラスコに入れ、ゲルを良く分散した後にグラスフィルタ
ーで濾過した。次いでメタノール、1N−HCl水溶
液、ブリッジ35 1%水溶液、純水の順で洗浄した。
得られたゲルのイオン交換容量を0.1N−NaOH水
溶液を用い測定したところ、230μeq/ゲルmLで
あった。得られたゲルを4.6mm I.D.×10c
mLカラムに充填し、標準的なタンパク質分離を試み
た。測定結果を図3に示す。また測定条件を下記に示
す。
Example 4 A polyvinyl alcohol-coated gel was prepared in the same manner as in Example 1. Pour polyvinyl alcohol-coated gel into eggplant-shaped flask, disperse in methanol, and then add 50 wt% glyoxylic acid
After 1.5 g of a 1.5% aqueous solution and 0.5 g of toluenesulfonic acid (reagent) were added and thoroughly stirred, methanol was distilled off with an evaporator. The flask was placed in an oven set at 110 degrees and heated for 3 hours. After cooling, methanol was put into the flask, and the gel was well dispersed, and then filtered through a glass filter. Next, washing was carried out in the order of methanol, 1N-HCl aqueous solution, 1% aqueous solution of bridge 35 and pure water.
When the ion exchange capacity of the obtained gel was measured using a 0.1N-NaOH aqueous solution, it was 230 μeq / mL of gel. The obtained gel was 4.6 mm I.D. D. × 10c
mL columns were packed and standard protein separations were attempted. FIG. 3 shows the measurement results. The measurement conditions are shown below.

【0030】 (測定条件) 溶離液(A液):20mM酢酸バッファー(NaOHでpH5.0に調整) (B液):20mM酢酸バッファー(pH5.0)+ 0.5M Na2SO4 流速:1.0mL/分 溶離:溶媒グラジエント(A液100%からB液100%まで10分間のリニ ヤグラジエント) カラム温度:室温 サンプル:トリプシノーゲン(シグマ試薬)1mg/mL 濃度5μL リボヌクレアーゼ(シグマ試薬)1mg/mL 濃度5μL チトクロムC(シグマ試薬)1mg/mL 濃度5μL α−トリプシノーゲン(シグマ試薬)1mg/mL 濃度5μL リゾチーム(シグマ試薬)1mg/mL 濃度5μL 測定の結果、シャープなピークでサンプルが分離能良く
分離されていることがわかった。また、このカラムを用
い、標準的な無機カチオンの分析を行った。測定結果を
図4に示す。また測定条件を下記に示す。
(Measurement Conditions) Eluent (Solution A): 20 mM acetate buffer (adjusted to pH 5.0 with NaOH) (Solution B): 20 mM acetate buffer (pH 5.0) +0.5 M Na 2 SO 4 Flow rate: 1 0.0 mL / min Elution: Solvent gradient (linear gradient from 100% of solution A to 100% of solution B for 10 minutes) Column temperature: room temperature Sample: 1 mg / mL trypsinogen (Sigma reagent) 5 μL Ribonuclease (Sigma reagent) 1 mg / mL Concentration 5 μL Cytochrome C (Sigma reagent) 1 mg / mL Concentration 5 μL α-Trypsinogen (Sigma reagent) 1 mg / mL Concentration 5 μL Lysozyme (Sigma reagent) 1 mg / mL Concentration 5 μL As a result of the measurement, the sample was separated with a sharp peak with good resolution. I understood that. In addition, standard inorganic cations were analyzed using this column. FIG. 4 shows the measurement results. The measurement conditions are shown below.

【0031】(測定条件) 溶離液:2mM HNO3水溶液 流速:0.8mL/分 溶離条件:アイソクラティック カラム温度:40度 サンプル:Li(1ppm)、Na(5ppm)、NH
4(5ppm)、K(10ppm)、Mg(5pp
m)、Ca(10ppm)の水溶液20μL 測定の結果、このカラムは1、2価カチオンの同時分析
も可能であることがわかった。
(Measurement conditions) Eluent: 2 mM HNO 3 aqueous solution Flow rate: 0.8 mL / min Elution condition: isocratic Column temperature: 40 ° C Sample: Li (1 ppm), Na (5 ppm), NH
4 (5 ppm), K (10 ppm), Mg (5 pp
m), 20 μL of an aqueous solution of Ca (10 ppm) showed that this column was also capable of simultaneous analysis of mono- and divalent cations.

