JPH1016133A - Forming method for composite structure and composite - Google Patents

Forming method for composite structure and composite

Info

Publication number
JPH1016133A
JPH1016133A JP9057351A JP5735197A JPH1016133A JP H1016133 A JPH1016133 A JP H1016133A JP 9057351 A JP9057351 A JP 9057351A JP 5735197 A JP5735197 A JP 5735197A JP H1016133 A JPH1016133 A JP H1016133A
Authority
JP
Japan
Prior art keywords
leading edge
core structure
composite
fluoroelastomer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9057351A
Other languages
Japanese (ja)
Other versions
JP2828168B2 (en
Inventor
Louis Blackburn
ブラックバ−ン ルイス
J Hertel Christopher
ジェイ.ハーテル クリストファー
J Klein John
ジェイ.クライン ジョン
J Parkos Joseph Jr
ジェイ.パーコス ジェイアール. ジョセフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Technologies Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of JPH1016133A publication Critical patent/JPH1016133A/en
Application granted granted Critical
Publication of JP2828168B2 publication Critical patent/JP2828168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/02Temperature
    • B32B2309/025Temperature vs time profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/12Pressure
    • B32B2309/125Pressure vs time profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2603/00Vanes, blades, propellers, rotors with blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/303Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the leading edge of a rotor blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/24995Two or more layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/24995Two or more layers
    • Y10T428/249951Including a free metal or alloy constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/24995Two or more layers
    • Y10T428/249952At least one thermosetting synthetic polymeric material layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31529Next to metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2926Coated or impregnated inorganic fiber fabric
    • Y10T442/2984Coated or impregnated carbon or carbonaceous fiber fabric

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of forming a composite structure such as a vane-shaped structural body and a composite structure formed by the method. SOLUTION: A forming method consists of a step of providing an uncured core structure 12 formed of a non-metal material, a step of forming a material layer 14 for an uncured fluoroelastomer film on the surface of the section of the core structure 12, a step of disposing a metal structure 16, the inner face of which is brought into contact with the material layer 14 on a part of the core structure 12 and a step of forming a composite structure under heat and pressure for the time sufficient for current the core structure body 12 and the material layer 14 together and forming the both between the metal structure 16 and the material layer 14. The composite structure can be used for repairing a metal/composite structure such as a fan outlet guide vane for a jet engine, manufacturing an original metal/composite structure and the like by the arrangement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、腐食および異物損
傷に対する優れた保護が図れる複合構造体(composite
structure )の形成方法、およびこの複合構造体により
構成される複合物に関するものである。本発明の方法
は、翼形(airfoil )構造体の製造および改修に特に有
用である。
FIELD OF THE INVENTION The present invention relates to a composite structure having excellent protection against corrosion and foreign matter damage.
Structure), and a composite constituted by the composite structure. The method of the present invention is particularly useful for manufacturing and retrofitting airfoil structures.

【0002】[0002]

【発明が解決しようとする課題】ジェットエンジン上の
ファン出口のガイドべーン(guide vane)のような複合
翼形構造体は、大気の影響による腐食、並びにべーンの
前縁(leading edge)上における異物の衝突から生じる
損傷を受ける。これらの翼形構造体を修復するための適
切な技術を見出すための研究がなされており、腐食およ
び異物に対する必要な保護が図れるとともに、十分な接
着構造体とすることができる改修方法が要望されてい
る。
Composite airfoil structures, such as a fan exit guide vane on a jet engine, can cause corrosion due to atmospheric effects as well as leading edges of the vane. ) Suffer damage from the impact of foreign matter on it. Research has been conducted to find appropriate techniques for repairing these airfoil structures, and there is a demand for a repair method that can provide the necessary protection against corrosion and foreign substances and can provide a sufficient bonded structure. ing.

【0003】よって、本発明の目的は、翼形構造体のよ
うな複合構造体における前縁を改修するための方法を提
供することにある。本発明の他の目的は、経済的に有利
であり、二次的な接着作業の必要のない上記の方法を提
供することにある。本発明のさらに他の目的は、複合構
造体の前縁上における腐食および異物損傷に対する優れ
た保護が図れる上記の方法を提供することにある。本発
明の別の目的は、元の金属/複合構造体の構成にも役立
つ上記した方法を提供することにある。本発明のさらに
別の目的は、十分に接着された複合構造体を提供するこ
とにある。上記の各目的は、本発明の方法により達成で
きる。
Accordingly, it is an object of the present invention to provide a method for modifying a leading edge in a composite structure such as an airfoil structure. It is another object of the present invention to provide such a method which is economically advantageous and does not require a secondary bonding operation. Yet another object of the present invention is to provide such a method which provides excellent protection against corrosion and foreign object damage on the leading edge of the composite structure. It is another object of the present invention to provide a method as described above, which is also useful for constructing the original metal / composite structure. It is yet another object of the present invention to provide a fully bonded composite structure. Each of the above objects can be achieved by the method of the present invention.

【0004】[0004]

【課題を解決するための手段】本発明によれば、複合構
造体を形成するための新規な方法が提供される。本方法
は、未硬化(uncure)あるいは実質的に未硬化状態の非
金属材料から形成されたコア構造体を用意するステッ
プ、前記コア構造体の表面部分上に、同様に好ましくは
未硬化あるいは実質的に未硬化の状態でありコア構造体
の材料の硬化温度と近い硬化温度を有するフルオロエラ
ストマー(fluoroelastomer )のフィルムを形成するス
テップ、前記コア構造体の部分上に、その内面が前記フ
ルオロエラストマーのフィルムと接触する金属構造体を
配置するステップ、並びに前記非金属コア構造体材料お
よび前記フルオロエラストマーのフィルムを共に硬化
(co-cure )し前記金属構造体と前記フルオロエラスト
マーのフィルム間に結合を形成するために、十分な時間
の間、熱と圧力下で前記複合構造体を成形(molding )
するステップ含んでなる。好ましい実施の形態において
は、約360°F(182℃)までの温度および約10
0psi(7kg/cm2 )から約1000psi(7
0kg/cm2 )の圧力が、共に硬化し接着する工程の
間において、約30分間だけ複合構造体に対して加えら
れる。
According to the present invention, there is provided a novel method for forming a composite structure. The method comprises the steps of providing a core structure formed from a non-metallic material in an uncured or substantially uncured state, comprising, preferably, uncured or substantially uncured on a surface portion of the core structure. Forming a film of fluoroelastomer in an uncured state and having a curing temperature close to the curing temperature of the material of the core structure, wherein on the portion of the core structure, the inner surface is formed of the fluoroelastomer. Placing a metal structure in contact with the film, and co-cure the non-metallic core structure material and the fluoroelastomer film together to form a bond between the metal structure and the fluoroelastomer film Molding the composite structure under heat and pressure for a sufficient period of time to
Steps. In a preferred embodiment, temperatures up to about 360 ° F. (182 ° C.) and about 10 ° F.
0 psi (7 kg / cm 2 ) to about 1000 psi (7
A pressure of 0 kg / cm 2 ) is applied to the composite structure for about 30 minutes during the curing and bonding process together.

【0005】金属構造体が、イソプロピルアルコール溶
液のような溶剤でその内面を洗浄するとともに、その内
面から望ましくない酸化物および他の有害な材料を取り
除くために塩化第二鉄の酸性エッチング溶液(ferric c
hloride acid etching solution )内で金属構造体をエ
ッチングし、また新しい酸化物の生成を防止するととも
に表面の接着特性を改善するために前記金属構造体の前
記内面を下塗(prime)して用意された場合、接着の方
法の間において特に強固な接着が形成されることが見出
された。下塗するステップは、好ましくは、クロム酸ス
トロンチウム(strontium chromate)のような不溶性の
腐食抑制剤を含むエポキシ樹脂溶液を前記面に塗ること
を含んでなる。
[0005] The metal structure is cleaned with a solvent, such as an isopropyl alcohol solution, and the ferric chloride acidic etching solution (ferric chloride) to remove unwanted oxides and other harmful materials from the interior. c
The inner surface of the metal structure was primed to etch the metal structure in a hloride acid etching solution and to prevent the formation of new oxides and improve the adhesive properties of the surface. It has been found that particularly strong bonds are formed during the bonding process. The priming step preferably comprises painting the surface with an epoxy resin solution containing an insoluble corrosion inhibitor such as strontium chromate.

