JPH10167807A - Mgo-base composite ceramics and its production - Google Patents

Mgo-base composite ceramics and its production

Info

Publication number
JPH10167807A
JPH10167807A JP8328412A JP32841296A JPH10167807A JP H10167807 A JPH10167807 A JP H10167807A JP 8328412 A JP8328412 A JP 8328412A JP 32841296 A JP32841296 A JP 32841296A JP H10167807 A JPH10167807 A JP H10167807A
Authority
JP
Japan
Prior art keywords
mgo
ceramics
particles
dispersed
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8328412A
Other languages
Japanese (ja)
Other versions
JP3223822B2 (en
Inventor
Takeyoshi Takenouchi
武義 竹之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP32841296A priority Critical patent/JP3223822B2/en
Publication of JPH10167807A publication Critical patent/JPH10167807A/en
Application granted granted Critical
Publication of JP3223822B2 publication Critical patent/JP3223822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain MgO-base composite ceramics having a special structure, high performance and high functional property. SOLUTION: This MgO-base composite ceramics contains 1-20wt.% fine particles of Sc, Y or La having <=1.0μm particle diameter dispersed in the crystal grains and on the grain boundaries of the MgO matrix having 0.5-100μm grain diameter. It is produced by mixing MgO with powdery metal Sc, Y or La or powdery oxide of the metal, compacting the resultant mixture and carrying out sintering at >=1,500 deg.C. Since crystal grains as the min. constituent units of ceramics are made composite, physical properties of MgO ceramics are improved. Since particles of La, etc., are dispersed in the grains and on the grain boundaries of MgO, residual stress is produced at the boundaries between the MgO and dispersed particles, the tips of cracks are pinned or deflected and the propagation of the cracks is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特殊構造のMgO
複合セラミックス及びその製法に関する。詳しくは、特
殊な組織構造を有し、高性能で高機能性を有したMgO
複合セラミックス及びその製造方法に関する。
The present invention relates to a specially-structured MgO
The present invention relates to a composite ceramic and a method for producing the same. Specifically, MgO with a special structure, high performance and high functionality
The present invention relates to a composite ceramic and a method for producing the same.

【0002】[0002]

【従来の技術】MgOは優れた耐熱性、耐食性、電気絶
縁性を有するが、強度、破壊靭性値、耐熱衝撃性に乏し
く、構造材料として使用するには不十分である。また、
ターゲットなどの成膜材料としては、絶縁性が評価のポ
イントとなる場合があり、焼結体の密度、純度、組織構
造(粒界、粒内)が影響する。
2. Description of the Related Art MgO has excellent heat resistance, corrosion resistance and electrical insulation, but has poor strength, fracture toughness and thermal shock resistance, and is insufficient for use as a structural material. Also,
For a film forming material such as a target, insulation may be a point of evaluation, and the density, purity, and microstructure (grain boundaries, intragrains) of the sintered body influence.

【0003】そこで、従来、MgOやAl2 3 などの
酸化物セラミックスの物理的性質(強度、破壊靭性値
等)の欠点を、分散粒子の複合化により改善しようとす
る研究がなされてきた。しかしながら、それらの研究の
多くはミクロンレベルの複合化が中心であり、その特性
改善には限界があった。これらの研究では、分散粒子の
複合化に伴う破壊靭性の向上は、当該分散粒子がマトリ
ックスの粒界に偏在するために生じるクラック偏向に起
因していると報告されている。
[0003] Therefore, researches have been made to improve the defects of the physical properties (strength, fracture toughness, etc.) of oxide ceramics such as MgO and Al 2 O 3 by combining dispersed particles. However, most of these studies focus on micron-level complexation, and there is a limit to improving its properties. In these studies, it is reported that the improvement in fracture toughness due to the composite of dispersed particles is caused by crack deflection caused by uneven distribution of the dispersed particles at the grain boundaries of the matrix.