【0032】実施例5 実施例2と同様にポリビニルアルコール被覆ゲルを作成
した。なす型フラスコにポリビニルアルコール被覆ゲル
をいれ、ベンゼンに分散後、グリオキシル酸50wt%
水溶液1.5g及び0.5gのトルエンスルホン酸(試
薬)をいれ良く撹拌した。フラスコにモレキュラーシー
ブス4Aを入れたソックスレー抽出器を接続し、オイル
バス中で加熱し、ベンゼンを還流してフラスコ中の水を
取り除いた。冷却後、メタノールをフラスコに入れ、ゲ
ルを良く分散した後にグラスフィルターで濾過した。次
いでメタノール、1N−HCl水溶液、ブリッジ35
1%水溶液、純水の順で洗浄した。得られたゲルのイオ
ン交換容量を0.1N−NaOH水溶液を用い測定した
ところ、130μeq/ゲルmLであった。
Example 5 A polyvinyl alcohol-coated gel was prepared in the same manner as in Example 2. Pour polyvinyl alcohol-coated gel into eggplant type flask, disperse in benzene, and then add 50 wt% of glyoxylic acid
1.5 g of the aqueous solution and 0.5 g of toluenesulfonic acid (reagent) were added and stirred well. A Soxhlet extractor containing molecular sieves 4A was connected to the flask, heated in an oil bath, and benzene was refluxed to remove water from the flask. After cooling, methanol was put into the flask, and the gel was well dispersed, and then filtered through a glass filter. Then, methanol, 1N-HCl aqueous solution, bridge 35
Washing was performed in the order of a 1% aqueous solution and pure water. When the ion exchange capacity of the obtained gel was measured using a 0.1N-NaOH aqueous solution, it was 130 μeq / mL of gel.

【0033】実施例6 撹拌機を接続した三口フラスコをオイルバスにセット
し、純水100mLを入れ、ポリビニルアルコール(P
VA217C、クラレ(株)製)1.0gを溶解した。
あらかじめ水に置換した極大細孔径150オングストロ
−ム、平均粒径5.0μmのシリカゲル10g(乾燥)
をフラスコ中に入れ室温下で撹拌しながら、グルタルア
ルデヒド50%溶液(試薬)を0.44g入れ次いで、
1N−塩酸水溶液をpH2.0以下になるように約2m
L入れた。バス温度を60度に設定し4時間撹拌した。
反応終了後、ゲルを70度温水で洗浄し、ポリビニルア
ルコール被覆ゲルを得た。その後、実施例4と同様にグ
リオキシル酸を導入した。得られたゲルのイオン交換容
量を0.1N−NaOH水溶液を用い測定したところ、
24μeq/ゲルmLであった。得られたゲルを4.6
mm I.D.×10cmLカラムに充填し、標準的な
無機カチオンの分析を行った。測定結果を図5に示す。
また測定条件を下記に示す。
Example 6 A three-necked flask connected to a stirrer was set in an oil bath, and 100 mL of pure water was added.
1.0 g of VA217C (manufactured by Kuraray Co., Ltd.) was dissolved.
10 g of silica gel having a maximum pore diameter of 150 Å and an average particle diameter of 5.0 μm previously dried with water (dry)
Into a flask and stirring at room temperature while adding 0.44 g of 50% glutaraldehyde solution (reagent).
Approximately 2m of 1N-hydrochloric acid aqueous solution
L was put. The bath temperature was set to 60 degrees and the mixture was stirred for 4 hours.
After the reaction was completed, the gel was washed with warm water at 70 degrees to obtain a polyvinyl alcohol-coated gel. Thereafter, glyoxylic acid was introduced in the same manner as in Example 4. When the ion exchange capacity of the obtained gel was measured using a 0.1N-NaOH aqueous solution,
It was 24 μeq / mL gel. The obtained gel was 4.6
mm I. D. Packed in a x10 cmL column and analyzed for standard inorganic cations. FIG. 5 shows the measurement results.
The measurement conditions are shown below.

