JPH10172567A - Manufacture of lithium manganate - Google Patents

Manufacture of lithium manganate

Info

Publication number
JPH10172567A
JPH10172567A JP8336687A JP33668796A JPH10172567A JP H10172567 A JPH10172567 A JP H10172567A JP 8336687 A JP8336687 A JP 8336687A JP 33668796 A JP33668796 A JP 33668796A JP H10172567 A JPH10172567 A JP H10172567A
Authority
JP
Japan
Prior art keywords
manganese
lithium
manganese dioxide
nitrate
dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8336687A
Other languages
Japanese (ja)
Inventor
Masaki Watanabe
政喜 渡辺
Tsutomu Toida
努 戸井田
Makoto Maeda
誠 前田
Susumu Yokono
進 横野
Takayuki Fujita
隆幸 藤田
Koji Mizusawa
浩二 水沢
Masami Sakaguchi
正己 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Nikki Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Kagaku KK filed Critical Nikki Kagaku KK
Priority to JP8336687A priority Critical patent/JPH10172567A/en
Publication of JPH10172567A publication Critical patent/JPH10172567A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for cubic crystal spinel type lithium manganate (LiMn2 O4 ) of high purity which can exert satisfactory performance to be required for a lithium battery positive electrode material. SOLUTION: A powder or slurry of manganese dioxide or manganese compound to yield manganese dioxide through pyrolysis is mixed with water solution of lithium hydroxide or a water solution of lithium nitrate, and the obtained mixture is subjected to a drying process and a baking in a temp. range of 650-900 deg.C. Examples of the crude material of manganese dioxide are electrolytic manganese dioxide and chemically synthesized manganese dioxide, while examples of the manganese compound to become manganese dioxide through pyrolysis are manganese hydroxide, manganese carbonate, and manganese nitrate. The crude material of manganese should previously be crushed by a wet type or dry type crushing process and classified so that the mean particle size is below 30μm, preferably 0.5-5μm, or still more preferably around 5μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】テープレコーダー、携帯電
話、ラジオ等電源として電池を利用する機器には、小型
/軽量で容量が大きく、しかも何回も充電して繰り返し
使える電池が望まれている。現在、リチウム電池がその
要望に応えるものであり、コバルト酸リチウムを正極材
とする2次電池が実用化されているが、容量の向上、コ
ストの削減のためニッケル酸リチウムやマンガン酸リチ
ウムを正極材とする2次電池の開発が進められている。
本発明はマンガン酸リチウムの製法に関するものであ
る。
BACKGROUND OF THE INVENTION For equipment utilizing a battery as a power source, such as a tape recorder, a mobile phone, and a radio, a battery that is small / lightweight, has a large capacity, and can be repeatedly charged and used many times is desired. At present, lithium batteries meet the demand, and secondary batteries using lithium cobalt oxide as a cathode material have been put into practical use. However, lithium nickel oxide or lithium manganate is used as a cathode to improve capacity and reduce costs. The development of a secondary battery as a material is in progress.
The present invention relates to a method for producing lithium manganate.

【0002】[0002]

【従来の技術】リチウム電池の正極材としてはコバルト
酸リチウムが実用化されているが、高価であり、また実
効蓄電量が理論量の約50%しかないので、安価で、実
効蓄電量の大きな正極材が求められている。安価で実効
蓄電量の大きな正極材としてニッケル酸リチウムが最有
力候補として挙げられているが、ニッケル酸リチウムは
充放電後高温で保存するとガスが発生することや、発火
の恐れなど安全性に関して解決しなければならない問題
が残っている。マンガン酸リチウムは容量はコバルト酸
リチウムより若干少ないが、コストが半分程度になるこ
とや、保存性や安全性はコバルト酸リチウムと同等であ
ると期待されている。
2. Description of the Related Art As a positive electrode material of a lithium battery, lithium cobalt oxide has been put to practical use, but it is expensive and the effective charge is only about 50% of the theoretical amount. There is a need for a positive electrode material. Lithium nickelate is one of the most promising cathode materials that is inexpensive and has a large effective storage capacity.However, lithium nickelate solves safety issues such as gas generation and the risk of ignition when stored at high temperatures after charging and discharging. There are still issues to be addressed. Although lithium manganate has a slightly lower capacity than lithium cobaltate, it is expected that the cost will be reduced to about half, and that the storage stability and safety are equivalent to those of lithium cobaltate.

