JPH10142438A - Production of high polymer optical waveguide - Google Patents

Production of high polymer optical waveguide

Info

Publication number
JPH10142438A
JPH10142438A JP30465596A JP30465596A JPH10142438A JP H10142438 A JPH10142438 A JP H10142438A JP 30465596 A JP30465596 A JP 30465596A JP 30465596 A JP30465596 A JP 30465596A JP H10142438 A JPH10142438 A JP H10142438A
Authority
JP
Japan
Prior art keywords
optical waveguide
core
clad
polymer
high polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30465596A
Other languages
Japanese (ja)
Inventor
Shoichi Hayashida
尚一 林田
Toshio Watanabe
俊夫 渡辺
Akiyuki Yoshimura
了行 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30465596A priority Critical patent/JPH10142438A/en
Publication of JPH10142438A publication Critical patent/JPH10142438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a high polymer optical waveguide usable for a waveguide type optical parts such as an optical integrated circuit. SOLUTION: In manufacturing the high polymer optical waveguide which has a core part made of a high polymer material and a clad part surrounding the core part and made of a high polymer material having lower refractive index than that of the core part, a lower clad 2 and a core layer 3 are successively formed on a substrate 1, a plating nucleus 4 is formed on the core layer 3 by an electroless copper plating and a copper mask pattern for etching the plating nucleus 4 is formed of a photoresist 5. Then, etching by a photolithography is executed by using copper 6 deposited by plating as a mask to form a core ledge part 7 and the high polymer optical waveguide is manufactured by covering the whole parts with an upper clad 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光集積回路などの導
波型部品に使用可能な高分子光導波路の製造方法に関す
るものであり、一般光学や微小光学分野で、また、光通
信や光情報処理の分野で用いられる種々の光部品、光集
積回路または光配線板等の製造に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer optical waveguide which can be used for a waveguide-type component such as an optical integrated circuit. It can be used for manufacturing various optical components, optical integrated circuits, optical wiring boards, and the like used in the field of processing.

【0002】[0002]

【従来の技術】高分子材料はスピンコート法やディップ
法等による基板上への薄膜形成が容易であり、大面積の
光部品を作製するのに適している。また、成膜に際して
高温での熱処理工程を含まないことから、石英等の無機
ガラス材料を用いる場合に比べて、半導体基板やプラス
チック基板等、高温での熱処理が困難な基板上に光導波
路を作製できるという利点がある。また、従来から高分
子材料の弱点とされてきた耐熱性・耐湿性・光通信波長
帯(可視域から近赤外)における透明性についても、近
年では、これを大幅に改善した材料が発明され報告され
るに至っている(例えば、特開平3−43423号参
照)。さらに、高分子の柔軟性や強靭性を活かしたフレ
キシブルな光導波路の作製も可能である。こうしたこと
から、光通信の分野で用いられる光集積回路や、光情報
通信の分野で用いられる光配線板等の光導波路部品を、
高分子光学材料を用いて大量・安価に製造できることが
期待されている。
2. Description of the Related Art A polymer material is easy to form a thin film on a substrate by a spin coating method, a dip method, or the like, and is suitable for producing a large-area optical component. In addition, since a heat treatment step at a high temperature is not included during film formation, an optical waveguide is manufactured on a substrate that is difficult to heat at a high temperature, such as a semiconductor substrate or a plastic substrate, as compared with a case where an inorganic glass material such as quartz is used. There is an advantage that you can. In recent years, materials that have significantly improved heat resistance, moisture resistance, and transparency in the optical communication wavelength band (from the visible region to the near infrared region), which have been considered weaknesses of polymer materials, have been invented in recent years. It has been reported (see, for example, JP-A-3-43423). Further, a flexible optical waveguide utilizing the flexibility and toughness of a polymer can be produced. For this reason, optical integrated circuits used in the field of optical communication, and optical waveguide components such as optical wiring boards used in the field of optical information communication,
It is expected that it can be produced in large quantities and at low cost using polymer optical materials.

