JPH10170717A - Production of dielectric multilayered film interference filter - Google Patents

Production of dielectric multilayered film interference filter

Info

Publication number
JPH10170717A
JPH10170717A JP35944696A JP35944696A JPH10170717A JP H10170717 A JPH10170717 A JP H10170717A JP 35944696 A JP35944696 A JP 35944696A JP 35944696 A JP35944696 A JP 35944696A JP H10170717 A JPH10170717 A JP H10170717A
Authority
JP
Japan
Prior art keywords
film
film forming
forming material
substrate
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35944696A
Other languages
Japanese (ja)
Inventor
Hisao Sekiguchi
久夫 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP35944696A priority Critical patent/JPH10170717A/en
Publication of JPH10170717A publication Critical patent/JPH10170717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a narrow band filter with good reproducibility by irradiating a film forming material in a reduced pressure atmosphere with ions emitted from an ion source, atoms from an atomic beam source or molecules from a molecular beam source, and sputtering the film forming material, thereby depositing the film forming material on a substrate. SOLUTION: A rotation axis 111 is attached to a film forming material holder 105, and a substrate holder rotating mechanism 113 is attached to a substrate holder 109, and each of them is made rotatable. A film thickness meter 114 is attached adjacent to a quartz oscillator. As for an Ar ion source 102, for example, Kaufmann type or RF ion source can be used. In a vacuum chamber 101, an Ar ion beam 115 emitted from the Ar ion source 102 collides with the film forming material 103 to sputter the film forming material 103. The sputtered film forming material 116 deposits on a substrate 108 to form a film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は誘電体多層膜干渉フ
ィルタの製造方法に関し、特に光通信用狭帯域フィルタ
の製造方法に関する。
The present invention relates to a method of manufacturing a dielectric multilayer interference filter, and more particularly to a method of manufacturing a narrow band filter for optical communication.

【0002】[0002]

【従来の技術】光通信において、1本の光ファイバに複
数の波長の光を通す、いわゆる波長多重方式が行われて
いる。そして、光通信の大容量化の推進のために波長多
重方式の多重度を向上させる研究開発が行われている。
波長多重方式において複数の波長を分離する手段として
光のフィルタ、特に誘電体多層膜干渉フィルタが用いら
れる。このことから、多重度向上のためバンドパスが数
nmから数十nmという極めて狭帯域の誘電体多層膜干
渉フィルタが求められてきている。
2. Description of the Related Art In optical communication, a so-called wavelength multiplexing method is used in which light of a plurality of wavelengths passes through one optical fiber. Research and development for improving the multiplicity of the wavelength division multiplexing system have been conducted in order to promote the increase in the capacity of optical communication.
As a means for separating a plurality of wavelengths in the wavelength division multiplexing method, an optical filter, in particular, a dielectric multilayer interference filter is used. For this reason, a dielectric multilayer interference filter having an extremely narrow band having a band pass of several nm to several tens nm has been demanded in order to improve the multiplicity.