【0004】なお、アルミナのようなセラミックス焼結
体は、異方性粒子でマトリックスが形成されており、そ
の粒子境界で隣接粒子の熱膨張差により歪みが発生し、
このために、粒界が破壊源となり、強度低下の原因とな
ることは周知である。
[0004] In a ceramic sintered body such as alumina, a matrix is formed of anisotropic particles, and distortion occurs due to a difference in thermal expansion between adjacent particles at the particle boundary.
For this reason, it is well known that the grain boundaries serve as a fracture source and cause a decrease in strength.

【0005】このように、分散粒子の複合化では、マト
リックスの粒界に分散した粒子が、クラックの進展を阻
止し、このため、破壊靭性の向上が期待される。
[0005] As described above, in the composite of the dispersed particles, the particles dispersed in the grain boundaries of the matrix prevent the progress of cracks, and therefore, improvement in fracture toughness is expected.

【0006】[0006]

【発明が解決しようとする課題】しかし、このような従
来の複合化では、破壊の発生源である粒界の欠陥は改善
されず、その欠点は残存しているため、破壊強度等の大
きな向上は望めなかった。
However, in such a conventional composite, defects at the grain boundaries, which are sources of fracture, are not improved, and the defects remain, so that the fracture strength and the like are greatly improved. Could not hope.

【0007】本発明は、上記従来の問題点を解決し、M
gOマトリックス中に、分散粒子を複合化することによ
り、MgOの特性を改善し、構造セラミックス及び機能
セラミックスとして高性能の複合セラミックスを提供す
ること、即ち、例えば、通常の耐熱材料、電子セラミッ
クス材料においては、それほど結晶を成長させなくて
も、耐熱衝撃性が得られ、また、使用時の破壊特性が著
しく改善されるMgO複合セラミックス及びその製造方
法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and
By combining dispersed particles in a gO matrix, the characteristics of MgO are improved, and high-performance composite ceramics are provided as structural ceramics and functional ceramics, that is, for example, in ordinary heat-resistant materials and electronic ceramic materials. It is an object of the present invention to provide an MgO composite ceramic which can provide a thermal shock resistance without remarkably growing a crystal and has remarkably improved fracture characteristics during use, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明のMgO複合セラ
ミックスは、粒子径0.5〜100μmの結晶粒子を有
するMgOマトリックスの結晶粒内及び粒界に、粒子径
1.0μm以下のSc、Y又はLaの微粒子1〜20重
量%を分散させたことを特徴とする。
The MgO composite ceramics of the present invention has Sc, Y particles having a particle diameter of 1.0 .mu.m or less in MgO matrix crystal grains having crystal particles having a particle diameter of 0.5 to 100 .mu.m and at grain boundaries. Alternatively, 1 to 20% by weight of La fine particles are dispersed.

【0009】本発明のMgO複合セラミックスは、Mg
Oマトリックス中にSc、Y又はLa微粒子を分散させ
るという、ナノメーター・オーダーの複合化、即ち、セ
ラミックスの最小構成単位である結晶粒の複合化を行う
ことにより、MgOセラミックスの物理的性質の改善を
図るものである。即ち、本発明では、MgO結晶粒内及
び粒界にLa微粒子等を分散させることで、MgOとL
a微粒子等との粒界に残留応力を生じさせる。この残留
応力により、隣接する粒子の粒界に圧縮応力場を生じさ
せる。そして、伝播しようとするクラック先端をピニン
グないしシーリングしたり、ディフレクションすること
により、クラック先端の伝播を防止する。
The MgO composite ceramics of the present invention comprises Mg
Improvement of the physical properties of MgO ceramics by dispersing Sc, Y or La fine particles in an O matrix, by performing nanometer-order composite, that is, composite of crystal grains, which is the minimum constituent unit of ceramics. It is intended. That is, in the present invention, by dispersing La fine particles and the like in the MgO crystal grains and in the grain boundaries, MgO and L are dispersed.
a Residual stress is generated at the grain boundary with the fine particles. This residual stress creates a compressive stress field at the grain boundaries of adjacent particles. Then, the propagation of the crack tip is prevented by pinning or sealing the tip of the crack to be propagated or by performing deflection.

【0010】なお、上記作用効果を得る点で、本発明に
おけるマトリックスMgOは、焼結工程で厳密に焼結さ
れる必要があり、この粒子内に分散相のLaなどが均一
に分散されることが必要である。更に、焼結過程で分散
粒子の一部はマトリックス粒子内に取り込まれるもので
なければならない。本発明に係るSc,Y,Laはこの
ような条件を十分に満たす、MgOマトリックスの分散
粒子として最適なものである。
In order to obtain the above-mentioned functions and effects, the matrix MgO in the present invention must be sintered strictly in the sintering step, and the dispersed phase such as La is uniformly dispersed in the particles. is required. In addition, some of the dispersed particles must be incorporated into the matrix particles during the sintering process. Sc, Y, and La according to the present invention, which sufficiently satisfy such conditions, are optimal as dispersed particles of an MgO matrix.

【0011】本発明において、分散粒子のSc、Y又は
Laの出発原料は、各々、Sc金属粉末、Y金属粉末又
はLa金属粉末、或いはそれらの酸化物を用いることが
できる。
In the present invention, the Sc, Y or La starting material of the dispersed particles may be Sc metal powder, Y metal powder or La metal powder, or an oxide thereof.

【0012】このような本発明のMgO複合セラミック
スは、MgOとSc、Y又はLaの金属粉末とを混合し
て成形した後、或いは、MgOとSc、Y又はLaの金
属酸化物粉末とを混合して成形し、成形体を水素雰囲気
中、750〜850℃で還元処理した後、1500℃以
上の温度で焼結する本発明のMgO複合セラミックスの
製造方法により製造される。
The MgO composite ceramic of the present invention is prepared by mixing MgO and a metal powder of Sc, Y or La, or by mixing MgO and a metal oxide powder of Sc, Y or La. Then, the compact is subjected to a reduction treatment in a hydrogen atmosphere at 750 to 850 ° C., and then sintered at a temperature of 1500 ° C. or more by the method for producing an MgO composite ceramic of the present invention.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0014】本発明のMgO複合セラミックスは、マト
リックスとしてMgOを用い、分散粒子として元素周期
律表3a族の中から選ばれるSc、Y又はLa微粒子を
用いること、そして、焼結体のMgO結晶粒子径が0.
5〜100μmであり、分散粒子の粒子径が1μm以下
であり、その割合が1〜20重量%であることが特徴で
ある。
The MgO composite ceramic of the present invention uses MgO as a matrix, uses Sc, Y or La fine particles selected from Group 3a of the periodic table as dispersed particles, and uses MgO crystal particles of a sintered body. The diameter is 0.
5 to 100 μm, the particle size of the dispersed particles is 1 μm or less, and the ratio thereof is 1 to 20% by weight.

【0015】なお、本発明において、La等の分散粒子
の割合は、MgOと分散粒子との合計に対する内割の割
合である。
In the present invention, the ratio of the dispersed particles such as La is the ratio of the inner portion to the total of MgO and the dispersed particles.

【0016】本発明の複合セラミックスのMgOマトリ
ックスの結晶粒子の粒子径を0.5〜100μmとする
理由は、この範囲が、組織制御が可能で強度が大幅に高
くなるためであり、分散粒子の粒子径を1.0μm以下
にする理由は、MgOマトリックス結晶粒内に取り込ま
れるのに適した粒度範囲であるためである。
The reason why the particle size of the crystal particles of the MgO matrix of the composite ceramic of the present invention is 0.5 to 100 μm is that this range is because the structure can be controlled and the strength is greatly increased. The reason for setting the particle diameter to 1.0 μm or less is that the particle diameter is in a range suitable for being incorporated into MgO matrix crystal grains.

【0017】また、Sc、Y又はLaの割合を1〜20
重量%とする理由は、20重量%を超えると、特にS
c、Y又はLaの出発原料として酸化物を用いた場合に
は、水素雰囲気での還元処理が不十分で固溶体を生成し
易くなり、金属粉末を用いた場合には、材料組織の制御
が困難となり、強度などの特性がバラツキ、材料の信頼
性がなくなり、いずれの場合も不適当であることによ
る。Sc、Y又はLaの割合が、1〜20重量%の範囲
であれば、マトリックス中に分散粒子が均一に取り込ま
れた組織が制御でき、特性も向上する。
Further, the proportion of Sc, Y or La is 1 to 20.
The reason for setting the weight% is that if the content exceeds 20% by weight,
When an oxide is used as a starting material for c, Y or La, the reduction treatment in a hydrogen atmosphere is insufficient, so that a solid solution is easily generated, and when a metal powder is used, control of the material structure is difficult. This is because the characteristics such as strength vary, and the reliability of the material is lost. When the proportion of Sc, Y or La is in the range of 1 to 20% by weight, the structure in which the dispersed particles are uniformly taken into the matrix can be controlled, and the characteristics can be improved.

【0018】このSc、Y又はLaの出発原料として
は、Sc金属粉末、Y金属粉末又はLa金属粉末、或い
は、Sc2 3 等のSc酸化物粉末、Y2 3 等のY酸
化物粉末、又はLa2 3 等のLa酸化物粉末を用いる
ことができる。
[0018] As the starting material for this Sc, Y or La, Sc metal powder, Y metal powder or La metal powder, or, Sc oxide powders such as Sc 2 O 3, Y oxide powders such as Y 2 O 3 Or La oxide powder such as La 2 O 3 can be used.

【0019】このような本発明のMgO複合セラミック
スは、本発明の方法に従って、好ましくは、粒子径5μ
m以下のMgO粉末及び粒子径1μm以下のSc金属粉
末、Y金属粉末、La金属粉末、あるいはその酸化物粉
末を混合して所定形状に成形した後、1500℃以上、
特に1600〜1650℃で常圧焼結することにより製
造される。
According to the method of the present invention, the MgO composite ceramic of the present invention preferably has a particle diameter of 5 μm.
m MgO powder and a Sc metal powder having a particle diameter of 1 μm or less, a Y metal powder, a La metal powder, or an oxide powder thereof are mixed and formed into a predetermined shape.
In particular, it is manufactured by normal pressure sintering at 1600 to 1650 ° C.

【0020】原料として用いるMgO粉末の粒子径を5
μm以下とする理由は、焼結し易いためであり、また分
散粒子の粒子径を1.0μm以下とする理由は、粒子径
が1μmを超えるとマイクロクラックが発生すること、
粒子径1μm以下であればマトリックス粒内に分散粒子
が取り込まれ易いこと、そして、残留応力がある限界以
上になってもマイクロクラックが発生しない範囲である
こと等である。
The particle size of the MgO powder used as a raw material is 5
The reason for setting the particle size to not more than μm is that it is easy to sinter, and the reason for setting the particle size of the dispersed particles to not more than 1.0 μm is that microcracks occur when the particle size exceeds 1 μm;
If the particle diameter is 1 μm or less, the dispersed particles are easily taken into the matrix particles, and even if the residual stress exceeds a certain limit, the microcracks are not generated.

【0021】なお、Sc,Y,Laの出発原料として酸
化物粉末を用いた場合には、焼結に先立ち、水素雰囲気
中、750〜850℃で還元処理して酸素を除去する。
When oxide powder is used as a starting material for Sc, Y and La, prior to sintering, a reduction treatment is performed at 750 to 850 ° C. in a hydrogen atmosphere to remove oxygen.

【0022】本発明において、焼結温度が1500℃未
満であると十分な緻密化が図れず、高特性の焼結体が得
られない。焼結は、真空又は不活性雰囲気で常圧焼結、
常圧焼結+HIP(熱間等方圧プレス)処理、或いは、
ホットプレス焼結にて行うのが好ましい。
In the present invention, if the sintering temperature is lower than 1500 ° C., sufficient densification cannot be achieved, and a sintered body having high characteristics cannot be obtained. Sintering is normal pressure sintering in a vacuum or inert atmosphere,
Normal pressure sintering + HIP (Hot isostatic pressing) treatment, or
It is preferable to perform hot press sintering.

【0023】本発明のMgO複合セラミックスは、耐熱
材料、耐食材料、電子セラミックス・ターゲット材料
等、各種高性能、高機能性セラミックス材料などに特に
好適である。
The MgO composite ceramic of the present invention is particularly suitable for various high-performance and high-performance ceramic materials such as heat-resistant materials, corrosion-resistant materials, electronic ceramics and target materials.

【0024】[0024]

【実施例】以下に実施例及び比較例を挙げて、本発明を
より具体的に説明するが、本発明はその要旨を超えない
限り、以下の実施例に限定されるものではない。
EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to the following examples unless it exceeds the gist.

【0025】実施例1〜10,比較例1〜5 MgO粉末(赤穂化成社製3N、平均粒径0.2μm)
と、La2 3 、Sc2 3 (三菱マテリアル社製:3
25メッシュパス品を撹拌ミルで予め粉砕)又はY2
3 (信越化学社製、平均粒径0.2μm)を表1記載の
配合割合で、エタノールを分散媒として、撹拌ミルで2
時間湿式混合した(ただし、比較例5ではMgO粉末の
み)。これを充分に乾燥した後に、ボールミルで混合解
砕した。実施例2〜4,6〜8及び10と比較例3,4
では、得られた混合粉末を黒鉛ダイス(内径φ60m
m)に充填し、1MPaに予備圧縮した後、水素雰囲気
中、800℃で5時間還元処理し、その後、誘導加熱式
焼結炉(富士電波工業社製)にてアルゴン雰囲気中でホ
ットプレス焼結した。焼結条件は、1500℃まで昇温
させた後、1時間保持とし、プレス圧は30MPaとし
た。
Examples 1 to 10, Comparative Examples 1 to 5 MgO powder (3N, Ako Kasei Co., Ltd., average particle size 0.2 μm)
And La 2 O 3 , Sc 2 O 3 (Mitsubishi Materials Corporation: 3
25 mesh pass product is pre-ground with a stirring mill) or Y 2 O
3 (manufactured by Shin-Etsu Chemical Co., Ltd., average particle size: 0.2 μm) in a mixing ratio shown in Table 1 with ethanol as a dispersion medium,
It was wet-mixed for hours (however, in Comparative Example 5, only MgO powder). After this was sufficiently dried, it was mixed and crushed by a ball mill. Examples 2 to 4, 6 to 8 and 10 and Comparative Examples 3 and 4
Then, the obtained mixed powder is placed in a graphite die (inner diameter φ60 m
m), pre-compressed to 1 MPa, reduced in a hydrogen atmosphere at 800 ° C. for 5 hours, and then hot-pressed in an argon atmosphere in an induction heating sintering furnace (manufactured by Fuji Denki Kogyo KK). Tied. The sintering conditions were as follows: after the temperature was raised to 1500 ° C., the temperature was maintained for 1 hour, and the press pressure was 30 MPa.

【0026】また、比較例1,2では水素雰囲気中での
還元処理を行わずに、上記と同様の条件でホットプレス
焼結した。
In Comparative Examples 1 and 2, hot press sintering was performed under the same conditions as above without performing reduction treatment in a hydrogen atmosphere.

【0027】また、実施例1,5,9及び比較例5で
は、前記のように調製した混合粉末を水素雰囲気中、8
00℃で4時間還元処理した後、この混合粉末を金型
(内径φ60mmで厚さ7mm)に充填し、75kg/
cm2 で一軸加圧成形した後、1500kg/cm2
CIP成形し、得られた成形体を焼結炉(富士電波工業
社製)に入れ、水素雰囲気中、800℃で1時間還元処
理した後、アルゴン雰囲気中1350℃で1時間保持
し、1650℃で3時間常圧焼結した。
In Examples 1, 5, 9 and Comparative Example 5, the mixed powder prepared as described above was mixed in a hydrogen atmosphere for 8 hours.
After reduction treatment at 00 ° C. for 4 hours, the mixed powder was filled in a mold (inner diameter φ60 mm and thickness 7 mm),
After uniaxial pressing at a cm 2, and CIP molding at 1500 kg / cm 2, placed the resulting molded body in a sintering furnace (manufactured by Fuji Telecommunications Industry Co., Ltd.), in a hydrogen atmosphere for 1 hour reduction treatment at 800 ° C. Then, it was kept at 1350 ° C. for 1 hour in an argon atmosphere and sintered at 1650 ° C. for 3 hours under normal pressure.

【0028】得られたMgO焼結体は、切り出し、研削
・研摩加工して、JIS R1601に準じた3×4×
40mmの3点曲げ試験片の大きさとし、密度、破壊強
度を調べた。その結果を表1に示す。なお、密度はトル
エン中、アルキメデス法で測定した。破壊強度は3点曲
げ試験により測定した。
The obtained MgO sintered body was cut out, ground and polished to obtain a 3 × 4 × according to JIS R1601.
The size of a 40 mm three-point bending test piece was measured, and the density and the breaking strength were examined. Table 1 shows the results. The density was measured by the Archimedes method in toluene. The breaking strength was measured by a three-point bending test.

【0029】なお、実施例1〜10のものについて、結
晶組織をSEM観察により調べたところ、いずれも、粒
子径0.5〜100μmの結晶粒子を有するMgOマト
リックスの結晶粒内及び粒界に、粒子径1.0μm以下
のSc、Y又はLaの微粒子が均一に分散していた。
When the crystal structure of each of Examples 1 to 10 was examined by SEM observation, it was found that in each of the MgO matrix having 0.5 to 100 μm crystal grains, Fine particles of Sc, Y or La having a particle diameter of 1.0 μm or less were uniformly dispersed.

【0030】[0030]

【表1】 [Table 1]

【0031】表1より明らかなように、本発明のMgO
複合セラミックスは、Sc、Y又はLaの分散粒子がM
gO結晶粒内及び粒界に分散した組織を有しており、曲
げ強度は単相材料の約2倍まで向上し、高密度で特性の
バラツキも少ない。しかも、このような高性能なMgO
複合セラミックスを、ホットプレス焼結だけでなく、常
圧焼結でも安価に製造することができる。
As is clear from Table 1, the MgO of the present invention
In the composite ceramic, the dispersed particles of Sc, Y or La have M
It has a structure dispersed in the gO crystal grains and at the grain boundaries, has a bending strength improved to about twice that of a single-phase material, has a high density, and has little variation in properties. Moreover, such high performance MgO
Composite ceramics can be manufactured at low cost by normal pressure sintering as well as hot press sintering.

【0032】[0032]

【発明の効果】以上詳述した通り、本発明のMgO複合
セラミックス及びその製造方法によれば、MgOセラミ
ックスの破壊靭性、耐熱衝撃性、曲げ強度等の機械的特
性が著しく改善され、各種構造セラミックス材料又は機
能セラミックス材料として有用な高特性MgO複合セラ
ミックスが提供される。
As described above in detail, according to the MgO composite ceramics and the method of manufacturing the same of the present invention, mechanical properties such as fracture toughness, thermal shock resistance, bending strength and the like of MgO ceramics are remarkably improved, and various types of structural ceramics can be obtained. A high-performance MgO composite ceramic useful as a material or a functional ceramic material is provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粒子径0.5〜100μmの結晶粒子を
有するMgOマトリックスの結晶粒内及び粒界に、粒子
径1.0μm以下のSc、Y又はLaの微粒子1〜20
重量%を分散させたことを特徴とするMgO複合セラミ
ックス。
1. Fine particles of Sc, Y or La having a particle diameter of 1.0 μm or less are present in crystal grains and in a grain boundary of an MgO matrix having crystal particles having a particle diameter of 0.5 to 100 μm.
MgO composite ceramics, wherein the weight% is dispersed.
【請求項2】 請求項1に記載のセラミックスにおい
て、Sc、Y又はLaの出発原料は、各々、Sc金属粉
末、Y金属粉末又はLa金属粉末、或いはそれらの酸化
物であることを特徴とするMgO複合セラミックス。
2. The ceramic according to claim 1, wherein the starting material of Sc, Y or La is Sc metal powder, Y metal powder or La metal powder, or an oxide thereof. MgO composite ceramics.
【請求項3】 請求項1に記載のMgO複合セラミック
スを製造する方法であって、MgOとSc、Y又はLa
の金属粉末とを混合して成形した後、1500℃以上の
温度で焼結することを特徴とするMgO複合セラミック
スの製造方法。
3. The method for producing a MgO composite ceramic according to claim 1, wherein MgO, Sc, Y or La is used.
A method for producing an MgO composite ceramic, comprising: forming a mixture by mixing with the metal powder of (1) and sintering at a temperature of 1500 ° C. or higher.
【請求項4】 請求項1に記載のMgO複合セラミック
スを製造する方法において、MgOとSc、Y又はLa
の金属酸化物粉末とを混合して成形した後、水素雰囲気
中、750〜850℃で還元処理し、その後、1500
℃以上の温度で焼結することを特徴とするMgO複合セ
ラミックスの製造方法。
4. The method for producing an MgO composite ceramic according to claim 1, wherein MgO and Sc, Y or La are mixed.
, And subjected to a reduction treatment in a hydrogen atmosphere at 750 to 850 ° C.
A method for producing an MgO composite ceramic, comprising sintering at a temperature of not less than ℃.
JP32841296A 1996-12-09 1996-12-09 MgO composite ceramics and method for producing the same Expired - Fee Related JP3223822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32841296A JP3223822B2 (en) 1996-12-09 1996-12-09 MgO composite ceramics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32841296A JP3223822B2 (en) 1996-12-09 1996-12-09 MgO composite ceramics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10167807A true JPH10167807A (en) 1998-06-23
JP3223822B2 JP3223822B2 (en) 2001-10-29