【0003】このような高分子光学材料を用いてコア/
クラッド構造の光導波路を作製する従来の一般的な方法
は、例えば次のようなものである。まず、シリコン基板
等の適当な基板上に下部クラッドとなる第1の高分子材
料を塗布、乾燥し、必要な場合にはさらに熱硬化させ下
部クラッドとなる第1の高分子膜を形成する。次に、同
様の方法で該下部クラッド上にコア層となる第2の高分
子膜を形成する。該コア層の上に通常のフォトリソグラ
フィーによりフォトレジスト等のエッチングマスクパタ
ーンを形成し、該エッチングマスクパターンを通して上
述の第2の高分子膜をエッチングにより加工することに
より、所望の形状のコアリッジ部を形成する。最後に、
全体を上部クラッドとなる第3の高分子膜で覆って高分
子光導波路が完成する。従来、エッチングマスクの材料
としては、フォトレジストや金属が用いられているが、
フォトレジストは高分子材料であるため、通常行われる
反応性ドライエッチングによる高分子膜の加工過程の途
中でパターン幅が徐々に減少し、その結果として、得ら
れるコア部の断面形状が方形でなく台形となってしま
う。とくにコア部の側壁が下部クラッドに垂直で、か
つ、サブミクロンレベルの精密な構造制御が必要とされ
るY分岐構造や方向性結合器等の作製においては、マス
クパターン幅減少の影響が甚大である。この問題は、ド
ライエッチング中の摩耗がフォトレジストに比べて格段
に少ない金属マスクパターンを用いることにより解決で
きる。金属マスクパターンの形成は、通常、コア層とな
る高分子膜上への金属膜のスパッタリングによる加工に
より行われる。しかしながら、これらの工程には以下の
ような種々の問題が伴う。まず第一に、スパッタリング
装置、ミリング装置といったかなり高価な真空装置類を
必要とする。第二に、それら真空装置類、および、それ
らに付随するユーティリティ(冷却水、エッチング用ガ
ス、等)のメンテナンスに多大な労力が必要である。第
三に、試料室内が大気圧から高真空となるまでの待ち時
間が長く、また、真空チャンバーを用いることにより大
量生産に不向きなバッチ式処理とならざるを得ないた
め、スループット向上の見通しが立ち難く、効率的な光
導波路製造の面で不利である。
[0003] Using such a polymer optical material, a core /
A conventional general method of manufacturing an optical waveguide having a clad structure is, for example, as follows. First, a first polymer material to be a lower clad is applied on a suitable substrate such as a silicon substrate, dried, and, if necessary, further cured by heat to form a first polymer film to be a lower clad. Next, a second polymer film to be a core layer is formed on the lower clad by the same method. An etching mask pattern such as a photoresist is formed on the core layer by ordinary photolithography, and the above-described second polymer film is processed by etching through the etching mask pattern to form a core ridge portion having a desired shape. Form. Finally,
The whole is covered with a third polymer film serving as an upper clad to complete a polymer optical waveguide. Conventionally, photoresists and metals have been used as materials for etching masks.
Since the photoresist is a polymer material, the pattern width gradually decreases in the course of processing the polymer film by the reactive dry etching that is usually performed, and as a result, the cross-sectional shape of the obtained core portion is not square. It becomes a trapezoid. In particular, in the fabrication of a Y-branch structure or a directional coupler where the side wall of the core portion is perpendicular to the lower cladding and precise control of the structure at the submicron level is required, the influence of the mask pattern width reduction is significant. is there. This problem can be solved by using a metal mask pattern in which abrasion during dry etching is significantly smaller than that of a photoresist. The formation of the metal mask pattern is usually performed by processing the metal film on the polymer film serving as the core layer by sputtering. However, these steps have various problems as follows. First of all, it requires rather expensive vacuum equipment such as sputtering equipment and milling equipment. Second, maintenance of these vacuum devices and their associated utilities (cooling water, etching gas, etc.) requires a great deal of effort. Third, the waiting time for the sample chamber to change from atmospheric pressure to high vacuum is long, and the use of a vacuum chamber has to be a batch-type process unsuitable for mass production. It is difficult to stand up and is disadvantageous in terms of efficient optical waveguide manufacturing.

【0004】[0004]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みてなされたものであり、その目的は、光集積回
路などの導波型光部品に使用可能な高分子光導波路をよ
り効率的に製造するための方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and an object of the present invention is to provide a polymer optical waveguide which can be used for a waveguide-type optical component such as an optical integrated circuit with higher efficiency. It is an object of the present invention to provide a method for manufacturing a semiconductor device.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記問題
を解決するために鋭意検討を重ねた結果、コア部となる
高分子膜のエッチングに用いる金属マスクパターンを、
高価でメンテナンスが面倒な真空装置を用いて、低スル
ープットの工程により形成するのではなく、安価な材料
や器具類と短時間の処理しか要しない無電解銅メッキ技
術を用いることにより、前述の問題を解決し、高分子光
導波路を高効率で作製できることを見出し、本発明を完
成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a metal mask pattern used for etching a polymer film serving as a core portion has been developed.
The above-mentioned problem has been solved by using inexpensive materials and equipment and electroless copper plating technology that requires only a short processing time, instead of using low-throughput processes using vacuum equipment that is expensive and requires maintenance. And found that a polymer optical waveguide can be produced with high efficiency, and completed the present invention.