【0006】本発明の方法は、ジェットエンジンに使用
されるファン出口ガイドべーンのような翼形構造体の改
修において特別の有用性を持つことが見出された。ま
た、元の機器の製造および金属/複合物構造体の形成に
おいても有用性を有する。本発明の方法は、従来技術に
おいては極めて困難であった、ステンレススチールへの
接着のための優れた技術であることが見出された。本発
明の方法のその他の詳細、および他の目的並びに付随し
た特徴は、以下の詳細な説明および添付した図面に説明
されている。添付図面において、同じ参照数字は同じ要
素を示している。
The method of the present invention has been found to have particular utility in retrofitting airfoil structures such as fan exit guide vanes used in jet engines. It also has utility in the manufacture of original equipment and in the formation of metal / composite structures. The method of the present invention has been found to be an excellent technique for bonding to stainless steel, which was extremely difficult in the prior art. Other details and other objects and associated features of the method of the present invention are described in the following detailed description and the accompanying drawings. In the accompanying drawings, the same reference numerals indicate the same elements.

【0007】[0007]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。図1および図2は、本発明の方法を使用し
て形成された、ファン出口ガイドべーンのような、複合
構造体10の前縁部分を例示したものである。複合構造
体10は、好ましくは未硬化あるいは実質的に未硬化の
状態にある、非金属の複合材料から形成されたコア構造
体12、同様に好ましくは未硬化または実質的に未硬化
の状態にあり、コア構造体12の硬化温度に実質的に近
い硬化温度を有するフルオロエラストマーのフィルムの
材料層14、並びにコア構造体の前縁部分18の上に配
置された金属構造体16を含んでいる。
Embodiments of the present invention will be described below in detail. 1 and 2 illustrate a leading edge portion of a composite structure 10, such as a fan exit guide vane, formed using the method of the present invention. The composite structure 10 is preferably a core structure 12 formed of a non-metallic composite material, preferably in an uncured or substantially uncured state, as well as preferably in an uncured or substantially uncured state. And includes a material layer 14 of a film of fluoroelastomer having a curing temperature substantially close to the curing temperature of the core structure 12, as well as a metal structure 16 disposed on a leading edge portion 18 of the core structure. .

【0008】複合構造体10がファン出口ガイドべーン
に使用された場合、コア構造体12は、約350°F
(177℃)の硬化温度を有する複合グラファイト−エ
ポキシ材料(composite graphite-epoxy material )か
ら形成される。この材料は未硬化または実質的に未硬化
の状態であり、また1つまたはそれより多くのコアパイ
ル(core pile )20および1つまたはそれより多くの
シェルパイル(shell pile)22から構成される。典型
的には、全てのコアパイル20およびシェルパイル22
は同じ複合材料から形成される。コア構造体12は所望
の形状および厚さを有している。複合構造体がファン出
口ガイドべーンのような翼形構造体として使用される場
合には、コア構造体12は好ましくは空気力学的な形状
を有している。
[0008] If the composite structure 10 is used in a fan exit guide vane, the core structure 12 will be about 350 ° F.
Formed from a composite graphite-epoxy material having a curing temperature of (177 ° C.). The material is in an uncured or substantially uncured state and is composed of one or more core piles 20 and one or more shell piles 22. Typically, all core piles 20 and shell piles 22
Are formed from the same composite material. The core structure 12 has a desired shape and thickness. When the composite structure is used as an airfoil structure, such as a fan exit guide vane, the core structure 12 preferably has an aerodynamic shape.

【0009】フルオロエラストマーのフィルムの材料層
14は、約350°F(177℃)の硬化温度を有する
VITONフィルムから形成され、このフィルムは未硬
化または実質的に未硬化の状態である。このフィルム層
は通常は約0.008インチから約0.015インチ
(約0.002センチから約0.038センチ)の厚さ
を有している。VITONフィルムは、オハイオ州のC
uyahoga FallsのEagle Elast
omer社によって製造されたフルオロエラストマー製
品である(VITONはduPont社の登録商標であ
る)。なお、VITONフィルムは、フッ化ビニリデン
(vinylidene fluoride )とヘキサフルオロプロピレン
(hexafluoropropylene )の共重合体をベースとするフ
ルオロエラストマーのフィルムである。このフルオロエ
ラストマーのフィルムの材料層14は接着剤として機能
し、また、業界において公知の適当な技術を使用して、
コア構造体12の表面24に形成される。例えば、コア
構造体の前縁の表面24上にはけ塗り(brush )あるい
は塗装(paint )される。必要な場合には、フルオロエ
ラストマーのフィルムの層は、複合構造体10の前縁を
越えた表面24の部分に延在するように形成される。腐
食および異物損傷に対する保護を改善するために、金属
構造体16つまり金属シース(metallic sheath )が複
合構造体の前縁部分18の上に配置されている。この金
属構造体16は、AMS 5510のような鉄をベース
とする合金材料、あるいはAMS 5536またはAM
S 5599のようなニッケルをベースとする合金材料
から形成される。
The fluoroelastomer film material layer 14 is formed from a VITON film having a curing temperature of about 350 ° F. (177 ° C.), which film is in an uncured or substantially uncured state. This film layer typically has a thickness of about 0.008 inches to about 0.015 inches (about 0.002 cm to about 0.038 cm). VITON film is available from C
Eagle Elast of uyahoga Falls
is a fluoroelastomer product manufactured by Omer (VITON is a registered trademark of duPont). The VITON film is a fluoroelastomer film based on a copolymer of vinylidene fluoride and hexafluoropropylene. The material layer 14 of the fluoroelastomer film functions as an adhesive and can be formed using any suitable technique known in the art.
It is formed on the surface 24 of the core structure 12. For example, the leading edge surface 24 of the core structure may be brushed or painted. If necessary, a layer of the fluoroelastomer film is formed to extend over the portion of the surface 24 beyond the leading edge of the composite structure 10. To improve protection against corrosion and foreign object damage, a metal structure 16 or metal sheath is disposed over the leading edge portion 18 of the composite structure. The metal structure 16 may be an iron-based alloy material such as AMS 5510, or AMS 5536 or AM
Formed from a nickel-based alloy material such as S5599.

【0010】金属構造体16は固体構造体であることが
好ましく、この固体構造体により腐食および異物損傷に
対するより良い保護が行える。金属構造体16は、前縁
構造体として使用された場合、V形状で、また約0.0
05インチから約0.012インチ(約0.013セン
チから約0.03センチ)の範囲の厚さを有している。
The metal structure 16 is preferably a solid structure, which provides better protection against corrosion and foreign object damage. The metal structure 16, when used as a leading edge structure, is V-shaped and has a
It has a thickness in the range of from about 05 inches to about 0.012 inches (about 0.013 cm to about 0.03 cm).

【0011】複合構造体を形成するために、フルオロエ
ラストマーの接着剤の材料層14は最初にコア構造体1
2の外側の表面24の部分に形成される。上記したよう
に、接着材料は表面24の部分上にフィルムの形態で形
成される。
To form the composite structure, the fluoroelastomer adhesive material layer 14 is first applied to the core structure 1.
2 is formed on a portion of the outer surface 24. As mentioned above, the adhesive material is formed on the portion of the surface 24 in the form of a film.

【0012】接着剤の材料層14上に配置される前に、
前端の金属構造体16は、金属構造体16の内面26を
活性化し、これにより金属構造体16とコア構造体12
の間に形成される接着を大幅に改善するための、重要な
前処理プロセスを受ける。この重要な前処理プロセス
は、金属構造体16の内面26を洗浄し、酸化物を取り
除いて接着のための清浄な面を提供するために内面26
をエッチングし、また酸化物の形成を防止して最終的に
形成される接着の剥離強度(peel strength )を改善す
るために内面26を下塗することからなる。
Before being placed on the adhesive material layer 14,
The metal structure 16 at the front end activates the inner surface 26 of the metal structure 16, whereby the metal structure 16 and the core structure 12 are activated.
Undergoes an important pre-treatment process to significantly improve the adhesion formed between them. This important pretreatment process cleans the inner surface 26 of the metal structure 16 and removes the oxide to provide a clean surface for bonding.
And to prime the inner surface 26 to prevent oxide formation and improve the peel strength of the final bond formed.