【0003】スピネルタイプのマンガン酸リチウム(L
iMn24 )は放電電圧が高く、フラットであると言
う利点はあるが、理論容量が148mAh/gと小さ
い。このため、いかに容量の大きな純度の高いスピネル
LiMn24 を合成するかが重要な課題である。この
ためには、原料となるマンガンとリチウムの均一な混合
が重要なポイントとなる。均一混合法としてはゾルゲル
法がよく知られ、マンガン酸リチウムの合成にも応用さ
れている(J.Electrochem.Soc.,141.1106 1994)が、こ
の方法は煩雑でコスト的にも不利であり、工業的合成法
としては不向きである。また、溶融含浸法(DENKI KAGA
KU, 63, No.10, 1995)による合成は原料二酸化マンガン
の物性に大きく左右されると言う欠点がある。二酸化マ
ンガンと水酸化リチウム又は硝酸リチウムとの混合物を
酸素含有ガス雰囲気で650〜900℃で焼成する方法
もあるが、不純物として二酸化マンガンが残り、電池性
能は良くない。
[0003] Spinel-type lithium manganate (L
iMn 2 O 4 ) has the advantage that it has a high discharge voltage and is flat, but has a small theoretical capacity of 148 mAh / g. Therefore, it is an important issue how to synthesize a high-capacity and high-purity spinel LiMn 2 O 4 . For this purpose, it is important to uniformly mix manganese and lithium as raw materials. The sol-gel method is well known as a homogeneous mixing method, and is also applied to the synthesis of lithium manganate (J. Electrochem. Soc., 141.1106 1994), but this method is complicated and disadvantageous in terms of cost. It is not suitable as a synthetic method. In addition, the melt impregnation method (DENKI KAGA
KU, 63, No. 10, 1995) has the disadvantage that it is greatly affected by the physical properties of the starting manganese dioxide. There is also a method in which a mixture of manganese dioxide and lithium hydroxide or lithium nitrate is fired at 650 to 900 ° C. in an oxygen-containing gas atmosphere, but manganese dioxide remains as an impurity and battery performance is poor.

【0004】[0004]

【発明が解決しようとする課題】本発明は、リチウム電
池正極材としての性能を十分に発揮する純度の高い立方
晶スピネルタイプマンガン酸リチウム(LiMn2
4 )の製法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a cubic spinel-type lithium manganate (LiMn 2 O) having a high purity which sufficiently exhibits the performance as a lithium battery cathode material.
4 ) It is intended to provide the manufacturing method.

【0005】[0005]

【課題を解決するための手段】本発明にかかわるリチウ
ム電池正極材としてのマンガン酸リチウムの製法は、二
酸化マンガン又は熱分解して二酸化マンガンになるマン
ガン化合物の粉末又はスラリーと、水酸化リチウムの水
溶液又は硝酸リチウムの水溶液とを混合し、乾燥したの
ち、650〜900℃の温度領域で焼成することを特徴
とする。
According to the present invention, a method for producing lithium manganate as a positive electrode material for a lithium battery comprises the steps of: preparing a powder or slurry of manganese dioxide or a manganese compound which is thermally decomposed into manganese dioxide; Alternatively, it is characterized in that it is mixed with an aqueous solution of lithium nitrate, dried, and then fired in a temperature range of 650 to 900 ° C.

【0006】原料として使用する二酸化マンガンとして
は電解二酸化マンガン、化学合成二酸化マンガンが挙げ
られ、また熱分解して二酸化マンガンになるマンガン化
合物としては水酸化マンガン、炭酸マンガン、または硝
酸マンガンが挙げられる。このようなマンガン原料は予
め湿式粉砕又は乾式粉砕し分級して平均粒径を30μm
以下、好ましくは0.5〜5μm、さらに好ましくは5
μm前後とするのが良い。このような二酸化マンガン又
は熱分解して二酸化マンガンになるマンガン化合物の粉
末又はスラリーと、水酸化リチウムの水溶液又は硝酸リ
チウムの水溶液とを混合する。リチウムとマンガンの原
子比Li/Mnは、理論的には0.5であるが、若干リ
チウムを過剰、すなわち0.52〜0.56程度にする
ことが好ましい。混合物はスラリー状である。
[0006] Manganese dioxide used as a raw material includes electrolytic manganese dioxide and chemically synthesized manganese dioxide. Manganese compounds thermally decomposed into manganese dioxide include manganese hydroxide, manganese carbonate, and manganese nitrate. Such a manganese raw material is wet-pulverized or dry-pulverized in advance and classified to have an average particle size of 30 μm.
Hereinafter, preferably 0.5 to 5 μm, more preferably 5 to 5 μm.
It is good to be about μm. A powder or slurry of such manganese dioxide or a manganese compound thermally decomposed into manganese dioxide is mixed with an aqueous solution of lithium hydroxide or an aqueous solution of lithium nitrate. The atomic ratio Li / Mn of lithium and manganese is theoretically 0.5, but it is preferable that lithium is slightly excessive, that is, about 0.52 to 0.56. The mixture is in the form of a slurry.