【0006】すなわち、本発明の高分子光導波路の製造
方法は、高分子材料から成るコア部と、該コア部を取り
囲み該コア部よりも屈折率の低い高分子材料からなるク
ラッド部を有する高分子光導波路の製造において、無電
解銅メッキによりコア層エッチング用の銅マスクパター
ンを形成する工程を包含することを特徴とする。
That is, the method for manufacturing a polymer optical waveguide according to the present invention provides a method for manufacturing a polymer optical waveguide having a core portion made of a polymer material and a clad portion surrounding the core portion and made of a polymer material having a lower refractive index than the core portion. The method of manufacturing a molecular optical waveguide includes a step of forming a copper mask pattern for etching a core layer by electroless copper plating.

【0007】[0007]

【発明の実施の形態】以下、図1を参照して本発明の高
分子光導波路の製造方法をより詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a polymer optical waveguide according to the present invention will be described in more detail with reference to FIG.

【0008】本発明の方法に従って高分子光導波路を作
製する場合、その工程中に無電界銅メッキによりエッチ
ング用の銅マスクパターンを形成する工程が包含されて
いれば、その前後の工程はとくに限定されず、例えば以
下のように行うことができる。
In the case of producing a polymer optical waveguide according to the method of the present invention, if the step of forming a copper mask pattern for etching by electroless copper plating is included in the step, the steps before and after the step are particularly limited. Instead, for example, it can be performed as follows.

【0009】まず、光導波路に要求される導波モード条
件に応じて、高分子材料の屈折率調整を行い、コア/ク
ラッド材料として精密に制御された屈折率差を有する少
なくとも2種の高分子材料を準備する。屈折率差の大き
さは導波すべき光のモードとコアの寸法に応じて決定さ
れるが、一般的には、0.1%〜5%の範囲である。例
えば、シングルモード光ファイバと導波光のモード径を
合わせる場合、コア部の形状は8μm角の正方形、屈折
率差は0.3%であることが望ましく、マルチモード光
ファイバーを合わせる場合には、コア部は数10μm角
の正方形、屈折率は1%程度が望ましい。
First, the refractive index of a polymer material is adjusted in accordance with the waveguide mode conditions required for an optical waveguide, and at least two types of polymers having a precisely controlled refractive index difference as a core / cladding material. Prepare the ingredients. The magnitude of the refractive index difference is determined according to the mode of the light to be guided and the size of the core, but is generally in the range of 0.1% to 5%. For example, when the mode diameter of the single-mode optical fiber and that of the guided light are matched, it is desirable that the shape of the core is a square of 8 μm square and the refractive index difference is 0.3%. The part is desirably a square of several tens of μm square, and the refractive index is preferably about 1%.

【0010】次に、低屈折率のクラッド材料を基板1の
上にスピンコート法等により塗布し、加熱・気化により
溶媒を除去し、必要な場合にはさらに熱硬化させて下部
クラッド2を形成する。次いで、この上に高屈折率のコ
ア材料をスピンコート法等により塗布し、上記の方法に
よりコア層3となる高分子層を形成する。
Next, a lower clad 2 is formed by applying a low-refractive-index clad material on the substrate 1 by spin coating or the like, removing the solvent by heating and vaporizing, and, if necessary, further thermosetting. I do. Next, a core material having a high refractive index is applied thereon by spin coating or the like, and a polymer layer to be the core layer 3 is formed by the above method.

【0011】続いて、無電解銅メッキ技術により、コア
層エッチング用の銅マスクパターンが形成されるが、詳
細には以下のように行われる。まず、上記試料を塩化第
一スズの塩酸酸性溶液に浸漬し、水洗、乾燥して、コア
層3の表面にセンシタイジング処理を行う。さらに、
金、銀、白金、パラジウム等のメッキ触媒能を持つ金属
のイオンを含む水溶液中に浸漬し、水洗、乾燥すること
によりコア層表面のアクチベーティング処理を行う。こ
れらの処理により、コア層表面にはメッキ核4となる金
属微粒子が吸着される。さらに、この上にフォトレジス
ト5を設ける。上述の処理を行った試料に通常のホトリ
ソグラフィ技術を用いてレジストパターンを形成し(図
1(A))、無電解銅メッキ用のメッキ液に10〜15
分程度浸漬する。メッキ液としてはすでに種々の溶液が
知られているが、例えば、硫酸銅・カセイソーダ・酒石
酸カリウムナトリウム・ホルマリンの混合液等を用いる
ことができる。この処理により、フォトレジスト5が除
去されて金属微粒子のメッキ核4が露出した部分に金属
銅6が析出する。さらに、レジストパターンを溶解除去
することによりエッチング用銅マスクパターンが完成す
る(図1(B))。
Subsequently, a copper mask pattern for etching the core layer is formed by the electroless copper plating technique, which is performed in the following manner. First, the sample is immersed in a hydrochloric acid solution of stannous chloride, washed with water and dried, and the surface of the core layer 3 is subjected to a sensitizing treatment. further,
The core layer surface is activated by immersing in an aqueous solution containing ions of a metal such as gold, silver, platinum, palladium or the like having a plating catalytic function, washing with water, and drying. By these treatments, fine metal particles serving as plating nuclei 4 are adsorbed on the surface of the core layer. Further, a photoresist 5 is provided thereon. A resist pattern is formed on the sample that has been subjected to the above-described processing by using a normal photolithography technique (FIG. 1A).
Soak for about a minute. Various solutions are already known as the plating solution. For example, a mixed solution of copper sulfate, caustic soda, potassium sodium tartrate, and formalin can be used. By this process, the photoresist 5 is removed, and the metal copper 6 is deposited on the portions where the plating nuclei 4 of the metal fine particles are exposed. Further, by dissolving and removing the resist pattern, a copper mask pattern for etching is completed (FIG. 1B).

【0012】こうして得られた銅マスクパターンを通し
た反応性イオンエッチングによりコアリッジ部7を形成
した後(図1(C))、試料を塩化第二鉄水溶液に浸漬
して銅マスクパターンを溶解除去し、最後に、全体をク
ラッド材料で覆って高分子光導波路が完成する(図1
(D))。この際、反応性エッチングの工程では、高分
子のみが除去され、銅マスクはほとんどエッチングされ
ない。また、銅マスクの除去においては、高分子は影響
を受けない。
After forming the core ridge 7 by reactive ion etching through the copper mask pattern thus obtained (FIG. 1C), the sample is immersed in an aqueous ferric chloride solution to dissolve and remove the copper mask pattern. Finally, the polymer optical waveguide is completed by covering the whole with a cladding material (FIG. 1).
(D)). At this time, in the reactive etching step, only the polymer is removed, and the copper mask is hardly etched. Also, the removal of the copper mask does not affect the polymer.

【0013】[0013]

【実施例】以下、本発明を実施例によりさらに具体的に
説明するが、本発明はそれらに限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.

【0014】(実施例1)メチルメタクリレートの水素
をすべて重水素に置換したパーデューテロメチルメタク
リレートを重合して得られる高分子(I、屈折率:1.
484)、およびメタクリロイル基の5個の水素が重水
素に置換されたモノマーであるヘプタフルオロイソプロ
ピルメタクリレートd−5を10モル%と、上記のパー
デューテロメチルメタクリレート90モル%の混合物を
共重合して得られる高分子(II、屈折率:1.47
0)、を用意し、Iをコア、IIをクラッドとするマル
チモード高分子光導波路を以下の手順で作製した。
Example 1 A polymer (I, refractive index: 1.) obtained by polymerizing perdeuteromethyl methacrylate obtained by replacing all hydrogens of methyl methacrylate with deuterium.
484), and a mixture of 10 mol% of heptafluoroisopropyl methacrylate d-5, which is a monomer in which five hydrogens of a methacryloyl group are substituted with deuterium, and 90 mol% of the above-mentioned perdeuteromethyl methacrylate are copolymerized. Obtained polymer (II, refractive index: 1.47
0) was prepared, and a multimode polymer optical waveguide having I as a core and II as a clad was produced by the following procedure.

【0015】まず、これら二種の高分子をそれぞれクロ
ロベンゼンに溶解した。次に、クラッド成分溶液をシリ
コン基板上に塗布し、90℃で加熱して膜厚約20μm
の下部クラッド層を形成した。次いで、該下部クラッド
層上にコア成分溶液を塗布し、90℃で加熱して膜厚約
50μmのコア層を形成した。この試料を10%の塩化
第一スズを含む塩酸酸性水溶液に1分間浸漬し、さら
に、2%の硝酸銀を含むアンモニア水中に1分間浸漬し
た。次いで、この表面処理されたコア層上に通常のフォ
トリソグラフィによりフォトレジストパターンを形成し
た後、硫酸銅3.5%、カセイソーダ5%、酒石酸カリ
ウムナトリウム17%、ホルムアルデヒド7%(何れも
重量%)を含む水溶液中に室温で12分間浸漬した。フ
ォトレジストパターンを溶解・除去して得られた膜厚
0.25μmの銅マスクパターンを通して酸素ガスによ
る反応性イオンエッチングを行い、不要となった銅を塩
化第二鉄水溶液で溶解除去し、長さ50mm、幅50μ
m、高さ50μmの直線矩形コアパターンを得た。最後
に、クラッド成分溶液を塗布し、90℃で加熱して上部
クラッドを形成した。上部クラッドの膜厚は約20μm
とした。全工程に要した時間は約5時間であった。
First, each of these two polymers was dissolved in chlorobenzene. Next, a clad component solution is applied on a silicon substrate, and heated at 90 ° C. to a film thickness of about 20 μm.
Was formed. Next, a core component solution was applied on the lower clad layer and heated at 90 ° C. to form a core layer having a thickness of about 50 μm. This sample was immersed in an aqueous hydrochloric acid solution containing 10% stannous chloride for 1 minute, and further immersed in an aqueous ammonia solution containing 2% silver nitrate for 1 minute. Next, after forming a photoresist pattern on the surface-treated core layer by ordinary photolithography, copper sulfate 3.5%, caustic soda 5%, potassium sodium tartrate 17%, and formaldehyde 7% (all by weight%) For 12 minutes at room temperature. Reactive ion etching with oxygen gas is performed through a 0.25 μm thick copper mask pattern obtained by dissolving and removing the photoresist pattern, and unnecessary copper is dissolved and removed with an aqueous ferric chloride solution. 50mm, width 50μ
m, a linear rectangular core pattern having a height of 50 μm was obtained. Finally, a clad component solution was applied and heated at 90 ° C. to form an upper clad. The thickness of the upper cladding is about 20 μm
And The time required for all the steps was about 5 hours.

【0016】こうして作製した高分子光導波路の一端か
ら波長1.3μmの光を入射し、他端からの出射光の強
度を測定した。その結果、この高分子光導波路の導波損
失が0.1dB/cm以下であることを確認した。
Light having a wavelength of 1.3 μm was incident on one end of the polymer optical waveguide thus produced, and the intensity of light emitted from the other end was measured. As a result, it was confirmed that the waveguide loss of this polymer optical waveguide was 0.1 dB / cm or less.

【0017】(実施例2)メタクリロイル基の5個の水
素が重水素に置換されたモノマーであるヘプタフルオロ
イソプロピルメタクリレートd−5を23モル%と、メ
チルメタクリレートの水素をすべて重水素に置換したパ
ーデューテロメチルメタクリレート77モル%の混合物
を共重合して得られる高分子(III、屈折率:1.4
55)、および、上記モノマーを25:75で共重合し
て得られる高分子(IV、屈折率:1.451)を用意
し、IIIをコア、IVをクラッドとするシングルモー
ド高分子光導波路を以下の手順で作製した。
Example 2 23 mol% of heptafluoroisopropyl methacrylate d-5, which is a monomer in which five hydrogens of a methacryloyl group were replaced by deuterium, and purdue in which all hydrogens of methyl methacrylate were replaced by deuterium Polymer (III, refractive index: 1.4) obtained by copolymerizing a mixture of 77 mol% of telomethyl methacrylate
55) and a polymer (IV, refractive index: 1.451) obtained by copolymerizing the above monomers at 25:75, and preparing a single mode polymer optical waveguide having III as a core and IV as a clad. It was produced by the following procedure.

【0018】まず、これら二種の高分子をそれぞれクロ
ロベンゼンに溶解した。次に、クラッド成分溶液をシリ
コン基板上に塗布し、90℃で加熱して膜厚約15μm
の下部クラッド層を形成した。次いで、該下部クラッド
層上にコア成分溶液を塗布し、90℃で加熱して膜厚約
8μmのコア層を形成した。銅マスクパターンの形成と
コア層のエッチングは実施例1と同様に行い、長さ50
mm、幅8μm、高さ8μmの直線矩形コアパターンを
得た。最後に、クラッド成分溶液を塗布し、90℃で加
熱して上部クラッドを形成した。上部クラッドの膜厚は
約10μmとした。全工程に要した時間は約5時間であ
った。
First, these two types of polymers were dissolved in chlorobenzene. Next, a clad component solution is applied on a silicon substrate, and heated at 90 ° C. to a thickness of about 15 μm.
Was formed. Next, a core component solution was applied on the lower clad layer and heated at 90 ° C. to form a core layer having a thickness of about 8 μm. The formation of the copper mask pattern and the etching of the core layer were performed in the same manner as in Example 1, and the length was 50 mm.
A linear rectangular core pattern having a width of 8 mm, a width of 8 μm and a height of 8 μm was obtained. Finally, a clad component solution was applied and heated at 90 ° C. to form an upper clad. The film thickness of the upper clad was about 10 μm. The time required for all the steps was about 5 hours.

【0019】こうして作製した高分子光導波路の一端か
ら波長1.3μmの光を入射し、他端からの出射光の強
度を測定した。その結果、この高分子光導波路の導波損
失が0.1dB/cm以下であることを確認した。
Light having a wavelength of 1.3 μm was incident on one end of the polymer optical waveguide thus produced, and the intensity of light emitted from the other end was measured. As a result, it was confirmed that the waveguide loss of this polymer optical waveguide was 0.1 dB / cm or less.

【0020】(実施例3)フェニルトリクロロシランd
−5を加水分解したのち水酸化カリウム存在下で加熱し
て得られる高分子(V、屈折率:1.560)、およ
び、メチルトリクロロシランd−3から同様にして得ら
れた高分子(VI、屈折率:1.420)を用意し、V
をコア、VIをクラッドとするシングルモード高分子光
導波路を以下の手順で作製した。
Example 3 Phenyltrichlorosilane d
-5 is hydrolyzed and then heated in the presence of potassium hydroxide (V, refractive index: 1.560), and a polymer (VI, similarly obtained from methyltrichlorosilane d-3) , Refractive index: 1.420), and V
And a single-mode polymer optical waveguide having VI as a clad and VI as a clad was produced in the following procedure.

【0021】まず、これら二種の高分子をそれぞれメチ
ルイソブチルケトンに溶解した。次に、クラッド成分溶
液をシリコン基板上に塗布し、150℃で加熱して膜厚
約20μmの下部クラッド層を形成した。次いで、該下
部クラッド層上にコア成分溶液を塗布し、150℃で加
熱して膜厚約50μmのコア層を形成した。銅マスクパ
ターンの形成とコア層のエッチングは実施例1と同様に
行い、長さ50mm、幅50μm、高さ50μmの直線
矩形コアパターンを得た。最後に、クラッド成分溶液を
塗布し、150℃加熱して上部クラッドを形成した。上
部クラッドの膜厚は約20μmとした。全工程に要した
時間は約5時間であった。
First, each of these two polymers was dissolved in methyl isobutyl ketone. Next, a clad component solution was applied on a silicon substrate and heated at 150 ° C. to form a lower clad layer having a thickness of about 20 μm. Next, a core component solution was applied on the lower clad layer and heated at 150 ° C. to form a core layer having a thickness of about 50 μm. The formation of the copper mask pattern and the etching of the core layer were performed in the same manner as in Example 1 to obtain a linear rectangular core pattern having a length of 50 mm, a width of 50 μm, and a height of 50 μm. Finally, a clad component solution was applied and heated at 150 ° C. to form an upper clad. The film thickness of the upper clad was about 20 μm. The time required for all the steps was about 5 hours.

【0022】こうして作製した高分子光導波路の一端か
ら波長1.3μmの光を入射し、他端からの出射光の強
度を測定した。その結果、この高分子光導波路の導波損
失が0.1dB/cm以下であることを確認した。
Light having a wavelength of 1.3 μm was incident on one end of the polymer optical waveguide thus produced, and the intensity of light emitted from the other end was measured. As a result, it was confirmed that the waveguide loss of this polymer optical waveguide was 0.1 dB / cm or less.

【0023】(実施例4)フェニルトリクロロシランd
−5を加水分解したのち水酸化カリウム存在下で加熱し
て得られる高分子(V、屈折率:1.560)、およ
び、メチルトリクロロシランd−3を4モル%とフェニ
ルトリクロロシランd−5を96モル%の混合物を共加
水分解した後、上記と同様に高分子量化して得られる高
分子(VII、屈折率:1.555)を用意し、Vをコ
ア、VIIをクラッドとするマルチモード高分子光導波
路を以下の手順で作製した。
Example 4 Phenyltrichlorosilane d
-5 is hydrolyzed and then heated in the presence of potassium hydroxide to obtain a polymer (V, refractive index: 1.560), 4 mol% of methyltrichlorosilane d-3 and phenyltrichlorosilane d-5. Is obtained by co-hydrolyzing a mixture of 96 mol% of the above, and a polymer (VII, refractive index: 1.555) obtained by increasing the molecular weight in the same manner as described above is prepared, and a multimode in which V is a core and VII is a clad is prepared. A polymer optical waveguide was manufactured in the following procedure.