【0034】(測定条件) 溶離液:2mM HNO3水溶液 流速:0.6mL/分 溶離条件:アイソクラティック カラム温度:40度 サンプル:Li(1ppm)、Na(5ppm)、NH
4(5ppm)、K(10ppm)、Mg(5pp
m)、Ca(10ppm)の水溶液20μL 測定の結果、シャープなピークでサンプルが分離能良く
分離されていることがわかった。イオン交換基の導入方
法として種々の多孔質粒子に適応可能であることがわか
った。
(Measurement conditions) Eluent: 2 mM HNO 3 aqueous solution Flow rate: 0.6 mL / min Elution condition: isocratic Column temperature: 40 ° C Sample: Li (1 ppm), Na (5 ppm), NH
4 (5 ppm), K (10 ppm), Mg (5 pp
m), 20 μL of an aqueous solution of Ca (10 ppm) showed that the sample was separated with a sharp peak with good resolution. It was found that the method for introducing ion exchange groups can be applied to various porous particles.

【0035】実施例7 実施例2と同様にポリビニルアルコール被覆ゲルを作製
した。なす型フラスコにポリビニルアルコール被覆ゲル
をいれ、メタノールに分散し、メソ−ブタン−1,2,
3,4−テトラカルボン酸(試薬)を4.52g溶解さ
せた。メタノールをエバポレーターを用いて留去し、フ
ラスコを160度に設定したオーブン中で1時間加熱し
た。冷却後メタノールに分散した後、グラスフィルター
で濾過した。次いでメタノール、1N−HCl水溶液、
ブリッジ35 1%水溶液、純水の順で洗浄した。得ら
れたゲルのイオン交換容量を0.1N−NaOH水溶液
を用い測定したところ、880μeq/ゲルmLであっ
た。得られたゲルを4.6mm I.D.×10cmL
カラムに充填し、、標準的なタンパク質の分析を行っ
た。測定結果を図6に示す。測定条件は実施例4と同様
に行った。また合わせて、無機カチオンの分析を行っ
た。測定結果を図7に示す。また測定条件を下記に示
す。
Example 7 A polyvinyl alcohol-coated gel was produced in the same manner as in Example 2. A polyvinyl alcohol-coated gel was placed in an eggplant-shaped flask, dispersed in methanol, and then mixed with meso-butane-1,2,2.
4.52 g of 3,4-tetracarboxylic acid (reagent) was dissolved. The methanol was distilled off using an evaporator, and the flask was heated in an oven set at 160 degrees for 1 hour. After cooling, the mixture was dispersed in methanol and filtered with a glass filter. Then methanol, 1N-HCl aqueous solution,
The bridge 35 was washed with a 1% aqueous solution and pure water in this order. When the ion exchange capacity of the obtained gel was measured using a 0.1N-NaOH aqueous solution, it was 880 μeq / mL of gel. The obtained gel was 4.6 mm I.D. D. × 10cmL
The column was packed and standard protein analysis was performed. FIG. 6 shows the measurement results. The measurement conditions were the same as in Example 4. In addition, analysis of inorganic cations was also performed. FIG. 7 shows the measurement results. The measurement conditions are shown below.

【0036】(測定条件) 溶離液:2mM HNO3水溶液 流速:0.8mL/分 溶離条件:アイソクラティック カラム温度:40度 サンプル:Li(1ppm)、Na(5ppm)、NH
4(5ppm)、K(10ppm)、Mg(5pp
m)、Ca(10ppm)、Rb(20ppm)、Ce
(30ppm)、Sr(20ppm)、Ba(30pp
m)の水溶液20μL いずれのサンプルも分離能良く分離していることがわか
った。
(Measurement conditions) Eluent: 2 mM HNO 3 aqueous solution Flow rate: 0.8 mL / min Elution condition: isocratic Column temperature: 40 ° C Sample: Li (1 ppm), Na (5 ppm), NH
4 (5 ppm), K (10 ppm), Mg (5 pp
m), Ca (10 ppm), Rb (20 ppm), Ce
(30 ppm), Sr (20 ppm), Ba (30 pp)
20 μL of the aqueous solution of m) It was found that all samples were separated with good separation ability.

【0037】比較例 通常のスルホン酸型イオン交換カラムを用いて、標準タ
ンパクの分析を行った。結果を図8に示す。測定条件を
下記に示す。
Comparative Example A standard protein was analyzed using an ordinary sulfonic acid type ion exchange column. FIG. 8 shows the results. The measurement conditions are shown below.