【0007】混合スラリーをまず乾燥する。乾燥方法と
しては真空乾燥、加熱乾燥など公知の方法を使用できる
が、特にスプレードライヤーを使用して乾燥・造粒する
ことが好ましい。スプレードライヤーの熱風入口温度は
300℃前後、出口温度は110〜120℃程度が適当
である。
[0007] The mixed slurry is first dried. As a drying method, known methods such as vacuum drying and heat drying can be used, and it is particularly preferable to dry and granulate using a spray dryer. It is appropriate that the hot air inlet temperature of the spray dryer is around 300 ° C and the outlet temperature is about 110 to 120 ° C.

【0008】次いでこの乾燥物を650〜900℃の温
度領域で焼成する。焼成時間は、温度にもよるが、5〜
10時間程度が適当である。
Next, the dried product is fired in a temperature range of 650 to 900 ° C. The firing time depends on the temperature,
About 10 hours is appropriate.

【0009】[0009]

【発明の実施の形態】以下本発明を実施例により具体的
に説明するが、本発明は下記の実施例に限定されるもの
ではない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples.

【0010】[0010]

【実施例1】電解二酸化マンガン粉末(γ−MnO2
純度92%)を湿式粉砕器にて平均粒径約0.5μmに
粉砕した。これにリチウムとマンガンの原子比がLi/
Mn=0.54になるように水酸化リチウム水溶液を加
え、良く攪拌し、固形分濃度約25%のスラリーとし
た。このスラリーをスプレードライヤーにて乾燥した。
スプレードライヤーの運転条件は熱風入口温度300〜
310℃、出口温度110〜150℃とした。次にロー
タリーキルンにて、空気流通下850℃で6時間焼成し
た。
Example 1 Electrolytic manganese dioxide powder (γ-MnO 2 ,
(Purity: 92%) was pulverized with a wet pulverizer to an average particle size of about 0.5 μm. The atomic ratio of lithium and manganese is Li /
An aqueous solution of lithium hydroxide was added so that Mn = 0.54, and the mixture was stirred well to obtain a slurry having a solid concentration of about 25%. This slurry was dried with a spray drier.
Spray dryer operating conditions are hot air inlet temperature 300 ~
310 ° C., outlet temperature 110-150 ° C. Next, it was baked at 850 ° C. for 6 hours in a rotary kiln under air flow.

【0011】[0011]

【実施例2】実施例1で使用したのと同じ電解二酸化マ
ンガン粉末を湿式粉砕器にて平均粒径約5μmに粉砕し
た。これにリチウムとマンガンの原子比がLi/Mn=
0.54になるように水酸化リチウム水溶液を加え、良
く攪拌し、固形分濃度約25%のスラリーとした。この
スラリーをスプレードライヤーにて乾燥した。スプレー
ドライヤーの運転条件は熱風入口温度300〜310
℃、出口温度110〜150℃とした。次にロータリー
キルンにて、空気流通下850℃で6時間本焼成した。
Example 2 The same electrolytic manganese dioxide powder as used in Example 1 was pulverized with a wet pulverizer to an average particle size of about 5 μm. In addition, the atomic ratio of lithium and manganese is Li / Mn =
An aqueous lithium hydroxide solution was added so as to have a concentration of 0.54, and the mixture was stirred well to obtain a slurry having a solid content of about 25%. This slurry was dried with a spray drier. The operating conditions of the spray dryer are hot air inlet temperature 300-310.
° C and the outlet temperature were 110 to 150 ° C. Next, this was calcined at 850 ° C. for 6 hours in a rotary kiln under flowing air.