【0003】図5に誘電体多層膜干渉フィルタのうちバ
ンドパスフィルタの1例について、その断面を模式的に
示す。誘電体多層膜のバンドパスフィルタは基板1に通
常2つの異なる屈折率の材料を積層した構造をしてお
り、それぞれの成膜材料での1層の膜厚はいわゆる1/
4波長が基本となっている。フィルタの中心波長をλ、
2種類の成膜材料の屈折率をn1,n2(n1>n
2)、高屈折率での1/4波長の膜厚をH、低屈折率で
の1/4波長の膜厚をLとすれば、 H=λ/(4・n1)、L=λ/(4・n2) となる。またここで、高屈折率での1/2波長の膜厚を
2Hとおけば、 2H=λ/(2・n1) である。図5のバンドパスフィルタはこの(HL)、
(LH)の繰り返しを基本として、その間に2Hを挟ん
だ2重の周期構造をもっており、バンドパスフィルタの
典型として良く知られている。ここで、(HL)、(L
H)の周期的繰り返しの数及び2Hをも含んだ周期構造
の繰り返しの数はバンドパスの幅及びその山の緩やかさ
を考慮して設定される。バンドパスが数nmから数十n
mの狭帯域フィルタにおいては、全層数として数十層か
ら場合により100層以上の層数が必要となる。高屈折
率n1の材料としてTa2O5、TiO2、ZrO2、
HfO2等が、低屈折率n2の材料としてSiO2がそ
れぞれ良く用いられる。これらの成膜材料の屈折率はn
1で2.0〜2.3、n2で1.45程度である。
FIG. 5 schematically shows a cross section of an example of a band-pass filter among dielectric multilayer film interference filters. The dielectric multi-layer bandpass filter has a structure in which two materials having different refractive indices are usually laminated on the substrate 1, and the film thickness of one layer of each film forming material is so-called 1 /.
Four wavelengths are the basis. The center wavelength of the filter is λ,
The refractive indices of the two kinds of film forming materials are n1 and n2 (n1> n
2) If the thickness of a quarter wavelength at a high refractive index is H and the thickness of a quarter wavelength at a low refractive index is L, H = λ / (4 · n1) and L = λ / (4 · n2). Here, if the thickness of the half wavelength at a high refractive index is assumed to be 2H, then 2H = λ / (2 · n1). The bandpass filter of FIG.
Based on the repetition of (LH), it has a double periodic structure with 2H interposed therebetween, and is well known as a typical bandpass filter. Here, (HL), (L
The number of periodic repetitions of H) and the number of repetitions of the periodic structure including 2H are set in consideration of the width of the band pass and the gentleness of the peak. Band pass from several nm to several tens n
In a narrow band filter of m, the number of layers is required from several tens to 100 or more in some cases. As a material having a high refractive index n1, Ta2O5, TiO2, ZrO2,
HfO2 or the like is often used as a material having a low refractive index n2. The refractive index of these film forming materials is n
1 is 2.0 to 2.3, and n2 is about 1.45.

【0004】従来、誘電体多層膜干渉フィルタの製造は
真空蒸着法によって行われている。図6に真空蒸着法の
うち電子ビーム方式真空蒸着法を示す。真空チェンバ4
01中に電子銃フィラメント402、成膜材料403、
404、成膜材料403、404をそれぞれ入れた電子
銃るつぼ405、406、シャッタ407、基板40
8、基板408を保持する基板ホルダ409、膜厚測定
用の水晶振動子410が備えられている。また、電子銃
るつぼ405、406に接続した成膜材料交換機構41
1が、シャッタ407に接続したシャッタ開閉機構41
2が、基板ホルダ409に接続した基板ホルダ開閉機構
413が、水晶振動子410に接続した膜厚計414が
それぞれ備えられている。真空チェンバ401を真空に
引いた後、電子銃フィラメント406より電子銃るつぼ
405中の成膜材料403に電子ビーム415を照射す
ることで成膜材料403が蒸発する。蒸発した成膜材料
416は基板408に到達、冷却され基板408上で膜
として堆積する。基板408に堆積した成膜材料の膜厚
は水晶振動子410で測定され、膜厚計414でモニタ
される。成膜材料403の膜厚が所定の値になったら、
シャッタ開閉機構412の操作でシャッタ407が閉じ
られ、電子銃フィラメント402よりの電子ビーム41
5の発生を停止する。これで、1層目の膜の成膜が終了
し、2層目の成膜に移る。このときには、成膜材料交換
機構411を動作させ電子銃るつぼ405をるつぼ40
6と交換した後に、電子銃フィラメント402より電子
銃るつぼ406中の成膜材料404に電子ビーム415
を照射し、シャッタ407を開ける。このように、異な
った屈折率の成膜材料403、404を交互に蒸発さ
せ、基板408上に堆積してゆくことで、多層膜が形成
される。なお、成膜中には基板ホルダ回転機構413の
動作により基板ホルダ409上の基板408が回転せら
れ、成膜分布の均一化が図られている。このようにして
真空蒸着により誘電体多層膜フィルタを製作できる。
Conventionally, the manufacture of a dielectric multilayer interference filter has been performed by a vacuum deposition method. FIG. 6 shows an electron beam vacuum deposition method among the vacuum deposition methods. Vacuum chamber 4
01, an electron gun filament 402, a film forming material 403,
404, electron gun crucibles 405 and 406 containing film forming materials 403 and 404, shutter 407, substrate 40
8, a substrate holder 409 for holding the substrate 408, and a crystal oscillator 410 for measuring the film thickness are provided. Further, a film forming material exchange mechanism 41 connected to the electron gun crucibles 405 and 406.
1 is a shutter opening / closing mechanism 41 connected to a shutter 407
2 is provided with a substrate holder opening / closing mechanism 413 connected to the substrate holder 409 and a film thickness meter 414 connected to the crystal unit 410. After the vacuum chamber 401 is evacuated to vacuum, the film material 403 in the electron gun crucible 405 is irradiated with an electron beam 415 from the electron gun filament 406 to evaporate the film material 403. The evaporated film forming material 416 reaches the substrate 408, is cooled, and is deposited as a film on the substrate 408. The film thickness of the film-forming material deposited on the substrate 408 is measured by the quartz oscillator 410 and monitored by the film thickness meter 414. When the film thickness of the film forming material 403 reaches a predetermined value,
The shutter 407 is closed by operating the shutter opening / closing mechanism 412, and the electron beam 41 from the electron gun filament 402 is emitted.
5 is stopped. Thus, the film formation of the first layer is completed, and the process proceeds to the second layer. At this time, the film forming material exchange mechanism 411 is operated to move the electron gun crucible 405 to the crucible 40.
After exchanging with the electron beam 415, the electron beam 415 is applied from the electron gun filament 402 to the film forming material 404 in the electron gun crucible 406.
, And the shutter 407 is opened. Thus, a multilayer film is formed by alternately evaporating the film-forming materials 403 and 404 having different refractive indexes and depositing them on the substrate 408. During the film formation, the substrate 408 on the substrate holder 409 is rotated by the operation of the substrate holder rotating mechanism 413, so that the film formation distribution is made uniform. In this manner, a dielectric multilayer filter can be manufactured by vacuum deposition.