【0013】好ましい前処理プロセスにおいては、金属
構造体16の内面26は最初に、試薬等級(reagent gr
ade )のイソプロピルアルコールあるいはアセトンのよ
うな適当な溶剤で湿らせた清浄な、サイズの特定されな
いチーズクロスを使用して、清浄に拭き取りされる。拭
き取りの後、内面は周囲温度で空気乾燥されるかあるい
は最大250°F(121℃)で炉乾される。乾燥時間
は、接着プロセスに有害な清浄化溶剤の跡を取り除くの
に十分なものである。
In a preferred pretreatment process, the inner surface 26 of the metal structure 16 is first treated with a reagent grade.
ade) is wiped clean using clean, unsized cheese cloth moistened with a suitable solvent such as isopropyl alcohol or acetone. After wiping, the inner surface is air dried at ambient temperature or oven dried at a maximum of 250 ° F (121 ° C). The drying time is sufficient to remove traces of cleaning solvents harmful to the bonding process.

【0014】その後、内面は、面上の何らかの酸化物を
取り除き、接着のための清浄な面を提供するために、塩
化第二鉄酸エッチング溶液を使用してエッチングされ
る。エッチング溶液の適用の前に、金属構造体16は、
Blue Gold Industrial Clea
nerの名称の商標で販売されているアルカリ洗浄剤あ
るいは同等なアルカリ洗浄剤をガロン当たり5オンス含
む溶液のようなアルカリ洗浄溶液内に浸漬される。金属
構造体は少なくとも5分間だけ溶液内に浸漬される。溶
液は好ましくは約120°F(49℃)から約160°
F(71℃)の範囲内の温度に維持される。アルカリ洗
浄溶液から取り除いた後、金属構造体16は冷水内で2
0秒から40秒の間だけ水洗される。
The inner surface is then etched using a ferric chloride etching solution to remove any oxide on the surface and provide a clean surface for bonding. Prior to the application of the etching solution, the metal structure 16
Blue Gold Industrial Clear
It is immersed in an alkaline cleaning solution, such as a solution containing 5 ounces per gallon of an alkaline cleaner sold under the trademark ner or equivalent. The metal structure is immersed in the solution for at least 5 minutes. The solution is preferably from about 120 ° F. (49 ° C.) to about 160 °
The temperature is maintained within the range of F (71 ° C.). After removal from the alkaline cleaning solution, the metal structure 16 is
Rinsed only for 0 to 40 seconds.

【0015】金属構造体の内面26のエッチングは、金
属構造体を塩化第二鉄の酸性エッチング溶液内に浸漬す
ることにより行われる。エッチング溶液は、80ガロン
(302.4リットル)の塩酸を用意し、135lbs
(61.3kg)の無水塩化第二鉄を少しづつ加え、混
合タンクを120°F(49℃)より低い温度に維持す
ることにで作られる。溶液が約90°F(32℃)の温
度まで冷えた後、2ガロン(7.56リットル)の硝酸
および11ガロン(41.6リットル)の水が加えられ
る。このエッチング操作は、好ましくは、室温で約14
分から16分の間だけ行われる。必要に応じて、内面2
6は、エッチングを開始する前に、20psi(1.4
kg/cm2 )の圧力で240メッシュの酸化アルミニ
ウムで研磨的あるいはグリットブラストされる。
The etching of the inner surface 26 of the metal structure is performed by immersing the metal structure in an acidic etching solution of ferric chloride. As an etching solution, 80 gallons (302.4 liters) of hydrochloric acid were prepared, and 135 lbs.
(61.3 kg) of anhydrous ferric chloride in portions, and made by maintaining the mixing tank below 120 ° F (49 ° C). After the solution has cooled to a temperature of about 90 ° F (32 ° C), 2 gallons (7.56 liters) of nitric acid and 11 gallons (41.6 liters) of water are added. This etching operation is preferably performed at room temperature for about 14 hours.
It takes place only between minutes and 16 minutes. If necessary, inner surface 2
6 is 20 psi (1.4) before starting etching.
Abrasive or grit blasted with 240 mesh aluminum oxide at a pressure of kg / cm 2 ).

【0016】エッチング操作が完了した後、金属構造体
は冷水中で約20秒間から40秒間の間だけすすぎ落と
しされ、その後、冷水を流して水洗される。内面26は
次いで、汚れあるいは他の有害な粒子が検査される。汚
れあるいは他の有害な粒子が見付かった場合には、好ま
しくは、拭き取りなどにより手作業で取り除かれる。そ
の後、金属構造体はさらに冷水を流して水洗される。水
洗の後、金属構造体16は好ましくは炉内に配置され、
また約140°F(60℃)から約160°F(71
℃)の範囲の温度において約14分から16分の範囲の
時間期間だけ乾燥される。
After the etching operation is completed, the metal structure is rinsed off in cold water for about 20 to 40 seconds, and then rinsed with running cold water. Inner surface 26 is then inspected for dirt or other harmful particles. If dirt or other harmful particles are found, they are preferably removed manually, such as by wiping. Thereafter, the metal structure is further washed with cold water. After rinsing, the metal structure 16 is preferably placed in a furnace,
Also, from about 140 ° F (60 ° C) to about 160 ° F (71 ° C).
C.) for a time period ranging from about 14 minutes to 16 minutes.

【0017】最後の前処理ステップとして、表面の酸化
を防止するとともに接着を改善するために内面26が下
塗される。下塗の操作は、クロム酸ストロンチウム(st
rontium chromate)のような不溶性の腐食抑制剤を含む
エポキシ樹脂溶液を、内面26に塗ることから構成され
る。下塗のエポキシ樹脂溶液を内面26に塗るために業
界において公知の適当な技術が使用される。下塗材(pr
imer)は適当な条件(250°F(121℃)で30分
間だけ空中)で硬化されなければならない。
As a final pretreatment step, the inner surface 26 is primed to prevent oxidation of the surface and improve adhesion. The undercoating operation is performed by strontium chromate (st
An epoxy resin solution containing an insoluble corrosion inhibitor, such as rontium chromate, is applied to inner surface 26. Any suitable technique known in the art can be used to apply the primer epoxy solution to inner surface 26. Undercoat material (pr
The imer must be cured under suitable conditions (250 ° F (121 ° C) for 30 minutes in air).

【0018】表面の前処理が完了した後は、金属構造体
16は、フルオロエラストマーの接着剤の材料層14と
接触する金属構造体の内面26を備えたコア構造体12
の前端部分の上に配置される。全体の複合構造体は次い
で、圧縮成形用金型のようなモールド(図示せず)の内
部に配置され、コア構造体12を形成するエポキシ−グ
ラファイト材料およびフルオロエラストマーの接着剤の
材料層14を共に硬化し、金属構造体16のエッチング
され下塗された内面26とフルオロエラストマーの接着
剤の材料層14の間に比較的強固な接着を生成するため
に、30分の時間だけ、熱と圧力を受ける。複合構造体
に加えられる圧力は好ましくは約100psi(7kg
/cm2 )から約1000psi(70kg/cm2
の範囲内である。モールド内で複合構造体に加えられる
温度は360°F(182℃)を越えてはならない。典
型的には、共に硬化し接着する操作の間において約35
0°F(177℃)の温度が使用される。
After the surface pre-treatment is completed, the metal structure 16 is provided with a core structure 12 having an inner surface 26 of the metal structure in contact with the fluoroelastomer adhesive material layer 14.
Is disposed on the front end portion of the. The entire composite structure is then placed inside a mold (not shown), such as a compression mold, and a layer of epoxy-graphite material and a fluoroelastomer adhesive material 14 forming a core structure 12 is provided. Heat and pressure are applied for a period of 30 minutes to cure together and create a relatively strong bond between the etched primed inner surface 26 of the metal structure 16 and the fluoroelastomer adhesive material layer 14. receive. The pressure applied to the composite structure is preferably about 100 psi (7 kg).
/ Cm 2 ) to about 1000 psi (70 kg / cm 2 )
Is within the range. The temperature applied to the composite structure in the mold must not exceed 360 ° F (182 ° C). Typically, about 35 during the curing and bonding operation together
A temperature of 0 ° F. (177 ° C.) is used.

【0019】ここで、金属構造体16上で洗浄、エッチ
ングおよび下塗の各ステップを組合わせて行うことは、
成形操作の間において接着を行うために重要であること
が見出された。また、コア構造体材料と接着剤の層の材
料を共に硬化することにより、二次的な接着操作の必要
がなくなることが見出された。この結果、複合構造体を
作るためのコストが非常に減じられる。本発明の方法の
最終結果として、ファン出口ガイドべーンのような、複
合構造体の前縁上の良好に接着された金属シースを得る
ことができ、腐食および異物損傷の保護が改良される。
Here, the combination of the steps of cleaning, etching and undercoating on the metal structure 16 is as follows.
It has been found to be important for the adhesion during the molding operation. It has also been found that co-curing the core structure material and the adhesive layer material eliminates the need for a secondary bonding operation. As a result, the cost for making the composite structure is greatly reduced. The end result of the method of the present invention is a well bonded metal sheath on the leading edge of the composite structure, such as a fan exit guide vane, with improved protection against corrosion and foreign object damage .

【0020】当業分野において、以前は、ステンレスス
チールへの接着は非常に困難であることが知られてい
る。本発明の方法では、AMS 5510のようなステ
ンレススチール材料を接着することができ、また、主に
VITON接着剤層内で発生する破壊において約20−
70lbs/inch幅(3.58−12.5kg/c
m幅)の範囲内の剥離強度を達成することができる。
In the prior art, it has previously been known that adhesion to stainless steel is very difficult. With the method of the present invention, a stainless steel material such as AMS 5510 can be bonded, and about 20-
70 lbs / inch width (3.512.5 kg / c
m width).

【0021】AMS 5510のようなステンレススチ
ール材料を使用して形成された前縁は特に有利であるこ
とが見出された。これは小さな粒子の急断試験を使用し
て実証された。このテストにおいて、0.125インチ
(0.32cm)径のスチールボールベアリングが、
0.012インチ(0.03cm)の厚さのワイヤメッ
シュ前縁あるいは0.010インチ(0.025cm)
の厚さのステンレススチール前縁のいずれかを有するフ
ァン出口ガイドべーンの前縁に発射された。図3は、ワ
イヤメッシュ前縁と比べた場合においてステンレススチ
ール前縁が示す小さな粒子の衝突における改善度を示し
たものである。ワイヤメッシュの前縁は0.25ft−
lb(0.035kg−m)の粒子エネルギーで穴が開
けられた。ステンレススチール前縁は0.6ft−lb
(0.083kg−m)までのエネルギーレベルの粒子
が衝突しても穴開きはなかった。0.25ft−lb
(0.035kg−m)において、ワイヤメッシュの前
縁と比べた場合において、ステンレススチールの前縁は
凹み深さが約40%減じられた。凹み深さよりも重要な
ことには、ワイヤメッシュ前縁と比べた場合、ステンレ
ススチール前縁の場合は穴開けに必要なエネルギーが1
40%よりも大きいことが実証された。
A leading edge formed using a stainless steel material such as AMS 5510 has been found to be particularly advantageous. This was demonstrated using a small particle break test. In this test, a 0.125 inch (0.32 cm) diameter steel ball bearing
0.012 inch (0.03 cm) thick wire mesh leading edge or 0.010 inch (0.025 cm)
At the leading edge of a fan exit guide vane having any of the following thicknesses of stainless steel leading edge. FIG. 3 shows the improvement in small particle impact exhibited by the stainless steel leading edge when compared to the wire mesh leading edge. The leading edge of the wire mesh is 0.25 ft-
Holes were drilled with a particle energy of lb (0.035 kg-m). 0.6ft-lb stainless steel leading edge
(0.083 kg-m), there was no hole even if the particles collided with energy levels up to (0.083 kg-m). 0.25 ft-lb
At (0.035 kg-m), the stainless steel leading edge had a pit depth reduction of about 40% when compared to the wire mesh leading edge. More importantly than the recess depth is that the stainless steel leading edge requires 1 less energy to drill when compared to the wire mesh leading edge.
It has been demonstrated that it is greater than 40%.

【0022】フルオロエラストマーのフィルムの延性特
性による、本発明の方法を使用して得られる剥離強度の
改良を実証するため、多数の複合材料の試験片が、成形
されたファン出口ガイドべーンから取り除かれた。各試
験片は、未硬化状態のエポキシ−グラファイトコア材
料、未硬化状態のVITON接着剤材料の中間層、並び
に上記した前処理プロセスを受け、接着剤材料の層の上
に配置された、AMS5510ステンレススチール材料
の層を有する複合構造体で構成される。各試験片はベー
ン圧縮成形用金型(vane compression mold )内に配置
され、また、コア材料とVITON接着剤材料を共に硬
化するとともにステンレススチール層をVITON材料
層に接合するために、30分間だけ500psi(35
kg/cm2 )の圧力および350°F(177℃)の
温度を受けた。
To demonstrate the improvement in peel strength obtained using the method of the present invention due to the ductile properties of the fluoroelastomer film, a number of composite specimens were prepared from a molded fan exit guide vane. Removed. Each specimen was an uncured epoxy-graphite core material, an uncured intermediate layer of VITON adhesive material, and an AMS5510 stainless steel, which was subjected to the pre-treatment process described above and placed over the layer of adhesive material. Consists of a composite structure having a layer of steel material. Each specimen was placed in a vane compression mold and only 30 minutes to cure the core material and the VITON adhesive material together and bond the stainless steel layer to the VITON material layer. 500 psi (35
kg / cm 2 ) and a temperature of 350 ° F (177 ° C).

【0023】試験片のいくつかは異なる条件を受けた。
1つの試験片は湿度条件(140°F(60℃)/95
%RH/14日)を受けた。2つの試験片は250°F
(121℃)で500時間だけエージングされた。他の
2つの試験片は0°F(−18℃)から250°F(1
21℃)の範囲の温度で100サイクルだけ熱サイクル
された。その後、各試験片に対する剥離強度がASTM
D3167により決定された。製造された試験片は7
5°F(24℃)において16から32lbs/inc
h(2.86から5.73kg/cm)幅の範囲内の剥
離強度を有していたが、湿度試験された試験片は75°
F(24℃)において46lbs/inch(8.23
kg/cm)幅の剥離強度を有しており、エージング試
験された試験片は75°F(24℃)において27lb
s/inch幅(4.83kg/cm幅)および41l
bs/inch幅(7.34kg/cm幅)の剥離強度
を有しており、またサイクル試験された試験片は75°
F(24℃)において18lbs/inch幅(3.7
2kg/cm幅)および21lbs/inch幅(3.
76kg/cm幅)の剥離強度を有していることが判っ
た。
Some of the specimens underwent different conditions.
One specimen was subjected to humidity conditions (140 ° F. (60 ° C.) / 95
% RH / 14 days). 250 ° F for two test pieces
Aged at (121 ° C.) for 500 hours. The other two specimens were from 0 ° F (-18 ° C) to 250 ° F (1
Thermal cycling was performed for 100 cycles at a temperature in the range of 21 ° C.). Thereafter, the peel strength of each test piece was determined by ASTM.
D3167. 7 specimens were produced
16 to 32 lbs / inc at 5 ° F (24 ° C)
h (2.86 to 5.73 kg / cm), but the test piece subjected to the humidity test had a peel strength of 75 °.
46 lbs / inch (8.23) at F (24 ° C.)
kg / cm) wide peel strength and the aged test specimen was 27 lb at 75 ° F (24 ° C).
s / inch width (4.83 kg / cm width) and 41 l
It has a peel strength of bs / inch width (7.34 kg / cm width), and the test piece subjected to the cycle test is 75 °
18 lbs / inch width at F (24 ° C.) (3.7
2 kg / cm width) and 21 lbs / inch width (3.
(76 kg / cm width).

【0024】試験結果はまた、本発明の方法により形成
されたステンレススチール前縁を備えた複合ファン出口
ガイドベーンの疲労強度が従来技術により形成された複
合ファンガイド出口ベーンおよびワイヤメッシュ前縁よ
りも大きいことを示している。
The test results also show that the fatigue strength of the composite fan exit guide vane with the stainless steel leading edge formed by the method of the present invention is greater than the composite fan guide exit vane and wire mesh leading edge formed by the prior art. It is big.

【0025】コア構造体12は未硬化または実質的に未
硬化の状態であることが好ましいが、本発明は硬化され
たグラファイト−エポキシ材料のような硬化されたコア
材料で形成することもできる。
Although the core structure 12 is preferably in an uncured or substantially uncured state, the present invention can also be formed with a cured core material, such as a cured graphite-epoxy material.

【0026】以上、本発明を翼形構造体上の前縁に適用
した例を説明したが、本発明の方法は、一般的な金属に
おいて複合材料を接合する用途にも使用でき、したがっ
て例示した実施の形態に限定されない。また、本発明の
方法は、接着剤接合のための適当な表面の前処理をした
他の金属(チタン、アルミニウム、ニッケル)にも同様
に適用できる。さらに、本方法は修理プロセスと同様に
元の機器の製造プロセスにおいても有用なものである。
While the present invention has been described with reference to the application of the present invention to a leading edge on an airfoil, the method of the present invention can also be used for joining composite materials in common metals, and is thus illustrated. The present invention is not limited to the embodiment. Also, the method of the present invention is equally applicable to other metals (titanium, aluminum, nickel) with suitable surface pretreatment for adhesive bonding. Further, the method is useful in the original equipment manufacturing process as well as in the repair process.

【0027】[0027]

【発明の効果】以上の通り、本発明によれば、翼形構造
体のような複合構造体の前縁を改修するための方法を提
供できる。また、本発明の方法によれば、経済的に有利
であり、に二次的な接着作業の必要を排除できる。さら
に、本発明の方法によれば、複合構造体の前縁上におけ
る腐食および異物損傷の保護が改善される。さらに、本
発明によれば、元の金属/複合体構造体の構成にも役立
つ方法を提供できる。さらに、本方法によれば、十分に
接着された複合構造体を提供できる。
As described above, the present invention provides a method for repairing the leading edge of a composite structure such as an airfoil structure. In addition, the method of the present invention is economically advantageous and eliminates the need for secondary bonding operations. Further, the method of the present invention provides improved protection against corrosion and foreign material damage on the leading edge of the composite structure. Further, according to the present invention, a method can be provided which is useful for the construction of the original metal / composite structure. Further, according to the present method, a sufficiently bonded composite structure can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる複合翼形構造体の部分的な断面
図である。
FIG. 1 is a partial cross-sectional view of a composite airfoil structure according to the present invention.

【図2】本発明に係わる複合構造体の前縁の拡大した断
面図である。
FIG. 2 is an enlarged sectional view of a leading edge of the composite structure according to the present invention.

【図3】ワイヤメッシュおよびステンレススチールの前
縁を有するファン出口ガイドべーン上の行われた急断試
験の結果を示したグラフである。
FIG. 3 is a graph showing the results of a snap test performed on a fan exit guide vane having a wire mesh and stainless steel leading edge.

【符号の説明】[Explanation of symbols]

10 複合構造体 12 コア構造体 14 フルオロエラストマーのフィルムの材料層 16 金属構造体 20 コアパイル 22 シェルパイル 24 表面 26 内面 DESCRIPTION OF SYMBOLS 10 Composite structure 12 Core structure 14 Fluoroelastomer film material layer 16 Metal structure 20 Core pile 22 Shell pile 24 Surface 26 Inner surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 クリストファー ジェイ.ハーテル アメリカ合衆国,コネチカット 06109, ウェザーズフィールド,サンセット ブー ルバード 64 (72)発明者 ジョン ジェイ.クライン アメリカ合衆国,コネチカット 06238, カベントリー,イーストビュー ドライブ 46 (72)発明者 ジョセフ ジェイ.パーコス ジェイアー ル. アメリカ合衆国,コネチカット 06423, イーストハダム,フィールドストーンズ ロード 60 ──────────────────────────────────────────────────続 き Continued on front page (72) Inventor Christopher Jay. Hartell United States, Connecticut 06109, Weathersfield, Sunset Boulevard 64 (72) Inventor John Jay. Klein United States, Connecticut 06238, Caventry, Eastview Drive 46 (72) Inventor Joseph Jay. Parkos Jr., Connecticut 06423, East Haddam, Fieldstones Road 60

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 複合構造体を形成するための方法におい
て、 未硬化の非金属複合材料から形成されたコア構造体を用
意するステップ、 前記コア構造体の表面部分上に未硬化のフルオロエラス
トマーのフィルムを形成するステップ、 前記コア構造体の部分上に、前記フルオロエラストマー
のフィルムと接触する内面を有する金属構造体を配置す
るステップ、並びに前記フルオロエラストマーのフィル
ムと前記非金属コア構造体の材料を共に硬化し前記フル
オロエラストマーのフィルムと前記金属構造体の前記内
面との間に結合を形成するために、十分な時間と熱と圧
力で、前記複合構造体を成形するステップを含んでなる
ことを特徴とする複合構造体の形成方法。
1. A method for forming a composite structure, comprising: providing a core structure formed from an uncured non-metallic composite material, wherein uncured fluoroelastomer is provided on a surface portion of the core structure. Forming a film; disposing a metal structure having an inner surface in contact with the fluoroelastomer film on a portion of the core structure; and removing the fluoroelastomer film and the non-metal core structure material. Molding the composite structure for a time, heat and pressure sufficient to cure together and form a bond between the fluoroelastomer film and the inner surface of the metal structure. A method for forming a composite structure.
【請求項2】 前記成形するステップが、約30分間、
約360°Fまでの温度、および約100psiから約
1000psiの圧力で実行されることを特徴とする請
求項1記載の方法。
2. The method according to claim 1, wherein the forming step comprises:
The method of claim 1, wherein the method is performed at a temperature of up to about 360 ° F and a pressure of about 100 psi to about 1000 psi.
【請求項3】 前記配置するステップの前に前記金属構
造体の内面を活性化するステップをさらに含み、 前記活性化するステップは、前記内面をイソプロピルア
ルコール溶液により拭き取ることで前記内面を洗浄する
とともに望ましくない酸化物および他の有害な材料を取
り除くために前記内面をエッチングすることからなり、
並びに前記活性化するステップがさらに、前記内面上で
の望ましくない酸化物の形成を実質的に防止するととも
に前記内面の接着特性を改良するために、前記内面に対
する不溶性の腐食抑制剤を含むエポキシ樹脂溶液を塗っ
て前記内面を下塗するステップを含むことを特徴とする
請求項1記載の方法。
3. The method according to claim 1, further comprising: activating an inner surface of the metal structure before the disposing step. The activating step includes cleaning the inner surface by wiping the inner surface with an isopropyl alcohol solution. Etching said inner surface to remove undesired oxides and other harmful materials;
And wherein the activating step further comprises an epoxy resin comprising an insoluble corrosion inhibitor for the inner surface to substantially prevent the formation of undesirable oxides on the inner surface and improve the adhesive properties of the inner surface. The method of claim 1 including the step of applying a solution to prime the interior surface.
【請求項4】 前記エッチングするステップが、前記内
面を備えた前記金属構造体を塩化第二鉄の酸性エッチン
グ溶液内でエッチングすることを含んでなることを特徴
とする請求項3記載の方法。
4. The method of claim 3, wherein said etching step comprises etching said metal structure with said inner surface in a ferric chloride acidic etching solution.
【請求項5】 前記コア構造体を用意するステップが、
未硬化状態のグラファイト−エポキシ材料から形成され
た複合構造体を用意することからなり、 前記フィルムを形成するステップが、フッ化ビニリデン
とヘキサフルオロプロピレンの共重合体をベースとする
フルオロエラストマーのフィルムを未硬化状態で前記コ
ア構造体の前記表面部分上に形成することからなり、さ
らに前記金属構造体を配置するステップが鉄をベースと
する合金あるいはニッケルをベースとする合金から形成
された前縁構造体を前記コア構造体の前縁部分上に配置
することを含んでなることを特徴とする請求項1記載の
方法。
5. The step of providing the core structure,
Providing a composite structure formed from an uncured graphite-epoxy material, wherein the step of forming the film comprises forming a film of a fluoroelastomer based on a copolymer of vinylidene fluoride and hexafluoropropylene. A leading edge structure formed from an iron-based alloy or a nickel-based alloy, wherein the step of disposing the metal structure comprises forming the metal structure in an uncured state on the surface portion of the core structure. The method of claim 1, comprising positioning a body on a leading edge portion of the core structure.
【請求項6】 硬化したグラファイトエポキシ材料から
形成されたコア構造体を用意するステップ、 フルオロエラストマーのフィルムを前記コア構造体の表
面部分に形成するステップ、 前記フルオロエラストマーのフィルムで覆われた前記コ
ア構造体の前縁部分上に金属の前縁構造体を配置するス
テップ、並びに前記フルオロエラストマーのフィルムを
備えた前記コア構造体および前記被覆された金属の前端
構造体をモールド内に配置するとともに共に硬化させ接
着を機能させるのに十分な時間だけ熱と圧力を加えるこ
とにより前記コア構造体と前記フルオロエラストマーの
フィルムの材料を共に硬化するとともに前記金属の前縁
構造体を前記コア構造体に接着するステップを含んでな
ることを特徴とするファン出口ガイドべーンの修復方
法。
Providing a core structure formed from a cured graphite epoxy material; forming a fluoroelastomer film on a surface portion of the core structure; the core covered with the fluoroelastomer film. Disposing a metal leading edge structure on a leading edge portion of the structure, and placing and co-locating the core structure with the fluoroelastomer film and the coated metal leading end structure in a mold; The material of the core structure and the fluoroelastomer film are cured together by applying heat and pressure for a time sufficient to cure and function the bond and bond the metal leading edge structure to the core structure. Repairing a fan exit guide vane, comprising the steps of:
【請求項7】 前記前縁構造体を配置するステップがス
テンレススチールの前縁構造体を前記コア構造体の前記
前縁部分上に配置することを含んでなり、 前記方法が、前記ステンレススチールの前縁構造体の内
面をイソプロピルアルコール溶液で拭き取ることにより
前記コア構造体の前記前縁部分上に配置する前に前記ス
テンレススチールの前縁構造体を前処理し、前記ステン
レススチールの前縁構造体を室温で約14分から16分
の範囲の時間だけ塩化第二鉄のエッチング溶液内でエッ
チングし、およびその後に不溶性の腐食抑制剤を含むエ
ポキシ樹脂溶液で前記内面を下塗することをさらに含む
ことを特徴とする請求項6記載の方法。
7. The step of disposing the leading edge structure comprises disposing a stainless steel leading edge structure on the leading edge portion of the core structure. Pre-treating the stainless steel leading edge structure prior to placing on the leading edge portion of the core structure by wiping an inner surface of the leading edge structure with an isopropyl alcohol solution, the stainless steel leading edge structure; Further etching at room temperature in a ferric chloride etching solution for a time ranging from about 14 minutes to 16 minutes, and subsequently priming said inner surface with an epoxy resin solution containing an insoluble corrosion inhibitor. 7. The method of claim 6, wherein:
【請求項8】 前記共に硬化させ接着するステップが約
360°Fまでの温度および約100psiから約10
00psiの圧力を約30秒までの時間だけ加えること
を含んでなることを特徴とする請求項7記載の方法。
8. The method of claim 1, wherein the co-curing and bonding step comprises a temperature of up to about 360.degree.
The method of claim 7, comprising applying a pressure of 00 psi for a time up to about 30 seconds.
【請求項9】 グラファイトエポキシ材料から形成され
たコア構造体を用意するステップ、 フルオロエラストマーのフィルムの接着剤を前記コア構
造体の表面部分に形成するステップ、 前記フルオロエラストマーのフィルムの接着剤で覆われ
た前記コア構造体の前縁部分上にステンレススチールの
前縁を配置するステップ、並びに前記フルオロエラスト
マーのフィルムの接着剤を備えた前記コア構造体および
前記被覆されたステンレススチールの前縁構造体をモー
ルド内に配置するともに共に硬化させ接着を機能させる
ために十分な時間だけ熱と圧力を加えることにより前記
コア構造体および前記フルオロエラストマーのフィルム
の接着剤材料を共に硬化するとともに前記ステンレスス
チールの前縁構造体を前記コア構造体に接着するステッ
プを含んでなることを特徴とするファン出口ガイドべー
ンの製造方法。
9. Providing a core structure formed from a graphite epoxy material, forming a fluoroelastomer film adhesive on a surface portion of the core structure, covering with a fluoroelastomer film adhesive. Disposing a stainless steel leading edge on the leading edge portion of the core structure and the core structure and the coated stainless steel leading edge structure with the fluoroelastomer film adhesive. The core structure and the fluoroelastomer film adhesive material are cured together by placing heat and pressure for a time sufficient to place the molds in the mold and cure together to function the bond and the stainless steel. Step for bonding the leading edge structure to the core structure Fan exit guide vane manufacturing method characterized by comprising.
【請求項10】 前記コア構造体の前記前縁上に配置す
る前に前記ステンレススチールの前縁構造体を前処理す
るステップをさらに含み、並びに前記前処理するステッ
プが、前記ステンレススチールの前縁構造体の内面をイ
ソプロピルアルコール溶液で拭き取り、前記ステンレス
スチールの前縁構造体を室温で約14分から16分の範
囲の時間だけ塩化第二鉄のエッチング溶液内でエッチン
グし、その後に不溶性の腐食抑制剤を含むエポキシ樹脂
溶液で前記内面を下塗することを含むことを特徴とする
請求項9記載の方法。
10. The stainless steel leading edge structure further comprising the step of pre-treating the stainless steel leading edge structure prior to placing on the leading edge of the core structure, and wherein the pre-treating step comprises: The inner surface of the structure is wiped with an isopropyl alcohol solution, and the stainless steel leading edge structure is etched in a ferric chloride etching solution at room temperature for a time in the range of about 14 to 16 minutes, followed by insoluble corrosion control. 10. The method of claim 9, comprising priming the inner surface with an epoxy resin solution containing an agent.
【請求項11】 前記共に硬化させ接着するステップ
が、約30秒間の時間だけ約360°Fまでの温度およ
び約100psiから約1000psiの圧力を加える
ことを含んでなることを特徴とする請求項9記載の方
法。
11. The method of claim 9, wherein the step of curing and bonding together comprises applying a temperature of up to about 360 ° F. and a pressure of about 100 psi to about 1000 psi for a time of about 30 seconds. The described method.
【請求項12】 前記フルオロエラストマーのフィルム
の接着剤がフッ化ビニリデンとヘキサフルオロプロピレ
ンの共重合体をベースとするフルオロエラストマー材料
から形成されることを特徴とする請求項9記載の方法。
12. The method of claim 9, wherein the fluoroelastomer film adhesive is formed from a fluoroelastomer material based on a copolymer of vinylidene fluoride and hexafluoropropylene.
【請求項13】 非金属の複合材料から形成されたコア
構造体、 前記コア構造体の硬化温度に実質的に近い硬化温度を有
し、前記コア構造体の部分上に位置されたフルオロエラ
ストマーのフィルム材料、並びに前記フルオロエラスト
マーのフィルム材料上に配置された金属構造体を含んで
なることを特徴とする複合物。
13. A core structure formed from a non-metallic composite material, comprising: a fluoroelastomer having a curing temperature substantially close to a curing temperature of the core structure and positioned on a portion of the core structure. A composite comprising a film material and a metal structure disposed on the fluoroelastomer film material.
【請求項14】 前記コア構造体および前記フルオロエ
ラストマーのフィルム材料がそれぞれ約350°Fの硬
化温度を有していることを特徴とする請求項13記載の
複合物。
14. The composite of claim 13, wherein said core structure and said fluoroelastomer film material each have a cure temperature of about 350 ° F.
【請求項15】 前記コア構造体が未硬化または実質的
に未硬化状態にある複合グラファイト−エポキシ材料に
より形成されるとともに、前記フルオロエラストマーの
フィルム材料が硬化または未硬化状態にあるフッ化ビニ
リデンとヘキサフルオロプロピレンの共重合体をベース
とするフルオロエラストマー材料により形成されている
ことを特徴とする請求項13記載の複合物。
15. The vinylidene fluoride wherein the core structure is formed of an uncured or substantially uncured composite graphite-epoxy material and the fluoroelastomer film material is in a cured or uncured state. 14. The composite of claim 13, formed from a fluoroelastomer material based on a copolymer of hexafluoropropylene.
【請求項16】 前記金属構造体が鉄をベースとする合
金、ステンレススチールあるいはニッケルをベースとす
る合金から形成されていることを特徴とする請求項15
記載の複合物。
16. The metal structure according to claim 15, wherein the metal structure is formed from an iron-based alloy, stainless steel, or a nickel-based alloy.
A composite as described.
【請求項17】 前記複合物が翼形からなり、前記金属
構造体が前記翼形の前縁を形成することを特徴とする請
求項13記載の複合物。
17. The composite of claim 13, wherein said composite comprises an airfoil, and wherein said metal structure forms a leading edge of said airfoil.
【請求項18】 前記コア構造体およびフルオロエラス
トマーのフィルム材料が共に硬化されることを特徴とす
る請求項13記載の複合物。
18. The composite of claim 13, wherein the core structure and the fluoroelastomer film material are both cured.
JP9057351A 1996-05-29 1997-03-12 Method of forming composite structure and composite Expired - Fee Related JP2828168B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US654,880 1991-02-11
US08/654,880 US5876651A (en) 1996-05-29 1996-05-29 Method for forming a composite structure

Publications (2)

Publication Number Publication Date
JPH1016133A true JPH1016133A (en) 1998-01-20
JP2828168B2 JP2828168B2 (en) 1998-11-25

Family

ID=24626613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9057351A Expired - Fee Related JP2828168B2 (en) 1996-05-29 1997-03-12 Method of forming composite structure and composite

Country Status (7)

Country Link
US (2) US5876651A (en)
EP (1) EP0813956B1 (en)
JP (1) JP2828168B2 (en)
KR (1) KR100219991B1 (en)
DE (1) DE69700019T2 (en)
SG (1) SG50822A1 (en)
TW (1) TW343173B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207423A (en) * 2004-01-21 2005-08-04 General Electric Co <Ge> Method and device for assembling gas turbine engine

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19956394B4 (en) * 1999-11-24 2005-02-03 Airbus Deutschland Gmbh Process for producing a profile from a hybrid material
US6607627B2 (en) 2001-03-05 2003-08-19 Premark Rwp Holdings, Inc. Compound injection molded high pressure laminate flooring
US6631686B2 (en) 2001-03-19 2003-10-14 Premark Rwp Holdings Inc. Insert injection molded laminate work surface
US6779757B2 (en) * 2002-06-28 2004-08-24 Lockheed Martin Corporation Preforms for acute structural edges
JP3962927B2 (en) * 2003-05-01 2007-08-22 信越化学工業株式会社 Method for removing sealing material protecting electrical and electronic parts
DE10326719A1 (en) * 2003-06-06 2004-12-23 Rolls-Royce Deutschland Ltd & Co Kg Compressor blade base for engine blades of aircraft engines
US7622178B2 (en) * 2006-04-03 2009-11-24 United Technologies Corporation Metallic doubler repair of composite arcuate flanges
US7727349B2 (en) 2006-04-03 2010-06-01 United Technologies Corporation Metallic double repair of composite arcuate flanges
US20080072569A1 (en) * 2006-09-27 2008-03-27 Thomas Ory Moniz Guide vane and method of fabricating the same
US20080082379A1 (en) * 2006-09-28 2008-04-03 United Technologies Corp. Technical performance measures management process and system
US7780420B1 (en) 2006-11-16 2010-08-24 Florida Turbine Technologies, Inc. Turbine blade with a foam metal leading or trailing edge
US20090120101A1 (en) * 2007-10-31 2009-05-14 United Technologies Corp. Organic Matrix Composite Components, Systems Using Such Components, and Methods for Manufacturing Such Components
US7805839B2 (en) * 2007-12-31 2010-10-05 Turbine Engine Components Technologies Corporation Method of manufacturing a turbine fan blade
ITTO20080013A1 (en) * 2008-01-09 2009-07-10 Rosati Flii S R L VARIABLE GEOMETRY FAN AND PROCEDURE FOR THE MANUFACTURE OF THE RELATED PALLETS
US8177513B2 (en) 2009-02-18 2012-05-15 General Electric Company Method and apparatus for a structural outlet guide vane
US20110054850A1 (en) * 2009-08-31 2011-03-03 Roach James T Composite laminate construction method
US8672609B2 (en) 2009-08-31 2014-03-18 United Technologies Corporation Composite fan containment case assembly
US8827629B2 (en) 2011-02-10 2014-09-09 United Technologies Corporation Case with ballistic liner
WO2011051362A2 (en) * 2009-10-28 2011-05-05 Siemens Aktiengesellschaft Turbine blade of a turbine stage of a steam turbine and rotor blading or guide blading of a turbine stage of a steam turbine
US8807931B2 (en) * 2010-01-04 2014-08-19 General Electric Company System for impact zone reinforcement
DE102010006384A1 (en) * 2010-01-29 2011-08-04 Lufthansa Technik AG, 22335 Repair method for a composite component for an aircraft, composite component for an aircraft and apparatus for repairing a composite component for an aircraft
EP2366871B1 (en) * 2010-03-17 2016-05-11 General Electric Company Method and apparatus for a structural outlet guide vane
US8794925B2 (en) 2010-08-24 2014-08-05 United Technologies Corporation Root region of a blade for a gas turbine engine
WO2012113623A1 (en) * 2011-02-22 2012-08-30 Siemens Aktiengesellschaft Turbine blade and method for producing a turbine blade
US9068476B2 (en) 2011-12-22 2015-06-30 Pratt & Whitney Canada Corp. Hybrid metal/composite link rod for turbofan gas turbine engine
FR2993942B1 (en) * 2012-07-24 2017-03-24 Snecma AUBE TURBOMACHINE COMPOSITE WITH STRUCTURAL REINFORCEMENT
CN103158857B (en) * 2013-03-01 2015-11-25 溧阳市科技开发中心 A kind of composite wing
FR3008920B1 (en) 2013-07-29 2015-12-25 Safran METHOD FOR MANUFACTURING A BLADE IN COMPOSITE MATERIAL WITH INTEGRATED METAL ATTACK FRAME FOR AERONAUTICAL GAS TURBINE ENGINE
EP3049635B1 (en) * 2013-09-17 2019-02-06 United Technologies Corporation Aluminum airfoil with titanium coating
US10730151B2 (en) * 2014-01-03 2020-08-04 Raytheon Technologies Corporation Systems and methods for airfoil assembly
JP6278191B2 (en) * 2014-04-07 2018-02-14 株式会社Ihi COMPOSITE WING AND METHOD FOR PRODUCING COMPOSITE WING
US9745851B2 (en) 2015-01-15 2017-08-29 General Electric Company Metal leading edge on composite blade airfoil and shank
FR3041684B1 (en) * 2015-09-28 2021-12-10 Snecma DAWN INCLUDING AN ATTACK EDGE SHIELD AND PROCESS FOR MANUFACTURING THE DAWN
US11149642B2 (en) 2015-12-30 2021-10-19 General Electric Company System and method of reducing post-shutdown engine temperatures
US11053861B2 (en) 2016-03-03 2021-07-06 General Electric Company Overspeed protection system and method
GB2549113A (en) * 2016-04-05 2017-10-11 Rolls Royce Plc Composite bodies and their manufacture
US10337405B2 (en) 2016-05-17 2019-07-02 General Electric Company Method and system for bowed rotor start mitigation using rotor cooling
US10583933B2 (en) 2016-10-03 2020-03-10 General Electric Company Method and apparatus for undercowl flow diversion cooling
US10563662B2 (en) * 2016-11-04 2020-02-18 General Electric Company Metal surface preparation
CN106762813B (en) * 2017-03-31 2019-09-17 中国航发商用航空发动机有限责任公司 A kind of fan blade
US10947993B2 (en) 2017-11-27 2021-03-16 General Electric Company Thermal gradient attenuation structure to mitigate rotor bow in turbine engine
US11931981B2 (en) 2018-01-29 2024-03-19 General Electric Company Reinforced composite blade and method of making a blade
FR3084401B1 (en) * 2018-07-24 2021-04-23 Safran Aircraft Engines TURBOMACHINE VANE INCLUDING A STRUCTURAL REINFORCEMENT GLUED USING A JOINT OF ADHESIVE WITH INCREASED TENACITY
GB201816894D0 (en) * 2018-10-17 2018-11-28 Rolls Royce Plc Component shielding
US11946391B2 (en) * 2021-03-11 2024-04-02 General Electric Company Turbine engine with composite airfoil having a non-metallic leading edge protective wrap
US11879411B2 (en) 2022-04-07 2024-01-23 General Electric Company System and method for mitigating bowed rotor in a gas turbine engine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477375A (en) * 1944-03-22 1949-07-26 Jablonsky Bruno Method of manufacturing hollow articles of bonded fibrous laminae
US2767461A (en) * 1951-03-27 1956-10-23 Lockheed Aircraft Corp Method of making propeller or rotor blade
US3600103A (en) * 1969-10-06 1971-08-17 United Aircraft Corp Composite blade
US3892612A (en) * 1971-07-02 1975-07-01 Gen Electric Method for fabricating foreign object damage protection for rotar blades
US3762835A (en) * 1971-07-02 1973-10-02 Gen Electric Foreign object damage protection for compressor blades and other structures and related methods
DE2153434B2 (en) * 1971-10-27 1972-11-09 Licentia Patent Verwaltungs GmbH, 6000 Frankfurt FASTENING OF EROSION PROTECTION EDGES TO AIRPLANE PROFILES
US3949894A (en) * 1975-01-02 1976-04-13 Goodyear Aerospace Corporation Laminated container
US4006999A (en) * 1975-07-17 1977-02-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Leading edge protection for composite blades
US4000956A (en) * 1975-12-22 1977-01-04 General Electric Company Impact resistant blade
US4111606A (en) * 1976-12-27 1978-09-05 United Technologies Corporation Composite rotor blade
SU730743A1 (en) * 1977-04-06 1980-04-30 Предприятие П/Я Р-6476 Multilayer thin-sheet polymeric material
US4314892A (en) * 1978-12-14 1982-02-09 British Aerospace Mechanical damage resistant members and electro-plating rubber or rubber-like material
US4428998A (en) * 1979-12-21 1984-01-31 Rockwell International Corporation Laminated shield for missile structures and substructures
US4594761A (en) * 1984-02-13 1986-06-17 General Electric Company Method of fabricating hollow composite airfoils
FR2617119B1 (en) * 1987-06-26 1989-12-01 Aerospatiale BLADE OF COMPOSITE MATERIALS, WITH STRUCTURAL CORE AND PROFILED COVERING COVERING, AND MANUFACTURING METHOD THEREOF
US4842663A (en) * 1988-04-29 1989-06-27 Kramer Leslie D Steam turbine blade anti-erosion shield and method of turbine blade repair
US4895491A (en) * 1988-06-17 1990-01-23 Environmental Elements Corp. Fan blade protection system
DE8809363U1 (en) * 1988-07-22 1988-09-08 Textar Kupplungs- Und Industriebelaege Gmbh, 5090 Leverkusen, De
US4954382A (en) * 1988-11-01 1990-09-04 American Cyanamid Company Interleaf layer in fiber reinforced resin laminate composites
USH788H (en) * 1989-05-31 1990-06-05 The United States Of America As Represented By The Secretary Of The Air Force Method for bonding plastic to metal
GB8918086D0 (en) * 1989-08-08 1989-09-20 Ciba Geigy Coating compositions
US5174024A (en) * 1990-09-17 1992-12-29 Sterrett Terry L Tail rotor abrasive strip
US5141400A (en) * 1991-01-25 1992-08-25 General Electric Company Wide chord fan blade
US5392514A (en) * 1992-02-06 1995-02-28 United Technologies Corporation Method of manufacturing a composite blade with a reinforced leading edge
US5296183A (en) * 1992-08-21 1994-03-22 Dow-United Technologies Composite Products, Inc. Method for comolding property enhancing coatings to composite articles
US5344515A (en) * 1993-03-01 1994-09-06 Argo-Tech Corporation Method of making a pump housing
US5344280A (en) * 1993-05-05 1994-09-06 General Electric Company Impact resistant fan case liner
US5449273A (en) * 1994-03-21 1995-09-12 United Technologies Corporation Composite airfoil leading edge protection
US5486096A (en) * 1994-06-30 1996-01-23 United Technologies Corporation Erosion resistant surface protection
US5786285A (en) * 1996-05-14 1998-07-28 United Technologies Corporation Elastomer coated layer for erosion and/or fire protection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207423A (en) * 2004-01-21 2005-08-04 General Electric Co <Ge> Method and device for assembling gas turbine engine

Also Published As

Publication number Publication date
JP2828168B2 (en) 1998-11-25
KR100219991B1 (en) 1999-09-01
US5876651A (en) 1999-03-02
EP0813956A1 (en) 1997-12-29
KR970074977A (en) 1997-12-10
EP0813956B1 (en) 1998-08-26
TW343173B (en) 1998-10-21
US5965240A (en) 1999-10-12
DE69700019D1 (en) 1998-10-01
DE69700019T2 (en) 1999-03-25
SG50822A1 (en) 1998-07-20

Similar Documents

Publication Publication Date Title
JP2828168B2 (en) Method of forming composite structure and composite
JP4184031B2 (en) Method for removing metal cladding from an airfoil substrate
US5113582A (en) Method for making a gas turbine engine component
US5210944A (en) Method for making a gas turbine engine component
JP3751635B2 (en) Erosion resistant surface protection
EP2204473A2 (en) Hard anodize of cold spray aluminum layer
US6454870B1 (en) Chemical removal of a chromium oxide coating from an article
CA2057954C (en) Porous laminate surface coating method
WO2014150362A1 (en) Blades and manufacture methods
CN100392152C (en) Method for removing a layer area of a component
US20190368068A1 (en) Methods of preparing 7xxx aluminum alloys for adhesive bonding, and products relating to the same
US20200141419A1 (en) Metal surface preparation
Haak et al. Surface treatment of AM355 stainless steel for adhesive bonding
US6562289B1 (en) Method for improving the corrosion protection of permanent magnets containing rare earth metals
US6544002B1 (en) Method of chemical pretreatment of a lightweight jet engine fan blade
EP3434865A1 (en) Method to strip and recoat erosion coatings applied to fan blades and structural guide vanes
EP3748125A1 (en) Methods for repairing a multi-layer coated component
US20070039175A1 (en) Methods for repairing turbine engine components
JP3479753B2 (en) Steel surface treatment method and aqueous chromate treatment liquid
US20190366603A1 (en) Metal and plastic composite material and method for making same
EP3143183A1 (en) Method for manufacturing a process apparatus and a process apparatus
US20240018640A1 (en) Method for surface treatment by selective removal of a bonding primer on a titanium or titanium alloy substrate
JP5436782B2 (en) Aluminum wheel manufacturing method and aluminum wheel
JP5406505B2 (en) Aqueous chemical conversion liquid and chemical conversion stainless steel sheet
KR20040084111A (en) A making methods of steel panle for outside construction and the steel panel thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees