JPH10147827A - Hydrogen storage alloy and its production - Google Patents

Hydrogen storage alloy and its production

Info

Publication number
JPH10147827A
JPH10147827A JP8308170A JP30817096A JPH10147827A JP H10147827 A JPH10147827 A JP H10147827A JP 8308170 A JP8308170 A JP 8308170A JP 30817096 A JP30817096 A JP 30817096A JP H10147827 A JPH10147827 A JP H10147827A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
alloy
less
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8308170A
Other languages
Japanese (ja)
Inventor
Toru Yamamoto
徹 山本
Yoichiro Tsuji
庸一郎 辻
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8308170A priority Critical patent/JPH10147827A/en
Publication of JPH10147827A publication Critical patent/JPH10147827A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hydrogen storage alloy electrode having a large capacity at a room temp. and excellent cycling characteristics by regulating the compsn. of a hydrogen storage alloy to the one in which specified amounts of Cr, Mo or the like and rare earth elements are blended into Mg and Ni and forming the alloy phases thereof into an amorphous structure. SOLUTION: This hydrogen storage alloy has a compsn. expressed by the general formula of MgMx Niy-x , where, in the formula, M denotes at least one kinds of element selected from Cr, Mo, W, V, Co, Fe, Cu, Pb, Ag, Al, Mn, Zn, Zr, In, Ga, Hf, Si, B, P and rare earth elements, and as for (x) and (y), 0.05<=x<=0.4 and 0.5<=y<=2 are satisfied. Moreover, the alloy phases thereof are formed into an amorphous structure. The alloy is produced, e.g. by alloying Mg, Ni and M under the conditions in which F/t satisfies <=3×10<-6> sec<2> /g in the case the thickness of the alloy layer adhered to the surfaces of a ball and a pot is defined as (t) and the centrifugal force applied to the ball as F by a mechanical alloying method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電気化学的な水素の吸
蔵・放出を可逆的に行える水素吸蔵合金、およびその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy capable of reversibly storing and releasing electrochemical hydrogen, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、ポータブル機器、コードレス機器
の発展に伴い、その電源である電池にはより一層の高エ
ネルギ−密度、高性能が要求されている。この要求に対
してリチウムイオン電池とほぼ同等の体積エネルギー密
度を持ち、過充電や過放電に強い水素吸蔵合金を負極に
用いたニッケル−水素蓄電池が注目されている。この種
の水素吸蔵合金電極に用いられる合金としては、MmN
5系の多元系合金が主流である。しかし、機器の高性
能化にともない放電容量がさらに大きい新規水素吸蔵合
金材料が望まれている。これに対して、大きな水素吸蔵
量を持つ合金として、体心立方構造(以下bccと略
す)型のTiV系水素吸蔵合金、例えばTixyNiz
合金(特開平6−228699号公報)やMg2Ni系
合金(特開昭61−199045号公報)などが提案さ
れている。
2. Description of the Related Art In recent years, with the development of portable devices and cordless devices, batteries as power sources have been required to have higher energy density and higher performance. In response to this demand, a nickel-hydrogen storage battery using a hydrogen storage alloy having a volume energy density substantially equal to that of a lithium ion battery and having high resistance to overcharge and overdischarge for a negative electrode has been receiving attention. The alloy used for this type of hydrogen storage alloy electrode is MmN
i 5-based multi-component alloy of the mainstream. However, there is a demand for a new hydrogen storage alloy material having a larger discharge capacity as the performance of devices increases. On the other hand, as an alloy having a large hydrogen storage capacity, a body-centered cubic (hereinafter abbreviated as bcc) type TiV-based hydrogen storage alloy, for example, Ti x V y Ni z
Alloys (JP-A-6-228699) and Mg 2 Ni-based alloys (JP-A-61-199045) have been proposed.

【0003】[0003]

【発明が解決しようとする課題】TiV系のbcc型水
素吸蔵合金では、圧力組成等温線図(以下PCT曲線と
呼ぶ)においてプラトー(平坦部)が2つ存在し、水素
吸蔵量は大きいが、電極としての放電容量は一段目のプ
ラトーが低すぎて使えずあまり大きくない。さらに、水
素吸蔵に伴い結晶構造が変化しサイクル特性が悪いとい
う問題を有している。一方、Mg2Ni系合金は、水素
吸蔵量が1000mAh/g近くあるが、プラトーが非
常に低く室温では吸蔵された水素が放出されず、250
℃を越す高温でしか放電できないため、電極材料として
は使用できなかった。最近になって、メカニカルアロイ
ング法でMg2NiおよびMgNi合金を作製し、さら
に表面処理することにより、室温で高容量(500mA
h/g程度)が達成されることが見出された(例えば、
電気化学会第63回講演要旨集147頁(199
6))。
The TiV-based bcc type hydrogen storage alloy has two plateaus (flat portions) in a pressure composition isotherm (hereinafter referred to as a PCT curve) and has a large hydrogen storage amount. The discharge capacity as an electrode is not very large because the first-stage plateau is too low to be used. Further, there is a problem that the crystal structure changes with the occlusion of hydrogen and the cycle characteristics are poor. On the other hand, the Mg 2 Ni-based alloy has a hydrogen storage amount of nearly 1000 mAh / g, but has a very low plateau and does not release the stored hydrogen at room temperature.
Since it can be discharged only at a high temperature exceeding ℃, it could not be used as an electrode material. Recently, Mg 2 Ni and MgNi alloys are produced by a mechanical alloying method, and further subjected to a surface treatment to obtain a high capacity (500 mA) at room temperature.
h / g) has been found to be achieved (eg,
Proceedings of the 63rd Annual Meeting of the Institute of Electrical Chemistry, 147 pages (199
6)).

