JPH10164861A - Resonance inverter circuit - Google Patents

Resonance inverter circuit

Info

Publication number
JPH10164861A
JPH10164861A JP8321434A JP32143496A JPH10164861A JP H10164861 A JPH10164861 A JP H10164861A JP 8321434 A JP8321434 A JP 8321434A JP 32143496 A JP32143496 A JP 32143496A JP H10164861 A JPH10164861 A JP H10164861A
Authority
JP
Japan
Prior art keywords
inductor
capacitor
load
switching
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8321434A
Other languages
Japanese (ja)
Inventor
Hiroyuki Haga
博之 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8321434A priority Critical patent/JPH10164861A/en
Publication of JPH10164861A publication Critical patent/JPH10164861A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inexpensive inverter in which switching loss is low even if a load fluctuates significantly. SOLUTION: Switching elements 14, 15 are turned on/off alternately and a transformer 32 is connected across the element 15 through an inductor 18. A capacitor 19 is connected in parallel with the transformer 32 on the secondary thereof and an inductor 38 is connected between one secondary end thereof and one end of a fluorescent lamp 21. The elements 14, 15 are turned on/off at the resonance frequency of the inductor 18 and the capacitor 19 and the inductance L2 of the inductor 38 is set a<2> (a is the turn ratio of the transformer 32) times as high as the inductance L1 of the inductor 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は直流電源の両端に
直列に接続され、交互にオンオフする第1,第2スイッ
チング素子が接続され、その一方のスイッチング素子の
両端間に直列共振回路が接続されると共に、その一方の
共振素子を1次又は2次側に並列接続されたトランスを
介して、熱陰極放電管のような負荷が接続される共振形
インバータ回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC power supply, wherein first and second switching elements are connected in series and alternately turned on and off, and a series resonance circuit is connected between both ends of one of the switching elements. And a resonance type inverter circuit to which a load such as a hot cathode discharge tube is connected via a transformer having one of the resonance elements connected in parallel to the primary or secondary side.

【0002】[0002]

【従来の技術】図4Aに従来のインバータ回路を示す。
直流電源11の両端は、コンデンサ12,13の直列回
路と、スイッチング素子14,15の直列回路の各両端
に接続され、コンデンサ12,13の接続点16と、ス
イッチング素子14,15の接続点17との間に、イン
ダクタ18と、コンデンサ19と、例えば蛍光灯(熱陰
極放電管)のような負荷21との直列回路が接続され
る。スイッチング素子14,15にこれをそれぞれオン
オフ制御する駆動回路22,23が接続される。
2. Description of the Related Art FIG. 4A shows a conventional inverter circuit.
Both ends of the DC power supply 11 are connected to both ends of the series circuit of the capacitors 12 and 13 and the series circuit of the switching elements 14 and 15, respectively. A connection point 16 of the capacitors 12 and 13 and a connection point 17 of the switching elements 14 and 15 are provided. A series circuit of an inductor 18, a capacitor 19, and a load 21 such as a fluorescent lamp (hot cathode discharge tube) is connected between them. Driving circuits 22 and 23 for turning on and off the switching elements 14 and 15 are connected to the switching elements 14 and 15, respectively.