【0038】 カラム:SP−5PW(東ソ−(株)製、7.5mm I.D.×7.5cm L) (測定条件) 溶離液(A液):20mM酢酸バッファー(NaOHでpH5.0に調整) (B液):20mM酢酸バッファー(pH5.0)+ 0.5M Na2SO4 流速:1.0mL/分 溶離:溶媒グラジエント(A液100%からB液100%まで60分間のリニ ヤグラジエント) カラム温度:室温 サンプル:トリプシノーゲン(シグマ試薬)1mg/mL 濃度5μL リボヌクレアーゼ(シグマ試薬)1mg/mL 濃度5μL チトクロムC(シグマ試薬)1mg/mL 濃度5μL α−トリプシノーゲン(シグマ試薬)1mg/mL 濃度5μLColumn: SP-5PW (manufactured by Toso Corporation, 7.5 mm ID × 7.5 cm L) (Measurement conditions) Eluent (solution A): 20 mM acetate buffer (pH 5.0 with NaOH) (Solution B): 20 mM acetate buffer (pH 5.0) + 0.5 M Na 2 SO 4 Flow rate: 1.0 mL / min Elution: Solvent gradient (from 100% solution A to 100% solution B for 60 minutes) (Gradient) Column temperature: room temperature Sample: Trypsinogen (Sigma reagent) 1 mg / mL Concentration 5 μL Ribonuclease (Sigma reagent) 1 mg / mL Concentration 5 μL Cytochrome C (Sigma reagent) 1 mg / mL Concentration 5 μL α-Trypsinogen (Sigma reagent) 1 mg / mL Concentration 5μL

【0039】[0039]

【発明の効果】本発明のポリビニルアルコールを架橋被
覆してなる多孔質粒子の該被覆層の水酸基にカチオン交
換基を有する液体クロマトグラフィー用充填剤は機械的
強度が高く、又親水性が高い充填剤であり、該充填剤を
液体クロマトグラフィー分析用カラムに用いることによ
り、分析時間の短縮、分離能の向上を達成できる。また
溶離液に対する耐久性も良好な充填剤を作成でき、カラ
ム耐久性の向上が見込まれる。また、本発明の多孔質粒
子にポリビニルアルコールを架橋被覆し、該被覆層水酸
基にカチオン交換基を導入する反応は、多孔質粒子の種
類を問わず、任意の多孔質粒子を使用でき、又イオン交
換基の導入方法が容易で再現性に優れる方法であり、液
体クロマトグラフィー用充填剤の製造方法として有益で
ある。
According to the present invention, the packing material for liquid chromatography having a cation exchange group in the hydroxyl group of the coating layer of the porous particles obtained by cross-linking the polyvinyl alcohol of the present invention has high mechanical strength and high hydrophilicity. By using the packing material in a column for liquid chromatography analysis, the analysis time can be shortened and the separation ability can be improved. In addition, it is possible to prepare a filler having good durability against the eluent, and it is expected that the column durability will be improved. In addition, the reaction of crosslinking the porous particles of the present invention with polyvinyl alcohol and introducing a cation exchange group into the hydroxyl group of the coating layer can be performed using any porous particles regardless of the type of the porous particles. This method is easy in introducing an exchange group and has excellent reproducibility, and is useful as a method for producing a packing material for liquid chromatography.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は実施例1で作製したジビニルベンゼン重
合体多孔質粒子及び実施例2で作製した多孔質粒子にポ
リビニルアルコールを架橋被覆した粒子の細孔特性を分
子量既知の標準ポリスチレンを用いて測定した図であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the pore characteristics of porous particles of divinylbenzene polymer prepared in Example 1 and particles obtained by cross-linking the porous particles prepared in Example 2 with polyvinyl alcohol using standard polystyrene having a known molecular weight. FIG.

【図2】図2は実施例2での標準タンパク混合物のクロ
マトグラムである。
FIG. 2 is a chromatogram of a standard protein mixture in Example 2.

【図3】図3は実施例4での標準タンパク混合物のクロ
マトグラムである。
FIG. 3 is a chromatogram of a standard protein mixture in Example 4.