【0004】高周波溶解鋳造法やアーク溶解法で作製し
たMgNi系合金は、結晶構造(立方晶系)を有してい
るが、メカニカルアロイング法によって作製された合金
は粉末X線回折ピークがブロードでアモルファス構造を
とることがわかってきた。アモルファス構造をとること
で室温でのPCT曲線はあまり変わらないが、電気化学
的な活性が大幅に向上し、室温での充放電が可能となる
ものと思われる。しかし、初期容量は高いが充放電サイ
クルによる放電容量の低下が大きいという問題を有して
おり、実用には適さない。従来、結晶性のMgNi系合
金においては、MgNiに希土類元素,Ca,Cu,Z
n,Pb,Sn,In,Li,Cd,Al,Ag,B
e,V,Cr,Fe,Co、Mnなどを添加することに
より、プラトー圧を上げ、少しでも動作温度を下げる試
みがされてきた。しかし、いずれの元素を添加しても結
晶性を有し、150℃以下に動作温度を下げることは困
難であり、サイクル特性も殆ど改善されていない(例え
ば、特開昭61−199045号公報)。
[0004] MgNi-based alloys produced by high-frequency melting casting or arc melting have a crystal structure (cubic system), whereas alloys produced by mechanical alloying have broad X-ray powder diffraction peaks. Has been found to have an amorphous structure. Although the PCT curve at room temperature does not change much by adopting an amorphous structure, it is considered that the electrochemical activity is greatly improved and charging and discharging at room temperature are possible. However, although the initial capacity is high, there is a problem that the discharge capacity is greatly reduced by the charge / discharge cycle, which is not suitable for practical use. Conventionally, in a crystalline MgNi-based alloy, a rare earth element, Ca, Cu, Z
n, Pb, Sn, In, Li, Cd, Al, Ag, B
Attempts have been made to increase the plateau pressure and lower the operating temperature even slightly by adding e, V, Cr, Fe, Co, Mn and the like. However, any of the elements has crystallinity, it is difficult to lower the operating temperature to 150 ° C. or less, and the cycle characteristics are hardly improved (for example, JP-A-61-199045). .

【0005】本発明は、室温で容量が高く、かつサイク
ル特性にも優れた水素吸蔵合金電極を与えるMgNi系
水素吸蔵合金を提供することを目的とする。
An object of the present invention is to provide an MgNi-based hydrogen storage alloy which has a high capacity at room temperature and provides a hydrogen storage alloy electrode having excellent cycle characteristics.

【0006】[0006]

【課題を解決するための手段】本発明の水素吸蔵合金
は、一般式MgMxNiy-x(MはCr,Mo,W,V,
Co,Fe,Cu,Pb,Ag,Al,Mn,Zn,Z
r,In,Ga,Hf,Si,B,P,および希土類元
素からなる群より選ばれる少なくとも1種の元素、0.
05≦x≦0.4,0.5≦y≦2)で表され、合金相
がアモルファス構造であることを特徴とするものであ
る。ここでアモルファス構造とは、粉末X線回折パター
ンにおいてMg2NiやMgNi2に基づく鋭いピークの
ないものを言う。
Means for Solving the Problems The hydrogen storage alloy of the present invention has a general formula MgM x Ni yx (M is Cr, Mo, W, V,
Co, Fe, Cu, Pb, Ag, Al, Mn, Zn, Z
at least one element selected from the group consisting of r, In, Ga, Hf, Si, B, P, and rare earth elements;
05 ≦ x ≦ 0.4, 0.5 ≦ y ≦ 2), wherein the alloy phase has an amorphous structure. Here, the amorphous structure refers to a structure having no sharp peak based on Mg 2 Ni or MgNi 2 in a powder X-ray diffraction pattern.

【0007】本発明の水素吸蔵合金の製造方法は、ボー
ルミルを用いたメカニカルアロイング法により、ボール
およびポットの表面に付着する合金層厚さをt、ボール
にかかる遠心力をFとしたとき、F/tが3×10-6
ec2/g以下の条件でMg、Ni、およびMを合金化
して前記の水素吸蔵合金を得ることを特徴とする。ま
た、本発明は、上記の水素吸蔵合金粉末と高結晶性カー
ボンまたはNi微粉末の混合物に、不活性ガス雰囲気中
において遊星ボールミル、ハイブリダイゼーション法ま
たはメカノフュージョン法を用いて機械的な応力を加え
ることにより、前記水素吸蔵合金粉末の表面に前記高結
晶性カーボンまたはNi微粉末を付着させる水素吸蔵合
金の製造方法を提供する。
In the method for producing a hydrogen storage alloy of the present invention, the thickness of an alloy layer adhering to the surface of a ball and a pot is represented by t, and the centrifugal force acting on the ball is represented by F by a mechanical alloying method using a ball mill. F / t is 3 × 10 -6 s
It is characterized in that Mg, Ni, and M are alloyed under the condition of ec 2 / g or less to obtain the hydrogen storage alloy. Further, the present invention applies a mechanical stress to a mixture of the above-mentioned hydrogen storage alloy powder and highly crystalline carbon or Ni fine powder by using a planetary ball mill, a hybridization method or a mechanofusion method in an inert gas atmosphere. This provides a method for producing a hydrogen storage alloy in which the highly crystalline carbon or Ni fine powder is attached to the surface of the hydrogen storage alloy powder.