【0003】駆動回路22,23によりスイッチング素
子14,15はそれぞれ図4Bのa,bに示すように、
交互に同一期間T/2ずつオン、オフ制御される。スイ
ッチング素子14がオンになると、コンデンサ12の電
荷がスイッチング素子14を通じて更に負荷21を通じ
て接続点16へ電流として流れ、スイッチング素子15
がオンとなった時はコンデンサ13の電荷が接続点16
から負荷21を通じ、更にスイッチング素子15を通じ
て電流として流れ、負荷21に交互に逆方向に電流が流
れる。インダクタ18とコンデンサ19の共振周波数が
スイッチング素子14,15の各スイッチング周波数1
/Tの場合、接続点12,13間に発生する電圧、つま
りスイッチング回路の出力電圧は図4BCの曲線24と
なり、これら接続点12,13間に流れる電流、つまり
スイッチング回路の出力電流は曲線25となる。つまり
スイッチング素子14,15は、スイッチング回路の電
流がゼロとなった時点(ゼロ点を切る時点)でオンオフ
の切替えが行われる。このため、スイッチング素子1
4,15での電力損失は最小となる。
As shown in FIGS. 4A and 4B, the switching elements 14 and 15 are driven by driving circuits 22 and 23, respectively.
On / off control is performed alternately by the same period T / 2. When the switching element 14 is turned on, the electric charge of the capacitor 12 flows as a current through the switching element 14 to the connection point 16 through the load 21, and the switching element 15
Is turned on, the charge of the capacitor 13 is
Flows through the load 21 and further through the switching element 15, and the current alternately flows through the load 21 in the opposite direction. The resonance frequency of the inductor 18 and the capacitor 19 is equal to the switching frequency 1 of the switching elements 14 and 15.
In the case of / T, the voltage generated between the connection points 12 and 13, that is, the output voltage of the switching circuit becomes a curve 24 in FIG. 4BC, and the current flowing between these connection points 12 and 13, that is, the output current of the switching circuit becomes a curve 25. Becomes That is, the switching elements 14 and 15 are switched on and off when the current of the switching circuit becomes zero (the point where the current crosses the zero point). Therefore, the switching element 1
The power loss at 4 and 15 is minimal.

【0004】しかし、インダクタ18、コンデンサ19
の直列共振回路のリアクタンス特性は図5Aに示すよう
に共振周波数frでリアクタンスjxはゼロとなるが、
例えば周波数fがfrより低くなると、リアクタンスj
xは負となり、共振回路を流れる電流は進み位相とな
り、図5BCの曲線25に示すようにスイッチング出力
回路の出力電流は、スイッチング出力回路の出力電圧
(曲線24)よりも進み位相となる。このため、スイッ
チング素子14,15は、スイッチング出力回路に電流
が流れている状態でオン制御が行われ、スイッチング素
子14,15の損失が大きくなる。
However, the inductor 18 and the capacitor 19
5A, the reactance jx becomes zero at the resonance frequency fr as shown in FIG. 5A.
For example, when the frequency f becomes lower than fr, the reactance j
x becomes negative, the current flowing through the resonance circuit has a leading phase, and the output current of the switching output circuit has a leading phase with respect to the output voltage (curve 24) of the switching output circuit as shown by a curve 25 in FIG. 5BC. For this reason, the switching elements 14 and 15 are turned on while the current is flowing through the switching output circuit, and the loss of the switching elements 14 and 15 increases.

【0005】この問題を解決するには、スイッチング素
子14,15のスイッチング周波数1/Tを低くして、
共振周波数frと一致するようにスイッチング周波数1
/Tを制御する。又は図6Cに示すように、スイッチン
グ素子14,15の各オン期間TONを、スイッチング周
期Tの1/2よりも短かくして、いわゆるPWM制御し
て、スイッチング回路の出力電流のゼロ点でスイッチン
グ素子14,15をオンにするようにしている。
In order to solve this problem, the switching frequency 1 / T of the switching elements 14 and 15 is reduced,
The switching frequency 1 is set to match the resonance frequency fr.
/ T is controlled. Alternatively, as shown in FIG. 6C, the on-period T ON of the switching elements 14 and 15 is set to be shorter than の of the switching period T, and so-called PWM control is performed, and the switching element is switched at the zero point of the output current of the switching circuit. 14 and 15 are turned on.

【0006】[0006]

【発明が解決しようとする課題】以上のように従来にお
いては、共振周波数frの変動に対して、スイッチング
周波数、又はスイッチング期間を制御して、スイッチン
グ損失を低減しているため、その共振周波数frの変動
の検出と、これに対応したスイッチング周波数や期間を
制御するための構成が複雑となり、かつ、高価なものと
なった。
As described above, conventionally, the switching frequency or the switching period is controlled in response to the fluctuation of the resonance frequency fr to reduce the switching loss. The structure for detecting the fluctuation of the voltage and controlling the switching frequency and the period corresponding to the fluctuation are complicated and expensive.

【0007】[0007]

【課題を解決するための手段】請求項1の発明によれ
ば、直列共振回路の共振用インダクタの一端が第1,第
2スイッチング素子の接続点に接続される形式のインバ
ータ回路において、トランスの2次巻線の一端と負荷と
の間に、第2インダクタが直列に挿入されて、これによ
り負荷に流れるリアクタンス成分を打消し、負荷変動に
かかわらず、ゼロ点でのスイッチングが行われるように
する。
According to the first aspect of the present invention, there is provided an inverter circuit in which one end of a resonance inductor of a series resonance circuit is connected to a connection point between a first switching element and a second switching element. A second inductor is inserted in series between one end of the secondary winding and the load, thereby canceling a reactance component flowing through the load, and performing switching at a zero point regardless of a load change. I do.

【0008】請求項2の発明によれば、直列共振回路の
共振用コンデンサの一端が第1,第2スイッチング素子
の接続点に接続される形式のインバータ回路において、
トランスの2次巻線の一端と負荷との間に、第2コンデ
ンサが直列に挿入されて、これにより負荷に流れるリア
クタンス成分を打消し、負荷変動にかかわらず、ゼロ点
でのスイッチングが行われるようにする。
According to the second aspect of the present invention, there is provided an inverter circuit in which one end of a resonance capacitor of a series resonance circuit is connected to a connection point between the first and second switching elements.
A second capacitor is inserted in series between one end of the secondary winding of the transformer and the load, thereby canceling the reactance component flowing through the load, and performing switching at the zero point regardless of the load fluctuation. To do.

【0009】[0009]

【発明の実施の形態】図1Aにこの発明の実施例を示
す。直流電源11の両端にスイッチング素子14,15
の直列回路の両端が接続され、一方のスイッチング素子
15の両端間に直流阻止コンデンサ31を通じ、更にイ
ンダクタ18を通じてトランス32の1次巻線33の両
端が接続され、トランス32の2次巻線34の一端と他
端よりわずか手前の点にコンデンサ19の両端が接続さ
れ、この接続点36と2次巻線34の他端との間に、負
荷21としての蛍光灯の一方のフィラメントの両端が接
続され、トランス32の3次巻線37の両端に負荷21
としての蛍光灯の他方のフィラメントの両端が接続さ
れ、2次巻線34の一端と3次巻線37の一端の間にコ
イル38の両端が接続される。コンデンサ19の容量を
2 とし、トランス32の巻数比をa=n2 /n1 とす
ると、C2 ′=C2 /a2 に対し、コンデンサ31の容
量C1 は10〜100倍程度に選定されている。
FIG. 1A shows an embodiment of the present invention. Switching elements 14 and 15 are provided at both ends of the DC power supply 11.
The two ends of a primary winding 33 of a transformer 32 are connected through a DC blocking capacitor 31 between both ends of one switching element 15, and further through an inductor 18. Both ends of the capacitor 19 are connected to a point slightly before the other end of the fluorescent lamp as the load 21 between the connection point 36 and the other end of the secondary winding 34. The load 21 is connected to both ends of the tertiary winding 37 of the transformer 32.
Both ends of the other filament of the fluorescent lamp are connected, and both ends of a coil 38 are connected between one end of the secondary winding 34 and one end of the tertiary winding 37. Assuming that the capacitance of the capacitor 19 is C 2 and the turns ratio of the transformer 32 is a = n 2 / n 1 , the capacitance C 1 of the capacitor 31 is about 10 to 100 times that of C 2 ′ = C 2 / a 2. Selected.

【0010】図1Aに示した回路の等価回路を図1Bに
示す。トランス32はインダクタ18(L1 )と直列の
二つの漏洩インダクタL′,L′と、漏洩インダクタ
L′,L′の接続点に一端接続されたシャントの相互イ
ンダクタMとで表わせ、相互インダクタMのインダクタ
ンスが十分大であり、漏洩インダクタL′のインダクタ
ンスが十分小さいとし、またインダクタ38のインダク
タンスL2 に対し、等価回路ではインダクタンスが
2 ′=a2 2 となり、共振周波数fr は1/√
(L1 2 ′)となる。所でスイッチング素子15の両
端に発生する電圧をE、負荷21の抵抗値をRとする
と、電源11から流れる全電流iは次式となる。
FIG. 1B shows an equivalent circuit of the circuit shown in FIG. 1A. The transformer 32 is represented by two leakage inductors L ′ and L ′ in series with the inductor 18 (L 1 ) and a shunt mutual inductor M connected to a connection point between the leakage inductors L ′ and L ′. Is sufficiently large, the inductance of the leakage inductor L 'is sufficiently small, and the inductance L 2 ' = a 2 L 2 in the equivalent circuit with respect to the inductance L 2 of the inductor 38, and the resonance frequency fr Is 1 / √
(L 1 C 2 ′). Assuming that the voltage generated at both ends of the switching element 15 is E and the resistance value of the load 21 is R, the total current i flowing from the power supply 11 is expressed by the following equation.

【0011】 i=(E/L1 )(RC2 ′+jωL1 2 ′) …(1) 従って負荷21に流れる電流iR は次式となる。 iR =C−Eω2 1 2 ′/(RC1 −ω2 1 2 ′)+jωL1 ) …(2) 1−ω2 1 2 ′=0 つまり、共振周波数fr
では、 iR =−Eω2 1 2 ′/(jωL1 )=jEωC2 ′ …(3) となり、負荷21を流れる電流は負荷21のインピーダ
ンスRによらず一定となる。しかし、全電流iは式
(1)で与えられ、R=0での立上りも予想され、i=
jEωCとjR と同一となり、つまり電圧Eに対し電流
iが90°遅れ、電流ゼロ点でのスイッチングができな
いことになる。
I = (E / L 1 ) (RC 2 ′ + jωL 1 C 2 ′) (1) Accordingly, the current i R flowing through the load 21 is given by the following equation. i R = C-Eω 2 L 1 C 2 '/ (RC 1 -ω 2 L 1 C 2') + jωL 1) ... (2) 1-ω 2 L 1 C 2 '= 0 That is, the resonance frequency fr
, I R = −Eω 2 L 1 C 2 ′ / (jωL 1 ) = jEωC 2 ′ (3), and the current flowing through the load 21 is constant regardless of the impedance R of the load 21. However, the total current i is given by equation (1), a rise at R = 0 is also expected, and i =
It becomes the same as the j R jEωC, i.e. current i 90 ° delayed relative to the voltage E, would not be switching at zero current point.

【0012】従って、負荷21にリアクタンス成分jx
を直列に接続してスイッチング素子14,15を流れる
電流が、その1部が電圧と同位相になるようにされる。
つまり図1Aではインダクタ38が負荷21と直列に接
続され、この直列回路がコンデンサ19の両端に接続さ
れる。この場合でかつR=0の時の全電流iは式(1)
より次式となる。
Therefore, the reactance component jx is added to the load 21.
Are connected in series so that a part of the current flowing through the switching elements 14 and 15 has the same phase as the voltage.
That is, in FIG. 1A, the inductor 38 is connected in series with the load 21, and this series circuit is connected to both ends of the capacitor 19. In this case, when R = 0, the total current i is given by the following equation (1).
From the following equation:

【0013】 i=j(E/L1 )(ωL2 ′C2 ′+ωL1 2 ′) …(4) この式(4)の電流がゼロになれば、インダクタ18に
流れる電流と、インダクタンスL2 ′のインダクタ38
に流れる電流との位相差は180°となり、打ち消しあ
うことになる。従って (E/L1 )(ωL2 ′C2 ′+ωL1 2 ′)=0 とおき、かつ 1−ω2 1 2 ′=0 (共振条
件)より、 jωL2 ′=−1/ωC2 ′=1/(jωC2 ′) …(5) となり、インダクタ38のインダクタンスL2 はC2
4 又はL1 /a2 とすればよい。この時、全電流iは
ωL1 =1/ωC2 ′ で i=(E/L)RC2 ′ となり、負荷21に流れる電流iR は次式となり、負荷
Rの値に拘わらず一定となる。
I = j (E / L 1 ) (ωL 2 ′ C 2 ′ + ωL 1 C 2 ′) (4) If the current of equation (4) becomes zero, the current flowing through the inductor 18 and the inductance L 2 'inductor 38
Has a phase difference of 180 ° with the current flowing therethrough, and is canceled out. Accordingly, (E / L 1 ) (ωL 2 ′ C 2 ′ + ωL 1 C 2 ′) = 0 and 1−ω 2 L 1 C 2 ′ = 0 (resonance condition), jωL 2 ′ = −1 / ωC 2 ′ = 1 / (jωC 2 ′) (5), and the inductance L 2 of the inductor 38 is C 2 /
a 4 or L 1 / a 2 may be used. At this time, the total current i is ωL 1 = 1 / ωC 2 ′ and i = (E / L) RC 2 ′, and the current i R flowing through the load 21 is given by the following equation, and is constant regardless of the value of the load R. .

【0014】iR =E/(jωL1 ) このようにすれば負荷21の変動にかかわらず、電流ゼ
ロ点でスイッチングを行うことができる。図2Aに示す
ように、コンデンサ19の両端にそれぞれコンデンサ4
1,42の一端を接続し、コンデンサ41,42の各他
端を2次巻線34の両端にそれぞれ接続し、その両接続
点と負荷21としての蛍光灯の両端フィラメントの各一
端にコイル43,44の各両端を接続し、各フィラメン
トの他端と、コンデンサ19とコンデンサ41,42の
各接続点との間にコイル45,46をそれぞれ接続す
る。コイル43,45、44,46は1つの磁気コア上
に巻き、負荷21の電流に対し、コイル43と45を同
相、コイル44,46を同相、コイル43,44を差
動、コイル45,46を差動関係とし、コンデンサ41
の両端間の電圧で一方のフィラメントにフィラメント電
流を流し、コンデンサ42の両端間の電圧で他方のフィ
ラメントにフィラメント電流を流し、かつ、コンデンサ
19に対し、コイル43,45の結合、コイル44,4
6の結合が負荷21に対して直列となり、つまり、図1
Aのインダクタ38と同様の作用をなさしめている。こ
の場合はトランス32の2次巻線34にタップを設ける
必要がない。この場合、コイル43〜46の各インダク
タンスを同一値Lとすれば、図1A中のインダクタ38
のL2 の1/4でよい。
I R = E / (jωL 1 ) In this way, the switching can be performed at the zero current point regardless of the fluctuation of the load 21. As shown in FIG.
1 and 42 are connected to each other, the other ends of the capacitors 41 and 42 are connected to both ends of the secondary winding 34, respectively. , 44 are connected to each other, and coils 45, 46 are connected between the other end of each filament and each connection point of the capacitor 19 and the capacitors 41, 42, respectively. The coils 43, 45, 44, and 46 are wound on one magnetic core, and the coils 43 and 45 are in-phase, the coils 44 and 46 are in-phase, the coils 43 and 44 are differential, and the coils 45 and 46 are applied to the current of the load 21. Is a differential relationship, and the capacitor 41
And a filament current flows through the other filament at a voltage between both ends of the capacitor 42, and a coupling between the coils 43 and 45 and the coils 44 and 4 with respect to the capacitor 19.
6 are in series with the load 21;
The same operation as that of the inductor 38 of FIG. In this case, it is not necessary to provide a tap on the secondary winding 34 of the transformer 32. In this case, assuming that the respective inductances of the coils 43 to 46 have the same value L, the inductor 38 in FIG.
L of L 2 may be used.

【0015】図2Bに示すように、図1A中のコンデン
サ19を、トランス32の2次巻線34ではなく1次巻
線33の両端に設けてもよい。更に3Aに示すように共
振用コンデンサ19をトランス32の1次巻線33を介
してスイッチング素子15の両端に接続し、トランス3
2の2次巻線34と並列にインダクタ18を接続し、イ
ンダクタ18及び2次巻線34の一端の接続点をコンデ
ンサ51を介して3次巻線37の一端に接続し、つま
り、図1A中のコンデンサ31を省略し、インダクタ1
8とコンデンサ19とを入れかえ、かつ、インダクタ3
8とコンデンサ51とを入れかえた構成としてもよい。
この場合、コンデンサ51の容量は、コンデンサ19の
容量のa2 倍とすればよい。この場合も図3Bに示すよ
うに、インダクタ18をトランス32の1次巻線33側
に変更してもよい。またこの実施例に示すように、トラ
ンス32に帰還コイル52,53をそれぞれ設け、帰還
コイル52,53の誘起電圧でスイッチング素子14,
15をオンオフ制御するように、つまり自動発振形イン
バータ回路とした場合であり、前記の他の実施例も、こ
のように自動発振形インバータ回路として構成すること
もできる。
As shown in FIG. 2B, the capacitor 19 in FIG. 1A may be provided at both ends of the primary winding 33 instead of the secondary winding 34 of the transformer 32. Further, as shown in FIG. 3A, the resonance capacitor 19 is connected to both ends of the switching element 15 via the primary winding 33 of the transformer 32, and
2 is connected in parallel with the secondary winding 34, and the connection point between the inductor 18 and one end of the secondary winding 34 is connected to one end of the tertiary winding 37 via the capacitor 51, that is, FIG. The capacitor 31 inside is omitted and the inductor 1
8 and the capacitor 19 are replaced, and the inductor 3
8 and the capacitor 51 may be replaced.
In this case, the capacity of the capacitor 51 may be set to a 2 times the capacity of the capacitor 19. Also in this case, as shown in FIG. 3B, the inductor 18 may be changed to the primary winding 33 of the transformer 32. As shown in this embodiment, the transformer 32 is provided with feedback coils 52 and 53, respectively, and the switching elements 14 and
This is a case in which 15 is turned on / off, that is, an automatic oscillation type inverter circuit. The other embodiments described above can also be configured as an automatic oscillation type inverter circuit.

【0016】[0016]

【発明の効果】以上述べたように、この発明によれば、
トランスの2次巻線と負荷との間に直列にインダクタ又
はコンデンサを接続するという頗る簡単な構成により、
放電管のように、負荷インピーダンスが大幅に変化する
負荷に対しても、常に、ゼロ電流点でスイッチング素子
に対するスイッチングが行われ、スイッチング損失が少
なく、効率がよい、しかも安価に構成することができ
る。
As described above, according to the present invention,
With a very simple configuration of connecting an inductor or a capacitor in series between the secondary winding of the transformer and the load,
Even for a load whose load impedance changes greatly, such as a discharge tube, switching to the switching element is always performed at the zero current point, so that the switching loss is small, the efficiency is high, and the cost can be reduced. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは請求項1の発明の実施例を示す回路図、B
はその等価回路図である。
FIG. 1A is a circuit diagram showing an embodiment of the invention of claim 1; FIG.
Is an equivalent circuit diagram thereof.

【図2】請求項1の発明の他の実施例を示す回路図。FIG. 2 is a circuit diagram showing another embodiment of the present invention.

【図3】請求項2の発明の実施例を示す回路図。FIG. 3 is a circuit diagram showing an embodiment of the invention according to claim 2;

【図4】Aは従来の共振形インバータ回路を示す図、B
はその動作波形図である。
FIG. 4A is a diagram showing a conventional resonant inverter circuit, and FIG.
FIG. 4 is an operation waveform diagram thereof.

【図5】Aは共振回路のリアクタンスの周波数特性図、
Bは共振周波数がスイッチング周波数より高い方へずれ
た場合の動作波形図、Cはその改善動作波形図である。
FIG. 5A is a frequency characteristic diagram of the reactance of the resonance circuit,
B is an operation waveform diagram when the resonance frequency is shifted to a higher frequency than the switching frequency, and C is an improved operation waveform diagram.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 互いに直列に接続され、交互にオン、オ
フされる第1,第2スイッチング素子が直流電源の両端
間に接続され、一方のスイッチング素子の両端間に共振
用インダクタを介してトランスの1次巻線が接続され、
上記トランスの1次巻線及び2次巻線の一方と並列に共
振用コンデンサが接続され、上記2次巻線の両端間に負
荷が接続される共振形インバータ回路において、 上記2次巻線の一端と上記負荷との間に第2インダクタ
が直列に挿入されていることを特徴とする共振形インバ
ータ回路。
1. A first and a second switching element connected in series and alternately turned on and off are connected between both ends of a DC power supply, and a transformer is connected between both ends of one switching element via a resonance inductor. Primary winding is connected,
In a resonance type inverter circuit in which a resonance capacitor is connected in parallel with one of a primary winding and a secondary winding of the transformer and a load is connected between both ends of the secondary winding, A resonance type inverter circuit, wherein a second inductor is inserted in series between one end and the load.
【請求項2】 互いに直列に接続され、交互にオン、オ
フされる第1,第2スイッチング素子が直流電源の両端
間に接続され、一方のスイッチング素子の両端間に共振
用コンデンサを介してトランスの1次巻線が接続され、
上記トランスの1次巻線及び2次巻線の一方と並列に共
振用インダクタが接続され、上記2次巻線の両端間に負
荷が接続される共振形インバータ回路において、 上記2次巻線の一端と上記負荷との間に第2コンデンサ
が直列に挿入されていることを特徴とする共振形インバ
ータ回路。
2. A first and a second switching element connected in series and alternately turned on and off are connected between both ends of a DC power supply, and a transformer is connected between both ends of one of the switching elements via a resonance capacitor. Primary winding is connected,
In a resonance type inverter circuit in which a resonance inductor is connected in parallel with one of a primary winding and a secondary winding of the transformer, and a load is connected between both ends of the secondary winding, A resonance type inverter circuit, wherein a second capacitor is inserted in series between one end and the load.
JP8321434A 1996-12-02 1996-12-02 Resonance inverter circuit Pending JPH10164861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8321434A JPH10164861A (en) 1996-12-02 1996-12-02 Resonance inverter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8321434A JPH10164861A (en) 1996-12-02 1996-12-02 Resonance inverter circuit

Publications (1)

Publication Number Publication Date
JPH10164861A true JPH10164861A (en) 1998-06-19

Family

ID=18132517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8321434A Pending JPH10164861A (en) 1996-12-02 1996-12-02 Resonance inverter circuit

Country Status (1)

Country Link
JP (1) JPH10164861A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030340A3 (en) * 2001-09-28 2004-01-15 Koninkl Philips Electronics Nv Adaptable inverter
JP2007174881A (en) * 2005-12-22 2007-07-05 Samsung Electronics Co Ltd Inverter circuit, backlight device, and liquid crystal display device made thereby
US7746337B2 (en) 2005-11-17 2010-06-29 Samsung Electronics Co., Ltd. Inverter circuit
JPWO2013061800A1 (en) * 2011-10-25 2015-04-02 株式会社村田製作所 Inverter device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003030340A3 (en) * 2001-09-28 2004-01-15 Koninkl Philips Electronics Nv Adaptable inverter
US7746337B2 (en) 2005-11-17 2010-06-29 Samsung Electronics Co., Ltd. Inverter circuit
JP2007174881A (en) * 2005-12-22 2007-07-05 Samsung Electronics Co Ltd Inverter circuit, backlight device, and liquid crystal display device made thereby
KR101178833B1 (en) 2005-12-22 2012-09-03 삼성전자주식회사 Inverter circuit, backlight device, and liquid crystal display device using the same
JPWO2013061800A1 (en) * 2011-10-25 2015-04-02 株式会社村田製作所 Inverter device
US9484841B2 (en) 2011-10-25 2016-11-01 Murata Manufacturing Co., Ltd. Inverter device

Similar Documents

Publication Publication Date Title
US4257087A (en) DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits
EP2056438A2 (en) Switching power supply
JP2003520407A (en) Power feedback power factor correction scheme for multiple lamp operation.
EP1071199A3 (en) Power supply
JP3404384B2 (en) Piezoelectric transformer inverter
US6018221A (en) Lighting circuit and lighting device
EP0855132B1 (en) Circuit arrangement
US4609850A (en) Current driven gain controlled electronic ballast system
JPH10164861A (en) Resonance inverter circuit
US5309350A (en) Push-pull inverter
JP5176767B2 (en) Switching power supply
KR20170104434A (en) Resonance-type dc-dc converter
JP7409344B2 (en) Contactless power transmission device and its adjustment method
JP3610842B2 (en) Power supply device
JPH0833353A (en) Push-pull inverter
WO2023007839A1 (en) Output stabilizing circuit and dc/dc converter circuit
JP3656449B2 (en) Power supply
JP3259337B2 (en) Power converter
JP2605327Y2 (en) Cold cathode tube lighting device
KR20040052939A (en) Adaptive High Frequency Power Supply Using Multi-Resonance
JPH0315434B2 (en)
KR20220122915A (en) Three phase and single phase compatible charger
JPH0538151A (en) Resonance power circuit
JPH04340364A (en) Switching regulator
JPH10149887A (en) Fluorescent lamp lighting circuit