【0012】[0012]

【比較例1】実施例1で使用したのと同じ電解二酸化マ
ンガン粉末50.00gと実施例で使用したのと同じ水
酸化リチウム12.23gを乳鉢に採取し、良く粉砕/
混合した。この混合物のリチウムとマンガンの原子比は
Li/Mn=0.54であった。次にこの混合物をロー
タリーキルンにて、空気流通下850℃で6時間焼成し
た。
Comparative Example 1 50.00 g of the same electrolytic manganese dioxide powder used in Example 1 and 12.23 g of the same lithium hydroxide used in the example were collected in a mortar and pulverized.
Mixed. The atomic ratio of lithium to manganese in this mixture was Li / Mn = 0.54. Next, this mixture was calcined in a rotary kiln at 850 ° C. for 6 hours under a flow of air.

【0013】[0013]

【測定結果1】実施例1、実施例2、及び比較例1で合
成したサンプルをそれぞれA、B、Cとして、それらの
X線回折測定結果を図1に示す。リートベルト法による
解析の結果、実施例1のサンプルA及び実施例2のサン
プルBは空間群Fd−3mで格子定数aが8.2323
及び8.2357の立方晶スピネルタイプのマンガン酸
リチウム(LiMn24 )であることが確認された。
比較例1のサンプルCは不純物としてMn23 を含む
ことが確認された。図1及びこれを拡大した図2の▼印
がMn23 のピーク位置である。
[Measurement Result 1] The samples synthesized in Example 1, Example 2, and Comparative Example 1 were designated as A, B, and C, respectively, and the results of their X-ray diffraction measurement are shown in FIG. As a result of the analysis by the Rietveld method, the sample A of Example 1 and the sample B of Example 2 have a space group Fd-3m and a lattice constant a of 8.2323.
And 8.2357 cubic spinel type lithium manganate (LiMn 2 O 4 ).
It was confirmed that Sample C of Comparative Example 1 contained Mn 2 O 3 as an impurity. In FIG. 1 and FIG. 2 which is an enlargement of FIG. 1, the mark Mn indicates the peak position of Mn 2 O 3 .

【0014】[0014]

【測定結果2】実施例1のサンプルの粒度分布測定結果
を図3に、また走査型電子顕微鏡写真のトレースを図4
に示す。このように、真球に近い球形で平均粒径約10
μmの幅の狭い分布を有しており、電極作成時の正極材
の塗布に非常に有利である。
[Measurement Result 2] FIG. 3 shows the measurement result of the particle size distribution of the sample of Example 1, and FIG.
Shown in Thus, a spherical shape close to a true sphere and an average particle size of about 10
It has a narrow distribution of μm, which is very advantageous for applying a positive electrode material at the time of forming an electrode.

【0015】[0015]