【0005】しかし、従来の方法で製作された誘電体多
層膜フィルタは設計値よりバンドパスが大きくなる傾向
があり、製作したもののうち狭帯域のフィルタとして利
用できる割合が小さかった。また、フィルタの光の透過
率が小さく、光の利用効率が小さかった。これは狭帯域
フィルタの作成には極めて厳格な膜厚制御が必要なのに
対し、真空蒸着法では膜厚の正確な制御が困難であるこ
とに基づく。即ち、真空蒸着では電子ビームを成膜材料
に照射し成膜材料を高温にして蒸発させる。このため、
成膜速度は成膜材料の温度分布、融解状態の影響を強く
受け、成膜速度や分布を常に一定に保つのが難しくなっ
ている。また、シャッタの開閉速度、基板の回転速度に
対して、成膜速度を十分小さくとらねば膜厚の正確な制
御はできないが、真空蒸着法では電子ビームを弱めて成
膜速度を小さくしようとすると成膜速度、分布の不安定
さが大きくなる傾向にある。
[0005] However, the dielectric multilayer filter manufactured by the conventional method tends to have a bandpass larger than the design value, and the ratio of the manufactured multilayer filter that can be used as a narrow band filter is small. Further, the light transmittance of the filter was small, and the light use efficiency was small. This is based on the fact that extremely strict film thickness control is required for producing a narrow band filter, whereas accurate control of the film thickness is difficult with a vacuum deposition method. That is, in vacuum deposition, an electron beam is irradiated to a film forming material to evaporate the film forming material at a high temperature. For this reason,
The deposition rate is strongly affected by the temperature distribution and the melting state of the deposition material, and it is difficult to keep the deposition rate and distribution constant at all times. In addition, accurate control of the film thickness is not possible unless the film-forming speed is sufficiently low with respect to the opening / closing speed of the shutter and the rotation speed of the substrate. The instability of the deposition rate and distribution tends to increase.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように従来
の製造方法では、バンドパスが数nmから数十nmとい
う極めて狭帯域のフィルタを再現性良く製造することは
困難であった。また、フィルタの光の透過率が小さく、
光の利用効率が良いとは言えなかった。本発明は狭帯域
のフィルタを再現性良く製造する手段を提供することを
目的とする。さらに、光の利用効率の高いフィルタを製
造する手段を提供することをも目的とする。
As described above, in the conventional manufacturing method, it has been difficult to manufacture a filter having an extremely narrow band having a band pass of several nm to several tens nm with good reproducibility. In addition, the light transmittance of the filter is small,
The light use efficiency was not good. An object of the present invention is to provide a means for manufacturing a narrow band filter with good reproducibility. It is another object of the present invention to provide means for manufacturing a filter having high light use efficiency.

【0007】[0007]

【課題を解決するための手段】本願発明では成膜材料を
基板に堆積するのに際し、減圧雰囲気中で成膜材料に、
イオン源から発したイオン、原子線源から発した原子、
分子線源から発した分子の何れかを照射することで成膜
材料を飛散させる、所謂イオンビームスパッタリング法
(IBS法)を用いる。なお、ここではイオンビーム以
外の原子ビーム等を照射する場合をもIBS法に含める
こととする。
In the present invention, when depositing a film-forming material on a substrate, the film-forming material is deposited in a reduced-pressure atmosphere.
Ions from an ion source, atoms from an atomic beam source,
A so-called ion beam sputtering method (IBS method) in which a film-forming material is scattered by irradiating any of molecules emitted from a molecular beam source. Here, the case of irradiating an atom beam or the like other than the ion beam is also included in the IBS method.

【0008】[0008]

【作用】IBS法はイオン等の運動エネルギーを成膜材
料の分子に与えて成膜材料を飛散させる。このため、イ
オン等の照射条件と成膜速度が直接的な関係にある。ま
た、制御しやすいイオン源等によりイオンを発生、照射
させている。このことから、イオン等の照射条件を制御
することで、成膜速度の制御が容易にできる。更に、成
膜速度を小さくしても成膜速度が不安定にはなることは
ない。これらの結果、IBS法は極めて制御性の良い成
膜手段となる。
According to the IBS method, kinetic energy such as ions is given to molecules of a film forming material to scatter the film forming material. Therefore, there is a direct relationship between the irradiation conditions such as ions and the film formation rate. In addition, ions are generated and irradiated by an easily controlled ion source or the like. From this, it is possible to easily control the film forming speed by controlling the irradiation conditions such as ions. Further, even if the film forming speed is reduced, the film forming speed does not become unstable. As a result, the IBS method becomes an extremely controllable film forming means.

【0009】[0009]

【発明の実施の形態】本発明の実施例を図1に示す。真
空チェンバ101にArイオン源102、成膜材料10
3、104が両面に貼り付けられた成膜材料ホルダ10
5、基板108、基板108を保持する基板ホルダ10
9、膜厚測定用の水晶振動子110、が設置される。ま
た、成膜材料ホルダ105には回転軸111が付属し、
基板ホルダ109には基板ホルダ回転機構113が設置
され、それぞれ回転可能となっている。また、水晶振動
子110に接続した膜厚計114が備えられている。A
rイオン源102は例えばカウフマン型、RF型等のイ
オン源を用いることができる。Arイオン源102から
に発生したArイオンビーム115は成膜材料103に
衝突することで、成膜材料103が飛散する(スパッタ
リング)。スパッタリングした成膜材料116が基板1
08に堆積することで成膜が行われる。他の種類の成膜
材料104を成膜するにはArイオン源102を停止し
た後、成膜材料ホルダ105を回転して成膜材料104
をイオンビーム115が照射される位置に持ってきて、
しかる後にArイオンの発生を再開すれば良い。かくし
て、成膜材料103、104の交互変更により多層膜を
形成できる。膜厚は水晶振動子110で測定し、その結
果を膜厚計114で成膜中にモニタできる。また、成膜
中に基板ホルダ109上の基板108が回転せられ、基
板108上での膜厚分布の均一化が図られる。上記のI
BS法ではArイオンの運動エネルギーが成膜材料に転
化されることで成膜材料が飛散する。従い、イオンビー
ムの照射条件を制御すれば成膜速度を直接的に制御でき
る。このため、IBS法によって膜厚の制御性良く多層
膜を積層できる。更に、IBS法では成膜速度を小さく
してもイオンビームの照射条件を制御していれば、成膜
速度、分布の不安定性が大きくなることはない。このた
め、基板ホルダの回転速度に対する成膜速度を小さくで
き、膜厚分布を十分に均一化できる。即ち、膜厚分布か
らみても膜厚の制御性が良いことになり、狭帯域のフィ
ルタを再現性良く製作できる。成膜速度を小さくして
も、膜厚分布が向上すれば多数のフィルタを1度に作成
できる。このため、製作効率の低下を招くこともない。
FIG. 1 shows an embodiment of the present invention. Ar ion source 102, film forming material 10 in vacuum chamber 101
Film-forming material holder 10 with 3, 104 attached on both sides
5, substrate 108, substrate holder 10 holding substrate 108
9. A quartz oscillator 110 for film thickness measurement is installed. In addition, a rotating shaft 111 is attached to the film forming material holder 105,
The substrate holder 109 is provided with a substrate holder rotation mechanism 113, which is rotatable. Further, a film thickness gauge 114 connected to the crystal unit 110 is provided. A
As the r ion source 102, for example, a Kauffman type, RF type or the like ion source can be used. When the Ar ion beam 115 generated from the Ar ion source 102 collides with the film forming material 103, the film forming material 103 is scattered (sputtering). The sputtered film material 116 is used for the substrate 1
08 to form a film. In order to form another type of film forming material 104, the Ar ion source 102 is stopped, and then the film forming material holder 105 is rotated to form the film forming material 104.
To the position where the ion beam 115 is irradiated,
Then, the generation of Ar ions may be restarted. Thus, a multilayer film can be formed by alternately changing the film forming materials 103 and 104. The film thickness is measured by the quartz oscillator 110, and the result can be monitored during the film formation by the film thickness meter 114. Further, during film formation, the substrate 108 on the substrate holder 109 is rotated, and the film thickness distribution on the substrate 108 is made uniform. I above
In the BS method, the kinetic energy of Ar ions is converted into a film forming material, so that the film forming material is scattered. Accordingly, the film formation rate can be directly controlled by controlling the irradiation conditions of the ion beam. Therefore, a multilayer film can be stacked by the IBS method with good controllability of the film thickness. Further, in the IBS method, even if the film forming speed is reduced, the instability of the film forming speed and distribution does not increase if the irradiation conditions of the ion beam are controlled. For this reason, the film forming speed with respect to the rotation speed of the substrate holder can be reduced, and the film thickness distribution can be made sufficiently uniform. That is, the controllability of the film thickness is good from the viewpoint of the film thickness distribution, and a narrow band filter can be manufactured with good reproducibility. Even if the deposition rate is reduced, a large number of filters can be formed at once if the film thickness distribution is improved. Therefore, the production efficiency does not decrease.

【0010】ここで、膜厚制御と狭帯域フィルタの特性
の関係を定量的に考えてみる。一例として、中心波長λ
=1.55μmの狭帯域フィルタを考える。基板をガラ
ス(屈折率1.45)、成膜材料をTiO2(屈折率n
1=2.10)、SiO2(屈折率n2=1.45)と
する。すると、TiO2、SiO2の1/4波長の膜の
膜厚H、LはそれぞれH=λ/(4・n1)=184.
5nm、L=λ/(4・n2)=267.5nm、Ti
O2の1/2波長の膜厚2Hは2H=369nmとな
る。このとき、基板に対して次のように積層すれば透過
率のピークから3dBで約4nmのバンドパスを持つ狭
帯域フィルタが得られる。 基板/(HL)^6・(2H)・(LH)^6・L・
(HL)^6・(2H)・(LH)^6 (HL)^6とは層Hの上に層Lを積層した組み合わせ
を6回繰り返すことを、(LH)^6とは層Lの上に層
Hを積層した組み合わせを6回繰り返すことをそれぞれ
意味する。このフィルタの全層数は51層となる。シミ
ュレーションによればこのフィルタの特性は図2に示さ
れる。ここで、基板から第39層目の2Hの層において
+3nmの膜厚の誤差が生じた場合を図3に、−3nm
の膜厚の誤差が生じた場合を図4に示す。いずれもピー
クが分離して、バンドパスが広がると共にピーク透過率
が低下していることが判る。ここで、ピーク分離の大き
さはほぼ4nmであり、4nmのバンドパスのフィルタ
としては誤差が大きすぎる。ピーク分離の大きさは近似
的には膜厚の誤差に比例するから、少なくともバンドパ
スの数分の1程度に押さえる必要がある。さらに、今の
場合は51層のうち1層の膜厚に誤差があった場合であ
り、実際にはすべての層に誤差を見込まねばならない。
このときは、誤差の累積によってバンドパスの広がり、
ピーク透過率の低下が生じる。従い、個々の膜厚の精度
としては更に厳しくなり、所定のバンドパスに対し1桁
以上の精度が求められるようになる。例えばバンドパス
5nmのフィルタでは個々の膜の膜厚誤差は0.5nm
程度以下が必要になってくる。また、1度に多数個の基
板を成膜しなければ成膜効率が悪く、経済的ではない。
このため基板ホルダを回転して膜厚分布を平均化する
が、この回転速度に対し、十分成膜速度を小さくしなけ
れば上記膜厚精度は達成できない。基板の回転は基板の
保持、真空の維持等の理由から無制限に大きくはでき
ず、例えば毎分数回程度の回転速度に留められる。基板
が10秒に1回の回転をするとして、その間に上記の膜
厚誤差とほぼ等しい膜厚が堆積するとすれば、上記の目
的膜厚精度は達成されると考えられる。このことから、
例えばバンドパス5nmのフィルタでは個々の膜の膜厚
精度を達成するためには、0.05nm/sec程度ま
で成膜速度を落とす必要がある。ここで、従来の真空蒸
着法では典型的な蒸着速度は1nm/sec程度であ
り、成膜速度の不安定性のみならず、成膜速度自体も膜
厚精度の要請に対応しない。このため、真空蒸着法では
数十nm程度以下の狭帯域フィルタを再現性良く製作す
ることはできない。これに対し、IBS法は成膜速度が
安定であるのみならず、イオンビーム等の照射量を制御
して成膜速度を0.01nm/sec〜0.1nm/s
ec程度の範囲に設定することが容易に行えることが実
験的に判った。このため、IBS法によって優れた特性
の誘電体多層膜干渉フィルタを製造できる。特に、数十
nm程度以下の狭帯域フィルタを再現性良く製作するこ
とができる。
Here, the relationship between the film thickness control and the characteristics of the narrow band filter will be quantitatively considered. As an example, the center wavelength λ
Consider a 1.55 μm narrow band filter. The substrate is glass (refractive index: 1.45), and the film forming material is TiO2 (refractive index: n).
1 = 2.10) and SiO2 (refractive index n2 = 1.45). Then, the film thicknesses H and L of the の wavelength films of TiO 2 and SiO 2 are respectively H = λ / (4 · n1) = 184.
5 nm, L = λ / (4 · n2) = 267.5 nm, Ti
The thickness 2H of the half wavelength of O2 is 2H = 369 nm. At this time, if the substrate is laminated as follows, a narrow band filter having a band pass of about 4 nm at 3 dB from the peak of the transmittance can be obtained. Substrate / (HL) ¥ 6 ・ (2H) ・ (LH) ¥ 6 ・ L ・
(HL) ^ 6 ・ (2H) ・ (LH) ^ 6 (HL) ^ 6 means that the combination of layer L laminated on layer H is repeated six times, and (LH) ^ 6 means that layer L This means that the combination in which the layer H is laminated thereon is repeated six times. The total number of layers of this filter is 51 layers. According to the simulation, the characteristics of this filter are shown in FIG. Here, FIG. 3 shows a case where an error of a film thickness of +3 nm occurs in the 39th 2H layer from the substrate, and FIG.
FIG. 4 shows a case where an error in the film thickness occurs. In each case, it can be seen that the peaks are separated, the band pass is widened, and the peak transmittance is reduced. Here, the magnitude of the peak separation is approximately 4 nm, and the error is too large for a 4 nm bandpass filter. Since the magnitude of the peak separation is approximately proportional to the error in the film thickness, it is necessary to suppress the magnitude of the peak separation to at least a fraction of the bandpass. Further, in this case, there is an error in the film thickness of one of the 51 layers, and in fact, errors must be expected in all the layers.
In this case, the bandpass spreads due to the accumulation of errors,
A decrease in peak transmittance occurs. Accordingly, the precision of each film thickness becomes more severe, and a precision of one digit or more is required for a predetermined band pass. For example, in a band-pass 5 nm filter, the thickness error of each film is 0.5 nm.
It needs to be less than the degree. In addition, if a large number of substrates are not formed at once, the film formation efficiency is low and it is not economical.
Therefore, the film thickness distribution is averaged by rotating the substrate holder. However, the film thickness accuracy cannot be achieved unless the film forming speed is sufficiently reduced with respect to the rotation speed. The rotation of the substrate cannot be increased indefinitely for reasons such as holding the substrate and maintaining a vacuum. For example, the rotation speed is kept at about several times per minute. Assuming that the substrate rotates once every 10 seconds and that a film thickness substantially equal to the above-described film thickness error is deposited during that time, the above-mentioned target film thickness accuracy is considered to be achieved. From this,
For example, in the case of a band-pass 5 nm filter, it is necessary to reduce the film forming speed to about 0.05 nm / sec in order to achieve the film thickness accuracy of each film. Here, in the conventional vacuum deposition method, a typical deposition rate is about 1 nm / sec, and not only the instability of the deposition rate but also the deposition rate itself does not correspond to the demand for the accuracy of the film thickness. For this reason, it is not possible to produce a narrow band filter of about several tens nm or less with good reproducibility by the vacuum evaporation method. On the other hand, the IBS method not only has a stable film formation rate, but also controls the irradiation amount of an ion beam or the like to increase the film formation rate from 0.01 nm / sec to 0.1 nm / s.
It has been experimentally found that it can be easily set to a range of about ec. Therefore, a dielectric multilayer interference filter having excellent characteristics can be manufactured by the IBS method. In particular, a narrow band filter of about several tens of nm or less can be manufactured with good reproducibility.

【0011】[0011]

【発明の効果】以上のように本発明によって優れた特性
の誘電体多層膜干渉フィルタを製造できる。本発明によ
って製造された誘電体多層膜干渉フィルタは透過特性に
優れ、設定した特性に極めて近い特性を有する。特に、
数nmから数十nmの狭帯域のフィルタを再現性良く製
造できるという効果を有する。
As described above, according to the present invention, a dielectric multilayer interference filter having excellent characteristics can be manufactured. The dielectric multilayer interference filter manufactured according to the present invention has excellent transmission characteristics, and has characteristics very close to the set characteristics. Especially,
This has an effect that a filter having a narrow band of several nm to several tens nm can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of the present invention.

【図2】狭帯域の誘電体多層膜フィルタの1例について
のシミュレーション結果を示す特性図である。
FIG. 2 is a characteristic diagram showing a simulation result of one example of a narrow-band dielectric multilayer filter.

【図3】図2に示す特性の狭帯域の誘電体多層膜フィル
タにおいて、第39層目の膜厚が3nm大きい場合のシ
ミュレーション結果を示す特性図である。
FIG. 3 is a characteristic diagram showing a simulation result in a case where the thickness of a 39th layer is 3 nm larger in the narrow-band dielectric multilayer filter having the characteristics shown in FIG. 2;

【図4】図2に示す特性の狭帯域の誘電体多層膜フィル
タにおいて、第39層目の膜厚が3nm小さい場合のシ
ミュレーション結果を示す特性図である。
FIG. 4 is a characteristic diagram showing a simulation result in a case where the thickness of a 39th layer is 3 nm smaller in the narrow-band dielectric multilayer filter having the characteristics shown in FIG. 2;

【図5】誘電体多層膜フィルタを示す断面図である。FIG. 5 is a sectional view showing a dielectric multilayer filter.

【図6】従来の真空蒸着法による誘電体多層膜フィルタ
の製造方法を示す模式図である。
FIG. 6 is a schematic view showing a method for manufacturing a dielectric multilayer filter by a conventional vacuum deposition method.

【符号の説明】[Explanation of symbols]

1:基板 101:チェンバ 102:Arイオン源 103、104:成膜材料 105:成膜材料ホルダ 108:基板 109:基板ホルダ 110:水晶振動子 401:チェンバ 402:電子銃フィラメント 403、404:成膜材料 405、406:電子銃るつぼ 407:シャッタ 408:基板 409:基板ホルダ 410:水晶振動子 1: substrate 101: chamber 102: Ar ion source 103, 104: film forming material 105: film forming material holder 108: substrate 109: substrate holder 110: crystal oscillator 401: chamber 402: electron gun filament 403, 404: film forming Materials 405, 406: electron gun crucible 407: shutter 408: substrate 409: substrate holder 410: crystal oscillator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】誘電体多層膜干渉フィルタの製造におい
て、減圧雰囲気中で成膜材料に、イオン源から発したイ
オン、原子線源から発した原子、分子線源から発した分
子の何れかを照射することにより、成膜材料を飛散さ
せ、飛散させた成膜材料を基板に堆積することで誘電体
多層膜を形成することを特徴とする、誘電体多層膜干渉
フィルタの製造方法
In the manufacture of a dielectric multilayer interference filter, any one of ions emitted from an ion source, atoms emitted from an atomic beam source, and molecules emitted from a molecular beam source is added to a film forming material in a reduced-pressure atmosphere. A method of manufacturing a dielectric multilayer film interference filter, comprising: forming a dielectric multilayer film by irradiating the film material to be scattered and depositing the scattered film material on a substrate.
【請求項2】請求項1に記載の誘電体多層膜干渉フィル
タの製造方法において、製造する誘電体多層膜干渉フィ
ルタを100nm以下の狭帯域フィルタとすることを特
徴とする、誘電体多層膜干渉フィルタの製造方法
2. The method of manufacturing a dielectric multilayer interference filter according to claim 1, wherein the dielectric multilayer interference filter to be manufactured is a narrow band filter of 100 nm or less. Filter manufacturing method
JP35944696A 1996-12-12 1996-12-12 Production of dielectric multilayered film interference filter Pending JPH10170717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35944696A JPH10170717A (en) 1996-12-12 1996-12-12 Production of dielectric multilayered film interference filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35944696A JPH10170717A (en) 1996-12-12 1996-12-12 Production of dielectric multilayered film interference filter

Publications (1)

Publication Number Publication Date
JPH10170717A true JPH10170717A (en) 1998-06-26

Family

ID=18464547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35944696A Pending JPH10170717A (en) 1996-12-12 1996-12-12 Production of dielectric multilayered film interference filter

Country Status (1)

Country Link
JP (1) JPH10170717A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1239306A3 (en) * 2001-03-05 2004-02-25 Alps Electric Co., Ltd. Method for manufacturing an optical filter having laminate film
KR100806012B1 (en) * 2001-03-02 2008-02-26 신메이와 인더스트리즈,리미티드 Method and Apparatus for forming multi-layer membrane under vacuum, and Controller thereof
CN105911624A (en) * 2016-06-20 2016-08-31 三明福特科光电有限公司 Rectangular linear variable optical filter manufacturing method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806012B1 (en) * 2001-03-02 2008-02-26 신메이와 인더스트리즈,리미티드 Method and Apparatus for forming multi-layer membrane under vacuum, and Controller thereof
EP1239306A3 (en) * 2001-03-05 2004-02-25 Alps Electric Co., Ltd. Method for manufacturing an optical filter having laminate film
CN105911624A (en) * 2016-06-20 2016-08-31 三明福特科光电有限公司 Rectangular linear variable optical filter manufacturing method and device

Similar Documents

Publication Publication Date Title
JPH0642582B2 (en) Dielectric multilayer coating film
US11720013B2 (en) Graded interface in Bragg reflector
JP4009044B2 (en) Thin-film birefringent element and method and apparatus for manufacturing the same
US20190169739A1 (en) An interference coating or its part consisting layers with different porosity
JPH10170717A (en) Production of dielectric multilayered film interference filter
JP3243474B2 (en) Method for manufacturing multilayer bandpass filter and multilayer bandpass filter having substantially zero wavelength shift temperature coefficient
US20060181795A1 (en) Numerical aperture controlling filter and a method for manufacturing the same
JP2003098340A (en) Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film
JPS6338579A (en) Thin film forming method
JP2005107010A (en) Method for manufacturing multilayer optical filter, and multilayer optical filter
JP4502540B2 (en) Optical multilayer interference filter manufacturing apparatus and manufacturing method
JP3081844B2 (en) Optical filter manufacturing method
JPH09296265A (en) Production of oblique vapor-deposited coating film
JP4327440B2 (en) Dielectric multilayer film manufacturing equipment
JPS63144306A (en) Dielectric multilayered film and its manufacture
JP2002258035A (en) Multilayered film cut filter and method of manufacturing the same
JP2005154855A (en) Vacuum film deposition system for optical multilayer film, and method of depositing optical multilayer film
JP2003215333A (en) Optical film thickness monitor, film forming device with this monitor attached, multi-layered film optical filter, and optical multiplexer/demultiplexer
CN113249699B (en) Method for preparing high-precision wavelength gradient optical filter based on magnetron sputtering technology and device adopted by method
JP4043836B2 (en) Multilayer optical filter manufacturing method and system, and multilayer optical filter
JPS5916973A (en) Formation of multilayered optical film
Gibson et al. High performance optical coatings deposited using closed field magnetron sputtering
JP2006139102A (en) Apparatus and method of manufacturing optical wavelength variable filter
JPS63474A (en) Formation of thin film
Netterfield et al. Ion-Assisted Deposition: Film Properties and Process Monitoring

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001219