【0008】[0008]

【発明の実施の形態】MgおよびNiに第三成分または
それ以上の成分元素を添加すると、これら元素の無添加
での通常のメカニカルアロイング条件ではアモルファス
化が困難となり、得られる合金の室温での放電容量が極
端に低下する。本発明者らは、鋭意検討した結果、メカ
ニカルアロイング時に合金粉末に非常に大きな剪断力を
加えることによってアモルファス化が達成できることを
見いだした。すなわち、ボールおよびポットの表面に付
着する合金層厚さをt、ボールにかかる遠心力をFとし
たとき、t/F(以下α値という)を3×10-6sec
2/g以下とすることが重要となる。α値がこの値より
大きいと、たとえメカニカルアロイングの時間を非常に
長く、例えば1カ月以上としてもアモルファス化が達成
できなかった。従来は、α値は5×10-5sec2/g
以上であった。なお、ボール重量をw、ポット半径を
r、角速度をsとすると、F=w・r・s2で表され
る。
BEST MODE FOR CARRYING OUT THE INVENTION When a third component or more component elements are added to Mg and Ni, it becomes difficult to amorphize under ordinary mechanical alloying conditions without the addition of these elements. Discharge capacity is extremely reduced. As a result of intensive studies, the present inventors have found that amorphousization can be achieved by applying a very large shearing force to the alloy powder during mechanical alloying. That is, assuming that the thickness of the alloy layer adhering to the surface of the ball and the pot is t, and the centrifugal force applied to the ball is F, t / F (hereinafter referred to as α value) is 3 × 10 −6 sec.
It is important that the content be 2 / g or less. If the α value is larger than this value, the mechanical alloying time is very long, for example, even if it is longer than one month, the amorphous state cannot be achieved. Conventionally, the α value is 5 × 10 −5 sec 2 / g
That was all. Incidentally, the ball weight w, the pot radius r, when the angular velocity and s, is expressed by F = w · r · s 2 .

【0009】なお、結晶性Mg2Niに各種添加元素を
加えて、動作温度を下げる検討は今までいくつか行われ
て来た。その目的は、動作温度を150℃程度まで下げ
ることであり、サイクル特性については考慮されていな
かった。MgNi系アモルファス合金におけるサイクル
特性の改善のために成分を多成分系にする取り組みは未
だ行われていない。それは、前記のように、添加元素を
加えることによってアモルファス化が困難となり、放電
容量がでなくなるためであった。これは各種元素の硬度
がMgおよびNiと異なるため困難になるためと考えら
れる。本発明者らは、前記のように、アモルファス化に
必要な条件を鋭意検討した結果、完成したものである。
通常、メカニカルアロイング法においては、ポットの容
積に対してボール1/3、空間1/3、材料1/3の割
合で構成されるが、この条件(α値で2×10-5sec
2/g程度)では合金粉末にかかる剪断力が不足し、ア
モルファス化ができない。このため材料仕込量を減らし
たり、ステンレス鋼製のボールを使用したり、ボールの
回転数を上げたりして剪断力を増加させアモルファス化
の成功した。
Several studies have been made to reduce the operating temperature by adding various additive elements to crystalline Mg 2 Ni. The purpose is to lower the operating temperature to about 150 ° C., and no consideration has been given to the cycle characteristics. In order to improve the cycle characteristics of the MgNi-based amorphous alloy, no attempt has been made to convert the components into a multi-component system. This is because, as described above, the addition of the additional element makes it difficult to form an amorphous state and the discharge capacity is lost. This is considered to be because the hardness of various elements is different from that of Mg and Ni, which makes it difficult. The inventors of the present invention have completed the present invention as a result of intensive studies on the conditions necessary for amorphization as described above.
Usually, in the mechanical alloying method, a ratio of a ball 1/3, a space 1/3, and a material 1/3 to the volume of a pot is used. Under this condition (α value 2 × 10 −5 sec.
(Approximately 2 / g), the shearing force applied to the alloy powder is insufficient, and the alloy cannot be made amorphous. For this reason, the amount of material charged was reduced, a ball made of stainless steel was used, or the number of revolutions of the ball was increased to increase the shearing force, thereby achieving amorphization.

【0010】MgおよびNiと合金化するための添加元
素としては、Cr,Mo,W,V,Co,Fe,Cu,
Pb,Ag,Al,Mn,Zn,Zr,In,Ga,H
f,Si,B,P,および希土類元素からなる群より選
ばれた少なくとも1種がサイクル特性改善に有効であっ
た。添加割合は、Mgに対する原子比で0.05〜0.
4の範囲が効果的であった。さらに、このようにして作
製した水素吸蔵合金表面に、不活性ガス雰囲気中におい
て、遊星ボールミル、ハイブリダイゼーション法または
メカノフュージョン法を用いて機械的な応力を加えるこ
とにより、高結晶性カーボンまたは1μm以下のNi微
粉末を付着させることによって、放電容量および充放電
サイクルをさらに改善することができる。付着させる高
結晶性カーボンまたは1μm以下のNi微粉末の割合
は、水素吸蔵合金を合わせた総量の5wt%以上30w
t%以下が適当である。なお、高結晶性カーボンの有効
な付着の程度は、粉末X線回折パターンにおけるメイン
のカーボンピーク、すなわち回折角2θ=27deg付
近のピーク強度が、カーボンの単純混合物のメインのカ
ーボンピーク強度の1/2以下になっていることであ
る。
As additional elements for alloying with Mg and Ni, Cr, Mo, W, V, Co, Fe, Cu,
Pb, Ag, Al, Mn, Zn, Zr, In, Ga, H
At least one selected from the group consisting of f, Si, B, P, and rare earth elements was effective in improving cycle characteristics. The addition ratio is 0.05 to 0.1 in atomic ratio to Mg.
A range of 4 was effective. Further, by applying a mechanical stress to the surface of the hydrogen-absorbing alloy thus produced by using a planetary ball mill, a hybridization method or a mechanofusion method in an inert gas atmosphere, highly crystalline carbon or 1 μm or less is applied. The discharge capacity and the charge / discharge cycle can be further improved by attaching the Ni fine powder. The ratio of the highly crystalline carbon or Ni fine powder of 1 μm or less is 5 wt% or more of the total amount of the hydrogen storage alloy and 30 watts.
An appropriate value is t% or less. The degree of effective attachment of highly crystalline carbon is such that the main carbon peak in the powder X-ray diffraction pattern, that is, the peak intensity around the diffraction angle 2θ = 27 deg, is 1/100 of the main carbon peak intensity of the simple mixture of carbon. 2 or less.