Family

ID=18209982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32841296A Expired - Fee Related JP3223822B2 (en) 1996-12-09 1996-12-09 MgO composite ceramics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3223822B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672667A2 (en) 2004-12-17 2006-06-21 Samsung SDI Co., Ltd. Plasma display panel including protective layer and method of forming the protective layer
US20140144775A1 (en) * 2011-07-01 2014-05-29 Nippon Tungsten Co., Ltd. MgO TARGET FOR SPUTTERING

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1672667A2 (en) 2004-12-17 2006-06-21 Samsung SDI Co., Ltd. Plasma display panel including protective layer and method of forming the protective layer
US20140144775A1 (en) * 2011-07-01 2014-05-29 Nippon Tungsten Co., Ltd. MgO TARGET FOR SPUTTERING
US9773652B2 (en) * 2011-07-01 2017-09-26 Ube Material Industries, Ltd. MgO target for sputtering

Also Published As

Publication number Publication date
JP3223822B2 (en) 2001-10-29

Similar Documents

Publication Publication Date Title
JPH08239270A (en) Superplastic silicon carbide sintered product and its production
EP0798280A2 (en) Ceramic matrix composite and method of manufacturing the same
JPH05506422A (en) Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body
JPH0222175A (en) Production and sintering of reaction bonded silicon nitride composite material containing silicon carbide whisker or silicon nitride powder
JPH09125236A (en) Indium oxide sintered compact, its production and indium oxide target
JPH07215780A (en) Highly heat resistant composite material
WO2020133585A1 (en) Hard transition metal boride material and preparation method therefor
JP3223822B2 (en) MgO composite ceramics and method for producing the same
JP3225873B2 (en) MgO composite ceramics and method for producing the same
WO2008045698A1 (en) Reaction sintered zirconium carbide/tungsten composite bodies and a method for producing the same
JP3317421B2 (en) Silicon carbide / silicon nitride composite material and method for producing the same
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
JP3045367B2 (en) High-strength and high-toughness ceramic composite material, ceramic composite powder, and method for producing them
JP3221479B2 (en) Sc-MgO composite ceramic sintered body and method of manufacturing the same
JPH05194022A (en) Ceramic composite material and its production
JP4394784B2 (en) Silicon carbide sintered body
JPH04305064A (en) Ceramic composition
JP2722516B2 (en) Particle dispersion strengthened non-oxide ceramic composite material and method for producing the same
JP2722515B2 (en) Particle dispersion strengthened oxide ceramic composite and method for producing the same
JPH07223866A (en) Silicon nitride-based composite ceramic and production thereof
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JPH11236266A (en) Production of silicon carbide-base sheet
JPH05319910A (en) Ceramic composite material and its production
JP4330218B2 (en) Method for producing bulk Si-C-N ceramic material
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010724

LAPS Cancellation because of no payment of annual fees