【0024】まず、これら二種の高分子をそれぞれメチ
ルイソブチルケトンに溶解した。次に、クラッド成分溶
液をシリコン基板上に塗布し、150℃で加熱して膜厚
約15μmの下部クラッド層を形成した。次いで、該下
部クラッド層上にコア成分溶液を塗布し、150℃で加
熱して膜厚約8μmのコア層を形成した。銅マスクパタ
ーンの形成とコア層のエッチングは実施例1と同様に行
い、長さ50mm、幅8μm、高さ8μmの直線矩形コ
アパターンを得た。最後に、クラッド成分溶液を塗布
し、150℃で加熱して上部クラッドを形成した。上部
クラッドの膜厚は約10μmとした。全工程に要した時
間は約5時間であった。
First, each of these two polymers was dissolved in methyl isobutyl ketone. Next, a clad component solution was applied on a silicon substrate and heated at 150 ° C. to form a lower clad layer having a thickness of about 15 μm. Next, a core component solution was applied on the lower clad layer and heated at 150 ° C. to form a core layer having a thickness of about 8 μm. The formation of the copper mask pattern and the etching of the core layer were performed in the same manner as in Example 1 to obtain a linear rectangular core pattern having a length of 50 mm, a width of 8 μm, and a height of 8 μm. Finally, a clad component solution was applied and heated at 150 ° C. to form an upper clad. The film thickness of the upper clad was about 10 μm. The time required for all the steps was about 5 hours.

【0025】こうして作製した高分子光導波路の一端か
ら波長1.3μmの光を入射し、他端からの出射光の強
度を測定した。その結果、この高分子光導波路の導波損
失が0.1dB/cm以下であることを確認した。
Light having a wavelength of 1.3 μm was incident on one end of the polymer optical waveguide thus produced, and the intensity of light emitted from the other end was measured. As a result, it was confirmed that the waveguide loss of this polymer optical waveguide was 0.1 dB / cm or less.

【0026】(比較例)実施例1および実施例2と同じ
材料系を用い、スパッタリング、フォトリソグラフィ
ー、ミリングを経る従来の方法でコア層エッチング用の
銅マスクパターンを形成することにより高分子光導波路
を作製した。いずれの材料系を用いた場合も作製に2日
を要した。
(Comparative Example) A polymer optical waveguide was formed by using the same material system as in Examples 1 and 2 and forming a copper mask pattern for etching a core layer by a conventional method involving sputtering, photolithography, and milling. Was prepared. It took two days to produce any of the material systems.

【0027】[0027]

【発明の効果】以上、説明したように、本発明の高分子
光導波路の製造方法は、安価な材料・器具類と非常に簡
便な操作しか必要としないため、光通信の分野で用いら
れる光集積回路や、光情報処理の分野で用いられる光配
線板等の光導波路部品を、きわめて高効率に製造できる
という利点がある。
As described above, the method for producing a polymer optical waveguide according to the present invention requires only inexpensive materials and equipment and very simple operations. There is an advantage that an optical waveguide component such as an integrated circuit and an optical wiring board used in the field of optical information processing can be manufactured with extremely high efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光高分子導波路の製造方法の工程を示
す模式図であり、(A)はフォトレジスト現像後、
(B)は無電解銅メッキに続いてフォトレジスト除去
後、(C)は反応性イオンエッチング後、(D)は銅マ
スク除去・上部クラッド被覆後の光導波路の断面図をそ
れぞれ示す。
FIG. 1 is a schematic view showing the steps of a method for manufacturing a photopolymer waveguide according to the present invention.
(B) is a cross-sectional view of the optical waveguide after removing the photoresist following electroless copper plating, (C) is after reactive ion etching, and (D) is a cross-sectional view of the optical waveguide after removing the copper mask and covering the upper clad.

【符号の説明】[Explanation of symbols]

1 基板 2 下部クラッド 3 コア層 4 メッキ核 5 フォトレジスト 6 金属銅 7 コアリッジ部 8 上部クラッド DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower clad 3 Core layer 4 Plating nucleus 5 Photoresist 6 Metal copper 7 Core ridge part 8 Upper clad

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高分子材料からなるコア部と、該コア部
を取り囲み該コア部よりも屈折率の低い高分子材料から
なるクラッド部とを有する高分子光導波路の製造におい
て、無電解銅メッキによりコア層エッチング用の銅マス
クパターンを形成する工程を包含することを特徴とする
高分子光導波路の製造方法。
In producing a polymer optical waveguide having a core portion made of a polymer material and a clad portion surrounding the core portion and made of a polymer material having a lower refractive index than the core portion, electroless copper plating is used. Forming a copper mask pattern for etching a core layer by using the method described above.
JP30465596A 1996-11-15 1996-11-15 Production of high polymer optical waveguide Pending JPH10142438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30465596A JPH10142438A (en) 1996-11-15 1996-11-15 Production of high polymer optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30465596A JPH10142438A (en) 1996-11-15 1996-11-15 Production of high polymer optical waveguide

Publications (1)

Publication Number Publication Date
JPH10142438A true JPH10142438A (en) 1998-05-29

Family

ID=17935647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30465596A Pending JPH10142438A (en) 1996-11-15 1996-11-15 Production of high polymer optical waveguide

Country Status (1)

Country Link
JP (1) JPH10142438A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019343A (en) * 1998-07-02 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide element
JP2004184999A (en) * 2002-12-02 2004-07-02 Rohm & Haas Electronic Materials Llc Photoimageable waveguide composition and waveguide formed therefrom
WO2005015308A2 (en) * 2003-08-08 2005-02-17 Quantiscript Inc. Fabrication process for high resolution lithography masks using evaporated or plasma assisted electron sensitive resists with plating image reversal
US7141515B2 (en) 2002-09-11 2006-11-28 Fujitsu Limited Method for manufacturing device
US7425286B2 (en) * 2002-03-25 2008-09-16 Canon Kabushiki Kaisha Method of making optical waveguide apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019343A (en) * 1998-07-02 2000-01-21 Nippon Telegr & Teleph Corp <Ntt> Optical waveguide element
US7425286B2 (en) * 2002-03-25 2008-09-16 Canon Kabushiki Kaisha Method of making optical waveguide apparatus
US7141515B2 (en) 2002-09-11 2006-11-28 Fujitsu Limited Method for manufacturing device
JP2004184999A (en) * 2002-12-02 2004-07-02 Rohm & Haas Electronic Materials Llc Photoimageable waveguide composition and waveguide formed therefrom
WO2005015308A2 (en) * 2003-08-08 2005-02-17 Quantiscript Inc. Fabrication process for high resolution lithography masks using evaporated or plasma assisted electron sensitive resists with plating image reversal
WO2005015308A3 (en) * 2003-08-08 2005-07-28 Quantiscript Inc Fabrication process for high resolution lithography masks using evaporated or plasma assisted electron sensitive resists with plating image reversal

Similar Documents

Publication Publication Date Title
US6678453B2 (en) High aspect ratio patterning of glass film
KR100362829B1 (en) Method for manufacturing polymer optical waveguide
JPH03104187A (en) Pattern writing on substrate
JP2813713B2 (en) Polyimide optical waveguide
JP3987580B2 (en) Optical waveguide
JPH0577355B2 (en)
KR20080097337A (en) Optical waveguide
CN113485581A (en) Method for forming metal grid on substrate
GB2499663A (en) Protective coatings for photo-resists that are separately applied with different solvents but removed together using same solvent
JPH10142438A (en) Production of high polymer optical waveguide
JP2599497B2 (en) Flat plastic optical waveguide
JP3273519B2 (en) Method for manufacturing polysiloxane-based optical waveguide
JPS60119550A (en) Pattern forming material and pattern forming method
JP2001066445A (en) Optical waveguide and its formation
JP3077720B2 (en) Fabrication method of optical waveguide
TW200306438A (en) Method for making polymer-based rare earth-doped waveguide
JP2002031732A (en) Method for manufacturing polymer optical waveguide
JPH04274402A (en) Production of lightguide
JPH06347658A (en) Plastic optical waveguide
JP2001318257A (en) Method for producing polymeric optical waveguide
JP3386113B2 (en) Optical waveguide and method of manufacturing the same
CN114935793B (en) Method for ultraviolet lithography of optical waveguide material and optical waveguide preparation method
JPH11109153A (en) Organic/inorganic polymer complex body, and its manufacture
JP4253828B2 (en) OPTICAL WAVEGUIDE HAVING COATING LAYER EXPRESSING CORE POSITION, ITS MANUFACTURING METHOD, AND OPTICAL COMPONENT
JPS5885112A (en) Manufacture of encoder slit plate