【測定結果3】実施例2で湿式粉砕粒径を大きくして合
成したサンプルのタッピング密度を表1に示す。このよ
うに、マンガン酸リチウムの重要な特性であるタッピン
グ密度を湿式粉砕粒径を大きくすることにより増大させ
ることができる。なお、タッピング密度は、50mlメ
スシリンダーに25gのサンプルを採取し、次にメスシ
リンダーを実験台の上で軽く100回タッピングを繰り
返した後、サンプル容量Vcm3 を測り、25g/Vc
3 として算出した。
[Measurement result 3] Table 1 shows the tapping density of the sample synthesized in Example 2 with the wet-milled particle size increased. Thus, the tapping density, which is an important property of lithium manganate, can be increased by increasing the wet-milled particle size. The tapping density was determined by taking a 25 g sample in a 50 ml measuring cylinder, then tapping the measuring cylinder 100 times lightly on a laboratory bench, measuring the sample volume Vcm 3, and measuring 25 g / Vc.
It was calculated as m 3.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【測定結果4】実施例1,2又は比較例1のサンプルと
アセチレンブラックとポリ四フッ化エチレンパウダーを
75:20:5の重量比で採取し、乳鉢にて5分間混練
りして得られた鱗片状の正極材を、展伸ローラーにより
厚さ0.1mmのシートとし、16mmφに型抜きした
後、110℃で真空乾燥し試験用正極材とした。こうし
て得られた正極材と不織布(ポリプロピレン製)、セパ
レーター(ポリプロピレン製;商品名セルガード)、厚
さ0.2μmの金属リチウム箔をボタン型電池用セル内
に積層した。電解質として1モル/リッターのLiCl
4 を溶解した体積比1:1のプロピレンカーボネート
とジメトキシエタンの混合溶媒を用いた。このような構
成で電池を作成し、充放電試験を行った。充放電条件は
定電流で0.5mA/cm2 の電流密度で行い、充電電
位は4.3Vまで、放電電圧は3.0Vまでの電位規制
を行った。試験結果を表2に示す。実施例1又は2のサ
ンプルを用いた電池の放電容量は120mAh/g以上
であったのに対し、比較例1のサンプルを用いた電池の
放電容量は95mAh/gであった。
[Measurement Result 4] The sample of Example 1, 2 or Comparative Example 1, acetylene black and polytetrafluoroethylene powder were collected at a weight ratio of 75: 20: 5, and kneaded in a mortar for 5 minutes. The scale-shaped positive electrode material was formed into a sheet having a thickness of 0.1 mm by a spreading roller, punched out to a diameter of 16 mm, and then dried in vacuum at 110 ° C. to obtain a positive electrode material for testing. The positive electrode material thus obtained, a nonwoven fabric (made of polypropylene), a separator (made of polypropylene; product name: Celgard), and a metal lithium foil having a thickness of 0.2 μm were laminated in a cell for a button-type battery. 1 mol / liter LiCl as electrolyte
A mixed solvent of propylene carbonate and dimethoxyethane having a volume ratio of 1: 1 in which O 4 was dissolved was used. A battery was prepared with such a configuration, and a charge / discharge test was performed. The charge and discharge conditions were a constant current and a current density of 0.5 mA / cm 2 , and a potential regulation was performed up to a charging potential of 4.3 V and a discharging voltage up to 3.0 V. Table 2 shows the test results. The discharge capacity of the battery using the sample of Example 1 or 2 was 120 mAh / g or more, while the discharge capacity of the battery using the sample of Comparative Example 1 was 95 mAh / g.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】リチウム電池正極材として使用した場合
放電容量が大きな純度の高い立方晶スピネルタイプマン
ガン酸リチウム(LiMn24 )が得られる。
According to the present invention, when used as a positive electrode material of a lithium battery, a cubic spinel type lithium manganate (LiMn 2 O 4 ) having a large discharge capacity and a high purity can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1,2及び比較例1のサンプルのX線回
折測定結果を示す図である。
FIG. 1 is a diagram showing X-ray diffraction measurement results of samples of Examples 1 and 2 and Comparative Example 1.

【図2】図1の拡大図である。FIG. 2 is an enlarged view of FIG.

【図3】実施例1のサンプルの粒度分布測定結果を示す
図である。
FIG. 3 is a diagram showing the results of measuring the particle size distribution of the sample of Example 1.

【図4】実施例1のサンプルの走査型電子顕微鏡写真の
トレースである。
FIG. 4 is a trace of a scanning electron micrograph of the sample of Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横野 進 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 藤田 隆幸 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 水沢 浩二 新潟県新津市滝谷本町1−26 日揮化学株 式会社開発研究所内 (72)発明者 坂口 正己 新潟県新津市滝谷本町1−26 日揮化学株 式会社生産部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Susumu Yokono, 1-26 Takiya Honcho, Niitsu City, Niigata Prefecture Inside JGC Chemicals R & D Laboratory (72) Inventor Takayuki Fujita 1-26, Takitani Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. (72) Inventor Koji Mizusawa Koji Mizusawa 1-26 Takiya Honcho, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. (72) Inventor Masami Sakaguchi 1-26 Takiya Honmachi, Niitsu City, Niigata Prefecture JGC Chemicals Co., Ltd. In the production department