【0011】[0011]

【実施例】以下に本発明の実施例を詳しく説明する。 《実施例1》市販のMg(100メッシュ以下)2.4
3g、Ni(100メッシュ以下)5.87g、および
Cr(100メッシュ以下)0.52gを500ccの
ステンレス鋼製のボールミルポットに挿入し、その上に
直径約19mm(3/4インチ、28g)のステンレス
鋼ボールを40個挿入した。ポット内をアルゴン置換し
た後、回転数60rpmで10日間ボールミルを行っ
た。この後、ポット内の合金を回収し、粉末X線回折測
定およびペレット電極の作製を行った。得られた合金の
粉末X線回折パターンを図1に示す。回折ピークはブロ
ードでアモルファス構造であることがわかる。上記のボ
ールミルによるメカニカルアロイングのα値を以下に示
す。まず、ポットの内壁面積と全ボールの表面積の和が
約760cm2、合金の体積が2.1ccであるから、
合金層厚さtは2.8×10-3cmとなる。一方、ボー
ルの遠心力Fは、ボールの重さw=約28g、ポットの
半径r=4cm、角速度s=2π/secから、4.4
2×103g・cm/sec2となる。よってα値は0.
63×10-6sec2/gとなる。
Embodiments of the present invention will be described below in detail. << Example 1 >> Commercially available Mg (100 mesh or less) 2.4
3 g, 5.87 g of Ni (100 mesh or less), and 0.52 g of Cr (100 mesh or less) are inserted into a 500 cc stainless steel ball mill pot, and about 19 mm (3/4 inch, 28 g) in diameter is placed thereon. Forty stainless steel balls were inserted. After the inside of the pot was replaced with argon, a ball mill was performed at a rotation speed of 60 rpm for 10 days. Thereafter, the alloy in the pot was recovered, and powder X-ray diffraction measurement and production of a pellet electrode were performed. FIG. 1 shows a powder X-ray diffraction pattern of the obtained alloy. It can be seen that the diffraction peak is broad and has an amorphous structure. The α value of mechanical alloying by the above ball mill is shown below. First, since the sum of the inner wall area of the pot and the surface area of all balls is about 760 cm 2 and the volume of the alloy is 2.1 cc,
The alloy layer thickness t is 2.8 × 10 −3 cm. On the other hand, the centrifugal force F of the ball is 4.4 from the ball weight w = about 28 g, the pot radius r = 4 cm, and the angular velocity s = 2π / sec.
It becomes 2 × 10 3 g · cm / sec 2 . Therefore, the α value is 0.
63 × 10 −6 sec 2 / g.

【0012】ペレット電極は、合金粉末1gにNi粉末
(粒径、数μm)3gおよびポリエチレン粉末0.12
gを添加してよく混合した後、5トンのプレス圧で直径
25mmの円柱状のペレット状に成形したものを用い
た。このペレット電極を負極とし、正極には負極容量の
数倍の容量を有する燒結式水酸化ニッケル正極を用い
て、か性カリ水溶液からなる電解液リッチな開放系電池
を作製した。この電池を負極の合金の単位重量当たり1
00mA/gの電流で7時間充電し、50mA/gの電
流で終止電圧0.8Vまで放電する充放電を繰り返し
た。この結果を図2に示す。比較のために、Crを添加
しない合金、すなわちMgとNiから上記と同様にして
作製した合金を用いた電池の特性も図2に示す。図2か
ら、Crの添加によってサイクル特性が大幅に改善され
ることがわかる。
The pellet electrode was composed of 1 g of the alloy powder, 3 g of Ni powder (particle size, several μm) and 0.12 of polyethylene powder.
After adding g, the mixture was mixed well and formed into a cylindrical pellet having a diameter of 25 mm under a press pressure of 5 tons. Using the pellet electrode as a negative electrode and a sintered nickel hydroxide positive electrode having a capacity several times as large as the negative electrode capacity as the positive electrode, an electrolyte-rich open system battery composed of an aqueous solution of potassium hydroxide was produced. This battery is used for one unit weight of the alloy of the negative electrode.
The battery was charged at a current of 00 mA / g for 7 hours, and was repeatedly charged and discharged at a current of 50 mA / g to a final voltage of 0.8 V. The result is shown in FIG. For comparison, FIG. 2 also shows the characteristics of a battery using an alloy to which Cr was not added, that is, an alloy prepared from Mg and Ni in the same manner as described above. FIG. 2 shows that the addition of Cr significantly improves the cycle characteristics.