【図4】図4は実施例4での無機カチオン混合物のクロ
マトグラムである。
FIG. 4 is a chromatogram of an inorganic cation mixture in Example 4.

【図5】図5は実施例6での無機カチオン混合物のクロ
マトグラムである。
FIG. 5 is a chromatogram of an inorganic cation mixture in Example 6.

【図6】図6は実施例7での標準タンパク混合物のクロ
マトグラムである。
FIG. 6 is a chromatogram of a standard protein mixture in Example 7.

【図7】図7は実施例7での無機カチオン混合物のクロ
マトグラムである。
FIG. 7 is a chromatogram of an inorganic cation mixture in Example 7.

【図8】図8は比較例での標準タンパク混合物のクロマ
トグラムである。
FIG. 8 is a chromatogram of a standard protein mixture in a comparative example.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】ポリビニルアルコールを被覆してなる多孔
質粒子の該被覆層の水酸基にカチオン交換基を有する、
液体クロマトグラフィー用充填剤。
(1) a porous particle formed by coating polyvinyl alcohol having a cation exchange group in a hydroxyl group of the coating layer;
Packing material for liquid chromatography.
【請求項2】ポリビニルアルコールの被覆量が多孔質粒
子に対して5〜40重量%である請求項1記載の液体ク
ロマトグラフィー用充填剤。
2. The packing material for liquid chromatography according to claim 1, wherein the coating amount of the polyvinyl alcohol is 5 to 40% by weight based on the porous particles.
【請求項3】カチオン交換基がスルホン酸基又はカルボ
ン酸基である請求項1記載の液体クロマトグラフィー用
充填剤。
3. The packing material for liquid chromatography according to claim 1, wherein the cation exchange group is a sulfonic acid group or a carboxylic acid group.
【請求項4】多孔質粒子にポリビニルアルコールを架橋
被覆する工程及び該被覆層の水酸基にカチオン交換基を
有するアルデヒド化合物をアセタール化反応により導入
する工程からなる、請求項1記載の液体クロマトグラフ
ィー用充填剤の製造方法。
4. The method for liquid chromatography according to claim 1, comprising a step of cross-linking and coating the porous particles with polyvinyl alcohol and a step of introducing an aldehyde compound having a cation exchange group into a hydroxyl group of the coating layer by an acetalization reaction. A method for producing a filler.
【請求項5】カチオン交換基がスルホン酸基又はカルボ
ン酸基である請求項4記載の液体クロマトグラフィー用
充填剤の製造法
5. The method for producing a packing material for liquid chromatography according to claim 4, wherein the cation exchange group is a sulfonic acid group or a carboxylic acid group.
【請求項6】多孔質粒子にポリビニルアルコールを架橋
被覆する工程及び該被覆層の水酸基に多官能カルボン酸
化合物をエステル化反応により導入する工程からなる、
請求項1記載の液体クロマトグラフィー用充填剤の製造
方法。
6. A step of cross-linking and coating a porous particle with polyvinyl alcohol and a step of introducing a polyfunctional carboxylic acid compound into a hydroxyl group of the coating layer by an esterification reaction.
A method for producing a packing material for liquid chromatography according to claim 1.
【請求項7】ポリビニルアルコールの被覆量が多孔質粒
子に対して5〜40重量%である、請求項4又は6記載
の液体クロマトグラフィー用充填剤の製造方法。
7. The method for producing a packing material for liquid chromatography according to claim 4, wherein the coating amount of the polyvinyl alcohol is 5 to 40% by weight based on the porous particles.
【請求項8】請求項1乃至3記載の液体クロマトグラフ
ィー用充填剤を液体クロマトグラフィー用カラムに充填
してなる、液体クロマトグラフィー用カラム。
8. A column for liquid chromatography, wherein the packing material for liquid chromatography according to claim 1 is packed in a column for liquid chromatography.
【請求項9】請求項8記載の液体クロマトグラフィー用
カラムを生体高分子分析に用いる分析方法。
9. An analysis method using the column for liquid chromatography according to claim 8 for biopolymer analysis.
【請求項10】請求項8記載の液体クロマトグラフィー
用カラムをイオンクロマトグラフィーに用いる分析方
法。
10. An analytical method using the column for liquid chromatography according to claim 8 for ion chromatography.
JP9347654A 1997-12-17 1997-12-17 Filler for liquid chromatography, production and use thereof Pending JPH11183460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9347654A JPH11183460A (en) 1997-12-17 1997-12-17 Filler for liquid chromatography, production and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9347654A JPH11183460A (en) 1997-12-17 1997-12-17 Filler for liquid chromatography, production and use thereof

Publications (1)

Publication Number Publication Date
JPH11183460A true JPH11183460A (en) 1999-07-09

Family

ID=18391687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9347654A Pending JPH11183460A (en) 1997-12-17 1997-12-17 Filler for liquid chromatography, production and use thereof

Country Status (1)

Country Link
JP (1) JPH11183460A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096104A (en) * 1999-07-29 2001-04-10 Univ Kansai Method and apparatus for removing organic matter in liquid
JP2002145951A (en) * 2000-08-11 2002-05-22 Rohm & Haas Co Polymer absorbent and method of manufacture thereof
JP2010112794A (en) * 2008-11-05 2010-05-20 Sekisui Medical Co Ltd Column filler and method of manufacturing the same
JP2017161466A (en) * 2016-03-11 2017-09-14 日立化成株式会社 Separation material
JP2018173306A (en) * 2017-03-31 2018-11-08 日立化成株式会社 Separation material and column
CN112881565A (en) * 2021-03-05 2021-06-01 山东新华制药股份有限公司 HPLC detection method of triphenyldiamidine related substances

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096104A (en) * 1999-07-29 2001-04-10 Univ Kansai Method and apparatus for removing organic matter in liquid
JP2002145951A (en) * 2000-08-11 2002-05-22 Rohm & Haas Co Polymer absorbent and method of manufacture thereof
JP2012247437A (en) * 2000-08-11 2012-12-13 Rohm & Haas Co Polymeric adsorbents and method of preparation
JP2010112794A (en) * 2008-11-05 2010-05-20 Sekisui Medical Co Ltd Column filler and method of manufacturing the same
JP2017161466A (en) * 2016-03-11 2017-09-14 日立化成株式会社 Separation material
JP2018173306A (en) * 2017-03-31 2018-11-08 日立化成株式会社 Separation material and column
CN112881565A (en) * 2021-03-05 2021-06-01 山东新华制药股份有限公司 HPLC detection method of triphenyldiamidine related substances

Similar Documents

Publication Publication Date Title
US4952349A (en) Macroporous polymeric membranes for the separation of polymers and a method of their application
US5030352A (en) Coated media for chromatography
US20040018559A1 (en) Size-exclusion ion-exchange particles
JP5173406B2 (en) Method for producing composite absorbent material for chromatographic separation of biopolymers
US4191813A (en) Polymeric adsorbents from vinylbenzyl chloride copolymer beads
JPS59112260A (en) Carrier material of chromatography
WO2001019886A1 (en) New molecularly imprinted polymers grafted on solid supports
JPS5858026B2 (en) Packing material for chromatography and its manufacturing method
US6689820B2 (en) Anion exchanger, process for producing same, and its use
CA2376429A1 (en) Process for making fluorinated polymer adsorbent particles
JP2002543224A (en) Sulfonated polymer resin and its preparation
JP2022184990A (en) Composite material for bioseparation
JPH11183460A (en) Filler for liquid chromatography, production and use thereof
CN108892803A (en) A kind of salt tolerant anion-exchange chromatography medium and preparation method thereof
CN114369182A (en) Preparation method of porous high-molecular polymer microspheres with amphoteric structures
JP3972662B2 (en) Cation exchanger, method for producing the same, and use thereof
JP2811789B2 (en) Carrier for separating catabolic hemoglobin
JPH01231949A (en) Production of cation-exchange resin
Beldie et al. Synthesis of macroporous bifunctional ion exchangers containing sulfo and carboxyl groups
WO2014157670A1 (en) Cation exchanger for liquid chromatography, process for producing same, and use thereof
JPH01215804A (en) Manufacture of anion exchange resin
JPH01218638A (en) Method for producing anion-exchanging resin
JP2023154583A (en) Filler for liquid chromatography and method for producing filler for liquid chromatography
JPH01215347A (en) Production of cation exchange resin
JPS5946500B2 (en) Amino acid separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060926