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二酸化マンガン又は熱分解して二酸化マ
ンガンになるマンガン化合物の粉末又はスラリーと、水
酸化リチウムの水溶液又は硝酸リチウムの水溶液とを混
合し、乾燥したのち、650〜900℃の温度領域で焼
成することを特徴とするリチウム電池正極材としてのマ
ンガン酸リチウムの製法。
1. A powder or slurry of manganese dioxide or a manganese compound thermally decomposed into manganese dioxide, mixed with an aqueous solution of lithium hydroxide or an aqueous solution of lithium nitrate, dried, and then dried in a temperature range of 650 to 900 ° C. A method for producing lithium manganate as a lithium battery positive electrode material, characterized by firing.
【請求項2】 二酸化マンガン又は熱分解して二酸化マ
ンガンになるマンガン化合物の粉末又はスラリーと、水
酸化リチウムの水溶液又は硝酸リチウムの水溶液との混
合スラリーの乾燥をスプレードライヤーで行う請求項1
に記載のマンガン酸リチウムの製法。
2. Drying a mixed slurry of a powder or slurry of manganese dioxide or a manganese compound which is thermally decomposed into manganese dioxide, and an aqueous solution of lithium hydroxide or an aqueous solution of lithium nitrate by a spray dryer.
3. The method for producing lithium manganate according to item 1.
【請求項3】 熱分解して二酸化マンガンになるマンガ
ン化合物が、水酸化マンガン、炭酸マンガン及び硝酸マ
ンガンのうちの何れかである請求項1又は請求項2に記
載のマンガン酸リチウムの製法。
3. The method for producing lithium manganate according to claim 1, wherein the manganese compound thermally decomposed into manganese dioxide is any one of manganese hydroxide, manganese carbonate and manganese nitrate.
JP8336687A 1996-12-17 1996-12-17 Manufacture of lithium manganate Pending JPH10172567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8336687A JPH10172567A (en) 1996-12-17 1996-12-17 Manufacture of lithium manganate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8336687A JPH10172567A (en) 1996-12-17 1996-12-17 Manufacture of lithium manganate

Publications (1)

Publication Number Publication Date
JPH10172567A true JPH10172567A (en) 1998-06-26

Family

ID=18301774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8336687A Pending JPH10172567A (en) 1996-12-17 1996-12-17 Manufacture of lithium manganate

Country Status (1)

Country Link
JP (1) JPH10172567A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058221A1 (en) * 1999-03-29 2000-10-05 Japan Energy Corporation Particulate manganese compound and method for preparation thereof, and secondary cell using the same
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
US6409985B1 (en) 1998-12-02 2002-06-25 Mitsui Mining And Smelting Company, Ltd. Method for producing lithium manganate
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP2002279984A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material
JP2003521433A (en) * 2000-02-01 2003-07-15 ザ ジレット カンパニー Lithium manganese dioxide
US6899860B2 (en) 1999-12-24 2005-05-31 Ishihara Sangyo Kaisha, Ltd. Process for producing lithium manganate and lithium battery using the lithium manganate
JP2006269304A (en) * 2005-03-24 2006-10-05 Matsushita Electric Works Ltd Manufacturing method of separator material for fuel cell, separator for fuel cell and fuel cell
JP2008063213A (en) * 2006-08-10 2008-03-21 Kao Corp Method of manufacturing lithium manganate
JP2008156163A (en) * 2006-12-25 2008-07-10 Nippon Denko Kk Spinel type lithium manganese oxide and method for manufacturing the same
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
JP2012051744A (en) * 2010-08-31 2012-03-15 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide, method for manufacturing the same, and application of the same
KR101170095B1 (en) * 2010-02-18 2012-07-31 한국과학기술원 Method for synthesizing nanostructured gamma manganese oxide at atmospheric pressure and low temperature and spinel lithium manganese oxide thereof
JP2013249225A (en) * 2012-05-31 2013-12-12 Jgc Catalysts & Chemicals Ltd Manufacturing method for lithium/manganese composite oxide, lithium/manganese composite oxide obtained by the manufacturing method, positive active material for secondary battery including lithium/manganese composite oxide, positive electrode for secondary battery including positive active material, and lithium ion secondary battery using positive active material as positive electrode
CN103466714A (en) * 2013-09-16 2013-12-25 无锡晶石新型能源有限公司 Method for producing lithium manganate

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409985B1 (en) 1998-12-02 2002-06-25 Mitsui Mining And Smelting Company, Ltd. Method for producing lithium manganate
WO2000058221A1 (en) * 1999-03-29 2000-10-05 Japan Energy Corporation Particulate manganese compound and method for preparation thereof, and secondary cell using the same
JP2001192208A (en) * 1999-06-03 2001-07-17 Titan Kogyo Kk Lithium-titanium multiple oxide, its manufacturing method and its use
JP2001122626A (en) * 1999-08-16 2001-05-08 Nippon Chem Ind Co Ltd Lithium-manganese multi-component oxide, method for manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
US6899860B2 (en) 1999-12-24 2005-05-31 Ishihara Sangyo Kaisha, Ltd. Process for producing lithium manganate and lithium battery using the lithium manganate
JP2003521433A (en) * 2000-02-01 2003-07-15 ザ ジレット カンパニー Lithium manganese dioxide
JP2002279984A (en) * 2001-03-15 2002-09-27 Hitachi Metals Ltd Method of manufacturing positive electrode active material for non-aqueous lithium secondary battery, the positive electrode active material, and the non- aqueous lithium secondary battery using the positive electrode active material
JP2002274853A (en) * 2001-03-16 2002-09-25 Titan Kogyo Kk Lithium manganese multicomponent oxide and method of preparation for the same as well as application of the same
JP2006269304A (en) * 2005-03-24 2006-10-05 Matsushita Electric Works Ltd Manufacturing method of separator material for fuel cell, separator for fuel cell and fuel cell
JP2008063213A (en) * 2006-08-10 2008-03-21 Kao Corp Method of manufacturing lithium manganate
JP2008156163A (en) * 2006-12-25 2008-07-10 Nippon Denko Kk Spinel type lithium manganese oxide and method for manufacturing the same
JP4673287B2 (en) * 2006-12-25 2011-04-20 日本電工株式会社 Spinel type lithium manganese oxide and method for producing the same
KR101170095B1 (en) * 2010-02-18 2012-07-31 한국과학기술원 Method for synthesizing nanostructured gamma manganese oxide at atmospheric pressure and low temperature and spinel lithium manganese oxide thereof
JP2012051744A (en) * 2010-08-31 2012-03-15 Jgc Catalysts & Chemicals Ltd Spinel type lithium manganese composite oxide, method for manufacturing the same, and application of the same
JP2011155003A (en) * 2011-01-07 2011-08-11 Hitachi Metals Ltd Cathode active material for nonaqueous lithium secondary battery and producing method therefor
JP2013249225A (en) * 2012-05-31 2013-12-12 Jgc Catalysts & Chemicals Ltd Manufacturing method for lithium/manganese composite oxide, lithium/manganese composite oxide obtained by the manufacturing method, positive active material for secondary battery including lithium/manganese composite oxide, positive electrode for secondary battery including positive active material, and lithium ion secondary battery using positive active material as positive electrode
CN103466714A (en) * 2013-09-16 2013-12-25 无锡晶石新型能源有限公司 Method for producing lithium manganate

Similar Documents

Publication Publication Date Title
KR101964726B1 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
CA2209531C (en) Lithium secondary battery
CN102916169B (en) Lithium-rich manganese-based anode material and method for manufacturing same
CA2214199C (en) Lithium secondary battery
US20060083989A1 (en) Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
Julien et al. Structural and electrochemical properties of LiNi0. 3Co0. 7O2 synthesized by different low-temperature techniques
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JPH10172567A (en) Manufacture of lithium manganate
JPWO2005020354A1 (en) Positive electrode active material powder for lithium secondary battery
US8734998B2 (en) Spinel-type lithium transition metal oxide and positive electrode active material for lithium battery
JP3922040B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JPH10321224A (en) Lithium battery positive electrode material and its manufacture
JP4268613B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR20160075404A (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
JP4124522B2 (en) Lithium / manganese composite oxide, production method and use thereof
He et al. Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method
Guan et al. Enhancing the electrochemical performance of Li 1.2 Ni 0.2 Mn 0.6 O 2 by surface modification with nickel–manganese composite oxide
CN110957478A (en) Titanium yttrium lithium phosphate modified high-nickel cathode composite material and preparation method thereof
JP4096094B2 (en) Method for producing layered rock salt type lithium nickelate powder
JP3527518B2 (en) Manufacturing method of positive electrode for non-aqueous electrolyte lithium secondary battery
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
JPH10134811A (en) Manufacture of positive electrode material for lithium cell
CN108574100B (en) Ternary cathode material, preparation method and lithium ion battery
CN105895906A (en) Lithium-doped ternary lithium-ion battery positive electrode material and preparation method thereof
Wu et al. Effects of abundant Co doping on the structure and electrochemical characteristics of LiMn1. 5Ni0. 5− xCoxO4

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050421