【0013】《実施例2》合金材料の仕込量を2倍、5
倍、10倍にするか、またはボールの回転数を10、3
0、50rpmにする他は実施例1と同様にして合金を
作製し、その結晶性を調べた。また、これらの合金を負
極とする電池を作製し、初期容量、およびサイクル劣化
率を調べた。サイクル劣化率は、(10サイクル目容量
/1サイクル目容量)×100%で表す。これらの結果
を表1に示す。表1には実施例1の結果も併せて示す。
いずれの場合もα値が3×10-6sec2/gを越える
場合は、得られる合金は結晶性を持ち始め、初期容量の
大幅な低下が認められた。また、原料の仕込量を10倍
にし、ボールの回転数を60rpmとして1カ月間メカ
ニカルアロイングした場合は、得られる合金はアモルフ
ァス構造にならず初期容量は低かった。合金にかかる剪
断力がある値以上(α>3×10-6sec2/g)でな
いと長時間メカニカルアロイングを行ってもアモルファ
ス構造にならないものと考えられる。α値が3×10-6
sec2/g以下の場合、1週間から10日間程度でア
モルファス化が達成できた。
Example 2 Double the amount of the alloy material to be charged,
Doubling, or increasing the number of rotations of the ball by 10, 3
An alloy was prepared in the same manner as in Example 1 except that the rotation speed was changed to 0 and 50 rpm, and the crystallinity was examined. Also, batteries using these alloys as negative electrodes were prepared, and the initial capacity and the cycle deterioration rate were examined. The cycle deterioration rate is represented by (10th cycle capacity / 1st cycle capacity) × 100%. Table 1 shows the results. Table 1 also shows the results of Example 1.
In any case, when the α value exceeded 3 × 10 −6 sec 2 / g, the resulting alloy began to have crystallinity, and a significant decrease in the initial capacity was observed. Further, when the amount of the raw material charged was increased by 10 times and the ball was rotated at 60 rpm for mechanical alloying for one month, the resulting alloy did not have an amorphous structure and the initial capacity was low. Unless the shearing force applied to the alloy is equal to or more than a certain value (α> 3 × 10 −6 sec 2 / g), it is considered that an amorphous structure will not be obtained even if mechanical alloying is performed for a long time. α value is 3 × 10 -6
In the case of sec 2 / g or less, amorphousization could be achieved in about 1 week to 10 days.

【0014】[0014]

【表1】 [Table 1]

【0015】《実施例3》Crの仕込量を1/3倍、1
/2倍、2倍、4倍、または5倍にする他は実施例1と
同様にして合金を作製した。それらの合金の特性を表2
に示す。CrのMgに対する原子比が実施例1の値0.
1の1/3倍程度まで少ないと、サイクル劣化が大き
く、また5倍以上では初期容量が大きく低下することが
わかった。よって、CrのMgに対する原子比xは0.
05以上0.4以下が有効である。
<< Embodiment 3 >> The charged amount of Cr is 1/3 times, 1
An alloy was produced in the same manner as in Example 1 except that the ratio was changed to / 2 times, 2 times, 4 times, or 5 times. Table 2 shows the properties of these alloys.
Shown in The atomic ratio of Cr to Mg was 0.1 in Example 1.
It was found that when the ratio was less than 1/3, the cycle deterioration was large, and when the ratio was 5 times or more, the initial capacity was greatly reduced. Therefore, the atomic ratio x of Cr to Mg is 0.1.
The range from 05 to 0.4 is effective.

【0016】《実施例4》Mg4.86gとNi5.8
7gに、Al(100メッシュ以下)を0.27g、
1.08gまたは2.16g加え、これらを各々500
ccのステンレス鋼製のボールミルポットに挿入し、そ
の上に直径約16mmのステンレス鋼ボール(16.7
g)を70個ずつ挿入した。ポット内をアルゴン置換し
た後、回転数120rpmで10日間ボールミルを行っ
た。こうして得られた3元合金およびAlを添加しない
合金の特性を表2に示す。いずれの3元合金もアモルフ
ァス構造で、Al無添加合金に比べて初期容量も高く、
サイクル劣化も抑制されていた。
Example 4 4.86 g of Mg and 5.8 of Ni
0.27 g of Al (100 mesh or less) to 7 g,
Add 1.08 g or 2.16 g and add 500 g each
cc stainless steel ball mill pot, and a stainless steel ball having a diameter of about 16 mm (16.7 mm) placed thereon.
g) were inserted 70 each. After the inside of the pot was replaced with argon, a ball mill was performed at a rotation speed of 120 rpm for 10 days. Table 2 shows the properties of the ternary alloy and the alloy to which Al was not added. Each of the ternary alloys has an amorphous structure, and has a higher initial capacity than the alloy without Al added.
Cycle deterioration was also suppressed.

【0017】《実施例5》Mg2.43g、Ni11.
74g、Mn 0.55gおよびCr 0.52gをポッ
トに挿入し、実施例4と同条件でメカニカルアロイング
を行った。表2に得られた合金およびMn、Cr無添加
合金の特性を示す。MnおよびCrを添加した合金は、
アモルファス構造合金で、Mn、Cr無添加合金に比べ
て初期容量も高く、サイクル劣化も抑制されていた。
Example 5 2.43 g of Mg, 11% of Ni11.
74 g, 0.55 g of Mn and 0.52 g of Cr were inserted into a pot, and mechanical alloying was performed under the same conditions as in Example 4. Table 2 shows the properties of the obtained alloy and the alloys without the addition of Mn and Cr. Alloys with Mn and Cr added
The alloy had an amorphous structure, and had a higher initial capacity and suppressed cycle deterioration as compared with an alloy containing no Mn or Cr.

【0018】[0018]

【表2】 [Table 2]

【0019】《実施例6》Mg4.86gとNi5.8
7gに、Mo,W,V,Co,Fe,Cu,Pb,A
g,Zn,Zr,In,Ga,Hf,Si,B,P,ま
たはLaを各々0.1原子相当(例えばMoでは1.9
2g)添加し、実施例4と同じ条件でメカニカルアロイ
ングを行った。得られた合金の特性を表3に示す。いず
れの合金もこの条件下ではアモルファス構造で、サイク
ル劣化が抑制された。
Example 6 4.86 g of Mg and 5.8 of Ni
7g, Mo, W, V, Co, Fe, Cu, Pb, A
g, Zn, Zr, In, Ga, Hf, Si, B, P, or La each correspond to 0.1 atom (for example, 1.9 in Mo).
2g) and mechanical alloying was performed under the same conditions as in Example 4. Table 3 shows the properties of the obtained alloy. Under these conditions, all the alloys had an amorphous structure, and the cycle deterioration was suppressed.

【0020】[0020]

【表3】 [Table 3]

【0021】《実施例7》実施例5で得たMgNiMn
Crの4元合金粉末6gと粒径約10μmのグラファイ
ト(日本黒鉛社製人造黒鉛SP−10、d値=3.35
Å)0.3g、1gまたは1.8gをアルゴンガスで充
満させたポットに充填し、遊星ボールミル(ポット容積
100cc、直径11mmのステンレス鋼ボール25
個)で30分間混合し、水素吸蔵合金粒子の表面にグラ
ファイトをほぼ均一に付着させた。電子線マイクロ(E
PMA)観察の結果、粒径2μm程度のグラファイトの
微粒子が水素吸蔵合金表面に均一に付着していることが
わかった。また、粉末X線回折測定の結果から、カーボ
ンに起因したピーク強度が同量のグラファイトを乳鉢で
数分間軽く混合した単純混合品に比べて、1/3程度に
低下していた。数分程度の混合では、カーボンのピーク
強度比が単純混合時のそれの1/2より大きくなる。
Example 7 MgNiMn obtained in Example 5
6 g of Cr quaternary alloy powder and graphite having a particle size of about 10 μm (artificial graphite SP-10 manufactured by Nippon Graphite Co., Ltd., d value = 3.35)
Iii) Fill a pot filled with 0.3 g, 1 g, or 1.8 g with argon gas, and use a planetary ball mill (a stainless steel ball 25 having a pot capacity of 100 cc and a diameter of 11 mm).
) For 30 minutes to substantially uniformly adhere graphite to the surfaces of the hydrogen storage alloy particles. Electron beam micro (E
As a result of PMA) observation, it was found that graphite fine particles having a particle size of about 2 μm were uniformly attached to the surface of the hydrogen storage alloy. Also, from the result of the powder X-ray diffraction measurement, the peak intensity attributed to carbon was reduced to about 1/3 as compared with a simple mixture in which the same amount of graphite was lightly mixed in a mortar for several minutes. In the case of mixing for several minutes, the peak intensity ratio of carbon becomes larger than の of that in simple mixing.

【0022】上記処理後の合金の特性を表4に示す。カ
ーボンのピーク強度比が単純混合時のそれの1/2より
大きいものでは、初期容量およびサイクル特性の改善効
果は見られなかった。このことから、粉末X線回折測定
において混合処理後のカーボンのピーク強度が単純混合
時のカーボンのピーク強度の1/2以下にならないと初
期容量およびサイクル特性の向上が見られないことがわ
かった。混合法としては、遊星ボールミル以外にハイブ
リダイゼーションやメカノフージョン法が有効であっ
た。また、カーボンの添加量としては5wt%より少な
いとサイクル改善効果が殆どなく、30wt%より多く
なると容量が大きく低下し始めるため、5wt%以上3
0wt%以下の範囲が望ましい。添加するカーボンの種
類としては、導電性を有したものが好ましく、結晶面間
隔d値が3.45Å以下である高結晶性カーボンが適し
ている。
Table 4 shows the properties of the alloy after the above treatment. When the peak intensity ratio of carbon was larger than そ れ of that at the time of simple mixing, the effect of improving the initial capacity and cycle characteristics was not observed. From this, it was found that in the powder X-ray diffraction measurement, the initial capacity and the cycle characteristics were not improved unless the peak intensity of the carbon after the mixing treatment was not more than 1/2 of the peak intensity of the carbon during the simple mixing. . As a mixing method, a hybridization or mechanofusion method was effective other than a planetary ball mill. If the addition amount of carbon is less than 5 wt%, there is almost no cycle improvement effect, and if the addition amount is more than 30 wt%, the capacity starts to largely decrease.
A range of 0 wt% or less is desirable. As the type of carbon to be added, those having conductivity are preferable, and highly crystalline carbon having a crystal plane spacing d value of 3.45 ° or less is suitable.

【0023】《実施例8》実施例4においてAlの添加
量1.01gで得られたMgNiAlの3元合金粉末1
6gに粒径0.02μmのNi微粉末(日本冶金製)を
4g添加し、アルゴン雰囲気中で20分間のメカノフュ
ージョン処理(ホソカワミクロン製使用、ギャップ2m
m)を行って合金表面に粒径1μm以下のNi微粒子を
付着させた。顕微鏡観察から合金表面にNiブラックが
ほぼ均一に付着していることがわかった。処理後の合金
の特性を表4に示す。表4からわかるように、無処理の
ものと比べて初期容量およびサイクル特性が大きく向上
した。この際添加するNiの粒径は1μm以下が有効
で、添加量としては高結晶性カーボンと同様5wt%以
上30wt%以下が適していた。
Example 8 Ternary MgNiAl alloy powder 1 obtained in Example 4 with an addition amount of Al of 1.01 g
To 6 g, 4 g of Ni fine powder having a particle size of 0.02 μm (manufactured by Nippon Yakin) is added, and mechanofusion treatment (manufactured by Hosokawa Micron, gap 2 m, 20 minutes) in an argon atmosphere
m) was performed to attach Ni fine particles having a particle size of 1 μm or less to the surface of the alloy. Microscopic observation revealed that Ni black was almost uniformly attached to the alloy surface. Table 4 shows the properties of the alloy after the treatment. As can be seen from Table 4, the initial capacity and the cycle characteristics were significantly improved as compared with the untreated one. At this time, it is effective that the particle size of Ni added is 1 μm or less, and the addition amount is suitably 5 wt% or more and 30 wt% or less as in the case of highly crystalline carbon.

【0024】[0024]

【表4】 [Table 4]

【0025】[0025]

【発明の効果】以上のように、一般式MgMxNi
y-x(MはCr,Mo,W,V,Co,Fe,Cu,P
b,Ag,Al,Mn,Zn,Zr,In,Ga,H
f,Si,B,P,および希土類元素からなる群より選
ばれる少なくとも1種の元素、0.05≦x≦0.4,
0.5≦y≦2)で表され、合金相がアモルファス構造
である本発明の水素吸蔵合金は、MgNiの二成分合金
に比べて高容量で、サイクル特性に優れた水素吸蔵合金
電極を提供するものである。さらに、前記の水素吸蔵合
金表面に高結晶性カーボンまたはNi微粒子を機械的応
力を加えて付着させることにより、この合金を負極に用
いた電池の容量およびサイクル特性がより一層向上す
る。
As described above, the general formula MgM x Ni
yx (M is Cr, Mo, W, V, Co, Fe, Cu, P
b, Ag, Al, Mn, Zn, Zr, In, Ga, H
at least one element selected from the group consisting of f, Si, B, P, and a rare earth element, 0.05 ≦ x ≦ 0.4,
The hydrogen storage alloy of the present invention, represented by 0.5 ≦ y ≦ 2) and having an amorphous alloy phase, provides a hydrogen storage alloy electrode having a higher capacity and superior cycle characteristics as compared with a binary MgNi alloy. Is what you do. Furthermore, by attaching highly crystalline carbon or Ni fine particles to the surface of the hydrogen storage alloy by applying mechanical stress, the capacity and cycle characteristics of a battery using this alloy as a negative electrode are further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における水素吸蔵合金の粉末
X線回折パターンを示す図である。
FIG. 1 is a view showing a powder X-ray diffraction pattern of a hydrogen storage alloy in one example of the present invention.

【図2】本発明の実施例における水素吸蔵合金を負極に
用いた電池の充放電サイクル特性を示す図である。
FIG. 2 is a diagram showing charge / discharge cycle characteristics of a battery using a hydrogen storage alloy according to an example of the present invention for a negative electrode.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式MgMxNiy-x(MはCr,M
o,W,V,Co,Fe,Cu,Pb,Ag,Al,M
n,Zn,Zr,In,Ga,Hf,Si,B,P,お
よび希土類元素からなる群より選ばれる少なくとも1種
の元素、0.05≦x≦0.4,0.5≦y≦2)で表
され、合金相がアモルファス構造であることを特徴とす
る水素吸蔵合金。
1. The general formula MgM x Ni yx (M is Cr, M
o, W, V, Co, Fe, Cu, Pb, Ag, Al, M
at least one element selected from the group consisting of n, Zn, Zr, In, Ga, Hf, Si, B, P, and a rare earth element, 0.05 ≦ x ≦ 0.4, 0.5 ≦ y ≦ 2 ), Wherein the alloy phase has an amorphous structure.
【請求項2】 合金表面に高結晶性カーボンが付着して
いる請求項1記載の水素吸蔵合金。
2. The hydrogen storage alloy according to claim 1, wherein highly crystalline carbon is attached to the surface of the alloy.
【請求項3】 高結晶性カーボンが付着した水素吸蔵合
金の粉末X線回折パターンにおけるメインのカーボンピ
ーク強度が、カーボンの単純混合物におけるメインのカ
ーボンピーク強度の1/2以下になっている請求項2記
載の水素吸蔵合金。
3. The main carbon peak intensity in a powder X-ray diffraction pattern of a hydrogen storage alloy to which highly crystalline carbon is attached is less than half the main carbon peak intensity in a simple mixture of carbon. 2. The hydrogen storage alloy according to 2.
【請求項4】 前記高結晶性カーボンの割合が、5wt
%以上30wt%以下である請求項4記載の水素吸蔵合
金。
4. The ratio of the highly crystalline carbon is 5 wt.
The hydrogen storage alloy according to claim 4, which is not less than 30% by weight and not less than 30% by weight.
【請求項5】 合金表面に粒径1μm以下のNi微粒子
が付着している請求項1記載の水素吸蔵合金。
5. The hydrogen storage alloy according to claim 1, wherein Ni fine particles having a particle size of 1 μm or less adhere to the surface of the alloy.
【請求項6】 前記Ni微粉末の割合が、5wt%以上
30wt%以下である請求項5記載の水素吸蔵合金。
6. The hydrogen storage alloy according to claim 5, wherein the proportion of the Ni fine powder is 5 wt% or more and 30 wt% or less.
【請求項7】 ボールミルを用いたメカニカルアロイン
グ法により、ボールおよびポットの表面に付着する合金
層厚さをt、ボールにかかる遠心力をFとしたとき、F
/tが3×10-6sec2/g以下の条件でMg、N
i、およびMを合金化して請求項1記載の水素吸蔵合金
を得ることを特徴とする水素吸蔵合金の製造方法。
7. When the thickness of an alloy layer adhering to the surface of a ball and a pot is represented by t and the centrifugal force acting on the ball is represented by F by a mechanical alloying method using a ball mill,
Mg / N under the condition that / t is 3 × 10 −6 sec 2 / g or less.
A method for producing a hydrogen storage alloy, comprising obtaining the hydrogen storage alloy according to claim 1 by alloying i and M.
【請求項8】 請求項1記載の水素吸蔵合金粉末と高結
晶性カーボンまたはNi微粉末の混合物に、不活性ガス
雰囲気中において遊星ボールミル、ハイブリダイゼーシ
ョン法またはメカノフュージョン法を用いて機械的な応
力を加えることにより、前記水素吸蔵合金粉末の表面に
前記高結晶性カーボンまたはNi微粉末を付着させるこ
とを特徴とする水素吸蔵合金の製造方法。
8. A mechanical stress applied to a mixture of the hydrogen storage alloy powder according to claim 1 and highly crystalline carbon or Ni fine powder by using a planetary ball mill, a hybridization method or a mechanofusion method in an inert gas atmosphere. Adding the highly crystalline carbon or Ni fine powder to the surface of the hydrogen storage alloy powder by adding the hydrogen storage alloy powder.
【請求項9】 請求項1〜6のいずれかに記載の水素吸
蔵合金またはその水素化物からなる水素吸蔵合金電極。
9. A hydrogen storage alloy electrode comprising the hydrogen storage alloy according to claim 1 or a hydride thereof.
JP8308170A 1996-11-19 1996-11-19 Hydrogen storage alloy and its production Pending JPH10147827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8308170A JPH10147827A (en) 1996-11-19 1996-11-19 Hydrogen storage alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8308170A JPH10147827A (en) 1996-11-19 1996-11-19 Hydrogen storage alloy and its production

Publications (1)

Publication Number Publication Date
JPH10147827A true JPH10147827A (en) 1998-06-02

Family

ID=17977752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8308170A Pending JPH10147827A (en) 1996-11-19 1996-11-19 Hydrogen storage alloy and its production

Country Status (1)

Country Link
JP (1) JPH10147827A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217640A (en) * 1998-01-29 1999-08-10 Agency Of Ind Science & Technol Magnesium-type hydrogen storage alloy
EP0971042A1 (en) * 1998-07-06 2000-01-12 Canon Kabushiki Kaisha Magnesium alloy for electrochemical hydrogen storage, batteries and electrodes made thereof and method for its manufacture
JP2001348639A (en) * 2000-06-07 2001-12-18 Dowa Mining Co Ltd Hydrogen occlusion alloy and hydrogen occluding- discharging system using the same alloy
EP1093171A3 (en) * 1999-09-09 2005-01-19 Canon Kabushiki Kaisha Alkaline rechargeable batteries and process for the production of said rechargeable batteries
CN114164369A (en) * 2021-12-08 2022-03-11 河北科技大学 Mg/Ni/In hydrogen storage material and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217640A (en) * 1998-01-29 1999-08-10 Agency Of Ind Science & Technol Magnesium-type hydrogen storage alloy
EP0971042A1 (en) * 1998-07-06 2000-01-12 Canon Kabushiki Kaisha Magnesium alloy for electrochemical hydrogen storage, batteries and electrodes made thereof and method for its manufacture
JP2000082461A (en) * 1998-07-06 2000-03-21 Canon Inc Mg NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURE, HYDROGEN STORAGE ALLOY ELECTRODE AND ALKALINE SECONDARY BATTERY
EP1093171A3 (en) * 1999-09-09 2005-01-19 Canon Kabushiki Kaisha Alkaline rechargeable batteries and process for the production of said rechargeable batteries
JP2001348639A (en) * 2000-06-07 2001-12-18 Dowa Mining Co Ltd Hydrogen occlusion alloy and hydrogen occluding- discharging system using the same alloy
CN114164369A (en) * 2021-12-08 2022-03-11 河北科技大学 Mg/Ni/In hydrogen storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2013115223A1 (en) Si-BASED-ALLOY ANODE MATERIAL
US20070259264A1 (en) Hydrogen absorbing alloy and secondary battery
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
KR100922282B1 (en) Composite, method for preparing the same, rechargeable battery comprising the composite and method for using the rechargeable battery
JPH03191040A (en) Hydrogen storage alloy electrode
JP7311507B2 (en) Large-capacity and long-life La-Mg-Ni type negative electrode hydrogen storage material for secondary chargeable nickel-metal hydride battery and method for producing the same
JPH10147827A (en) Hydrogen storage alloy and its production
JP2003132940A (en) Nickel - hydrogen storage battery
JP2004273346A (en) Hydrogen storage alloy for alkali storage battery, and alkali storage battery
JP2001291511A (en) Hydrogen storage alloy electrode, secondary battery, hybrid car and electric vehicle
JP3124458B2 (en) Metal oxide / hydrogen storage battery
JPH0953136A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP2792955B2 (en) Hydrogen storage alloy for hydrogen electrode
JPH10226836A (en) Hydrogen storage alloy and its production
JP3552177B2 (en) Method for producing hydrogen storage alloy negative electrode particles
JP3011437B2 (en) Hydrogen storage alloy electrode
JP3123800B2 (en) Hydrogen storage alloy electrode
JP3984668B2 (en) Method for activating hydrogen storage material
JP2989356B2 (en) Hydrogen storage alloy electrode
JPH05179372A (en) Production of hydrogen occluding alloy powder
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH08511128A (en) Titanium-niobium-nickel / hydrogen storage alloy for batteries
JPH09274912A (en) Hydrogen storage electrode
JPH0949040A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JP4601754B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof