JPH10142152A - Measuring method and device of quantum efficiency of fluorescent material - Google Patents

Measuring method and device of quantum efficiency of fluorescent material

Info

Publication number
JPH10142152A
JPH10142152A JP30147896A JP30147896A JPH10142152A JP H10142152 A JPH10142152 A JP H10142152A JP 30147896 A JP30147896 A JP 30147896A JP 30147896 A JP30147896 A JP 30147896A JP H10142152 A JPH10142152 A JP H10142152A
Authority
JP
Japan
Prior art keywords
wavelength
phosphor
amount
quantum efficiency
wavelengths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30147896A
Other languages
Japanese (ja)
Other versions
JP3247845B2 (en
Inventor
Takeshi Nishiura
毅 西浦
Kazuaki Okubo
和明 大久保
Teruaki Shigeta
照明 重田
Shigeru Horii
堀井  滋
Tomizo Matsuoka
富造 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30147896A priority Critical patent/JP3247845B2/en
Publication of JPH10142152A publication Critical patent/JPH10142152A/en
Application granted granted Critical
Publication of JP3247845B2 publication Critical patent/JP3247845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the simple and highly accurate measurement of quantum efficiency of fluorescent material by obtaining the amount of incidence,. amount of reflection, and emission spectrum of the fluorescent material at two kinds of dominant wavelengths. SOLUTION: The continuous spectral light of a deutreum lamp 1 is filtered to be irradiation light only with main wavelengths of 254nm and 147nm by an interference filter and is condensed on a silicon diode 2 by a magnesium fluoride 3. A digital multimeter 5 measures the amount of incidence Ein (254) (147) at the location of diode 2 to wavelengths 254nm and 147nm from the output of the diode 2. The diode 2 is arranged on an optical axis in a direction of a reflection angle θ2 =45 deg., and a fluorescent material 9 absorbs the majority of each condensed irradiation light at its surface. The rest of light of diffuse reflection light is partially reflected in a direction of an angle of 45 deg. to enter the diode 2 on the optical axis, and the amount of incidence is each scanned as the amount of incidence Eout (254) (147). In addition, diffused light emission with an emission spectral distribution P(λ) (254) (147) is measured by a multichannel spectroscope 11 via an optical fiber 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蛍光体の量子効率
を測定する方法及び装置に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a method and an apparatus for measuring the quantum efficiency of a phosphor.

【0002】[0002]

【従来の技術】蛍光体の量子効率は、例えばランプ用蛍
光体が到達し得る効率の極限を知る尺度として極めて重
要で、主として絶対値法と相対値法の二種類の測定方法
が用いられてきた。
2. Description of the Related Art The quantum efficiency of a fluorescent material is extremely important as a measure of the limit of the efficiency that a fluorescent material for a lamp can reach, for example, and two types of measurement methods, an absolute value method and a relative value method, have been mainly used. Was.

【0003】絶対値法は、蛍光体に吸収される励起光の
光量子数(フォトン数)と蛍光の光量子数(フォトン
数)とを独立に測定し、その比から量子効率を求める方
法である。この方法では蛍光体に吸収される励起光のフ
ォトンの数は、以下の方法で求める。まず、単一波長の
励起放射に対して、サーモパイルなどの熱型放射検出器
や絶対放射計を使って、蛍光体面での放射照度を測定
し、絶対反射率が値付けされた硫酸バリウムなどを反射
率標準として、蛍光体面の反射率を測定して(1−反射
率)から吸収率を求め、両者の値から励起光の吸収エネ
ルギーのフォトン数を求める。次に、蛍光体からの相対
蛍光分光スペクトルを分光測光器で測定し、その絶対量
を、前述の熱型放射検出器や絶対放射計の前面に、励起
光を除去する光学フィルタを装着して、求め、相対蛍光
スペクトルと絶対量とからその蛍光フォトン数を導き、
吸収エネルギーのフォトン数との比から蛍光体の量子効
率を求める方法である。この方法では、励起光の吸収フ
ォトン数と蛍光フォトン数を定量的に測定する熱形放射
検出器や絶対放射計の感度が低いため、十分な測定精度
が得られない問題があった。
The absolute value method is a method in which the photon number (photon number) of excitation light and the photon number (photon number) of fluorescence absorbed by a phosphor are independently measured, and the quantum efficiency is obtained from the ratio. In this method, the number of photons of the excitation light absorbed by the phosphor is obtained by the following method. First, the irradiance on the phosphor surface is measured using a thermal radiation detector such as a thermopile or an absolute radiometer for the excitation radiation of a single wavelength, and barium sulfate or the like whose absolute reflectance is assigned is measured. As a reflectance standard, the reflectance of the phosphor surface is measured to determine the absorptance from (1−reflectance), and the photon number of the absorption energy of the excitation light is determined from both values. Next, the relative fluorescence spectroscopy spectrum from the phosphor is measured with a spectrophotometer, and the absolute amount is measured by attaching an optical filter that removes the excitation light to the front of the aforementioned thermal radiation detector or absolute radiometer. , Find and derive the number of fluorescence photons from the relative fluorescence spectrum and absolute amount
In this method, the quantum efficiency of the phosphor is obtained from the ratio of the absorbed energy to the number of photons. This method has a problem that sufficient measurement accuracy cannot be obtained because the sensitivity of a thermal radiation detector or an absolute radiometer that quantitatively measures the number of absorption photons and the number of fluorescence photons of excitation light is low.

【0004】この問題を解決する手段として、図8に示
すような方法が提案されている。この方法は、まず、測
定しようとする蛍光体12の蛍光体面が積分球13の第
1の窓14に装着し、積分球13の第2の窓15から、
光源16、光学系17、光学フィルタ18から照射され
た蛍光体12の励起光19を入射させ、蛍光体12の蛍
光体面に前記励起光19を照射する。蛍光体12の蛍光
体面から発する励起光19の反射スペクトルと蛍光スペ
クトルを前記積分球13で積分し、積分球13の第3の
窓20に装着した分光測定器21で測定する。このとき
の分光測定器21の出力をそれぞれR(λ)、P(λ)
とする。このとき、積分球13の積分効率をη、分光測
定器21の効率の補正係数をK・f(λ)とすると、蛍
光体12の蛍光体面での励起光19の反射スペクトルは
η・K・f(λ)・R(λ)、蛍光スペクトルは、η・
K・f(λ)・P(λ)となる。次に、蛍光体12の代
わりに、反射率が既知の反射率標準22を積分球13の
第1の窓14に装着して前記と同様の測定を行なうこと
により、蛍光体12の蛍光体面に入射した励起光19の
分光放射照度η・K・f(λ)・1/α(λ)・E
(λ)が得られる。このとき、α(λ)は、反射率標準
22の分光反射率、E(λ)は、このときの分光測定器
21の読みである。この結果から、蛍光体12に吸収さ
れる励起光19の分光エネルギー分布は、
As a means for solving this problem, a method as shown in FIG. 8 has been proposed. In this method, first, the phosphor surface of the phosphor 12 to be measured is mounted on the first window 14 of the integrating sphere 13, and from the second window 15 of the integrating sphere 13,
The excitation light 19 of the phosphor 12 radiated from the light source 16, the optical system 17, and the optical filter 18 is incident, and the phosphor surface of the phosphor 12 is irradiated with the excitation light 19. The reflection spectrum and the fluorescence spectrum of the excitation light 19 emitted from the phosphor surface of the phosphor 12 are integrated by the integrating sphere 13 and measured by the spectrometer 21 attached to the third window 20 of the integrating sphere 13. The outputs of the spectrometer 21 at this time are R (λ) and P (λ), respectively.
And At this time, assuming that the integration efficiency of the integrating sphere 13 is η and the correction coefficient of the efficiency of the spectrometer 21 is K · f (λ), the reflection spectrum of the excitation light 19 on the phosphor surface of the phosphor 12 is η · K · f (λ) · R (λ), the fluorescence spectrum is η ·
K · f (λ) · P (λ). Next, instead of the phosphor 12, a reflectance standard 22 having a known reflectance is attached to the first window 14 of the integrating sphere 13, and the same measurement as described above is performed. Spectral irradiance η · K · f (λ) · 1 / α (λ) · E of the incident excitation light 19
(Λ) is obtained. At this time, α (λ) is the spectral reflectance of the reflectance standard 22 and E (λ) is the reading of the spectrometer 21 at this time. From this result, the spectral energy distribution of the excitation light 19 absorbed by the phosphor 12 is:

【0005】[0005]

【数1】 η・K・f(λ)・(1/α(λ))・E(λ)−η・K・f(λ)・R(λ) =η・K{f(λ)・(1/α(λ))・E(λ)−f(λ)・R(λ)} =η・K・A(λ) 但し、 A(λ)={f(λ)・(1/α(λ))・E(λ)−f
(λ)・R(λ)} となるため、量子効率εは
Η · K · f (λ) · (1 / α (λ)) · E (λ) −η · K · f (λ) · R (λ) = η · K {f (λ) · (1 / α (λ)) · E (λ) −f (λ) · R (λ)} = η · K · A (λ) where A (λ) = {f (λ) · (1 / α (Λ)) · E (λ) -f
(Λ) · R (λ)}, the quantum efficiency ε is

【0006】[0006]

【数2】 (Equation 2)

【0007】λ3,λ4:蛍光スペクトルが存在する波長
範囲 λ5,λ6:励起スペクトルの波長範囲 で与えられ、η、Kを絶対放射計などで求める必要がな
く、相対分光分布から高精度に蛍光体の量子効率を求め
ることができる。
[Lambda] 3, [lambda] 4: wavelength range where the fluorescence spectrum exists [lambda] 5, [lambda] 6: given by the wavelength range of the excitation spectrum, it is not necessary to determine η and K with an absolute radiometer, etc. Can be obtained.

【0008】[0008]

【発明が解決しようとする課題】近年、特定波長λ1で
の量子効率が既知の蛍光体について別の波長λ2での量
子効率を求める場合が多い。例えば、蛍光灯などで使用
されている254nmからプラズマディスプレイで使用
されている147nmの量子効率を求める場合などがあ
る。このような場合、波長λ2に対し、前記量子効率測
定方法を用いる必要がある。この方法では、積分球が必
要になり、このため、光量が不足しがちであり、強力な
励起光や高精度の分光器が必要であった。また、積分球
と分光反射率標準を使用するため、測定系が複雑であ
る。
In recent years, the quantum efficiency at another wavelength λ2 of a phosphor whose quantum efficiency at a specific wavelength λ1 is known is often found. For example, there is a case where the quantum efficiency from 254 nm used in a fluorescent lamp or the like to 147 nm used in a plasma display is obtained. In such a case, it is necessary to use the quantum efficiency measurement method for the wavelength λ2. In this method, an integrating sphere is required, which tends to result in a shortage of light quantity, and requires a strong excitation light and a high-precision spectroscope. In addition, since an integrating sphere and a spectral reflectance standard are used, the measurement system is complicated.

【0009】本発明は、上述した方法の課題を考慮し、
蛍光体の量子効率を簡易な構成で精度よく測定すること
ことができる蛍光体の量子効率測定方法および装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the method,
An object of the present invention is to provide a method and an apparatus for measuring quantum efficiency of a phosphor, which can accurately measure the quantum efficiency of the phosphor with a simple configuration.

【0010】[0010]

【課題を解決するための手段】特定波長λ1での放射に
対する吸収率と量子効率が既知の測定しようとする蛍光
体と、波長λ1の放射束を発生する光源1と、波長λ2の
放射を発生する光源2と、前記波長λ2の放射束を前記
蛍光体に導き波長λ1とλ2に対し波長選択性を持たない
光学系と、前記波長λ1とλ2の放射量と反射量を測定す
る放射検出器と、前記蛍光体の発光スペクトルを測定す
る分光測定器とからなり、前記蛍光体の波長λ2の放射
束と波長λ1の放射束の蛍光体面での入射量を放射検出
器で測定し、前記蛍光体の波長λ2での放射束と波長λ1
での放射束の光源1あるいは光源2の光軸と、放射検出
器の入射面の法線あるいは蛍光体面の法線とのなす入射
角θ1と反射角θ2の反射量を放射検出器で測定し、波
長λ1とλ2の前記蛍光体への入射量と、反射角θ2方向
への反射量と、波長λ1における吸収率とから、前記蛍
光体の波長λ2に対する放射束の吸収率を求め、波長λ1
とλ2の入射量と吸収率から吸収量を求め、波長λ1とλ
2の発光スペクトルから発光量を求め、吸収量の光量子
と発光量の光量子を除算し、さらに波長λ1の量子効率
と比較して、波長λ2の蛍光体の量子効率を求める。
SUMMARY OF THE INVENTION A phosphor whose absorption and quantum efficiency are known for radiation at a specific wavelength .lambda.1 to be measured, a light source 1 for generating a radiant flux of wavelength .lambda.1, and a source for generating radiation of wavelength .lambda.2. A light source 2 that guides the radiant flux of the wavelength λ2 to the phosphor, does not have wavelength selectivity with respect to the wavelengths λ1 and λ2, and a radiation detector that measures the radiant and reflectivity of the wavelengths λ1 and λ2 And a spectrometer for measuring the emission spectrum of the phosphor, measuring the incident amount of the luminous flux of wavelength λ2 and the radiant flux of wavelength λ1 of the phosphor on the phosphor surface with a radiation detector, Radiation flux at wavelength λ2 of the body and wavelength λ1
The radiation detector measures the amount of reflection of the incident angle θ1 and the reflection angle θ2 between the optical axis of the light source 1 or the light source 2 of the radiant flux and the normal to the incident surface of the radiation detector or the normal to the phosphor surface. From the incident amounts of the wavelengths λ1 and λ2 to the phosphor, the amount of reflection in the reflection angle θ2 direction, and the absorptance at the wavelength λ1, the absorptance of the luminous flux with respect to the wavelength λ2 of the phosphor is determined.
The absorption amount is calculated from the incident light amount and the absorption ratio of λ 1 and λ 2, and the wavelengths λ 1 and λ
The light emission amount is obtained from the light emission spectrum of No. 2, the light quantum of the light absorption amount is divided by the light quantum of the light emission amount, and further compared with the quantum efficiency of the wavelength λ1 to obtain the quantum efficiency of the phosphor of the wavelength λ2.

【0011】また、波長λ1とλ2が紫外域の波長であ
り、測定雰囲気が窒素または真空である。
The wavelengths λ1 and λ2 are ultraviolet wavelengths, and the measurement atmosphere is nitrogen or vacuum.

【0012】さらに、波長λ1が254nmの紫外光で
あり、波長λ2が波長200nm以下の真空紫外域であ
り、波長λ2の測定雰囲気が窒素または真空である。
Further, the wavelength λ1 is ultraviolet light having a wavelength of 254 nm, the wavelength λ2 is a vacuum ultraviolet region having a wavelength of 200 nm or less, and the measurement atmosphere of the wavelength λ2 is nitrogen or vacuum.

【0013】加えて、入射角θ1が0゜、反射角θ2が
45゜である。
In addition, the incident angle θ1 is 0 ° and the reflection angle θ2 is 45 °.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】本実施の形態における測定方法は、図1に
示すように、測定1から測定6までの6つの測定と、こ
れらの測定結果を用いた量子効率算出過程からなる。図
2から図7は測定1から測定6の具体的な実施の形態を
示すもので、波長λ1は254nm、波長λ2は147n
mとし、光源の光軸と放射検出器の入射面の法線あるい
は蛍光体面の法線とのなす入射角θ1は0゜、反射角θ
2は45゜とし、光源には重水素ランプ、光学系には1
47nmと254nmに対して透過特性に波長依存性が
ないフッ化マグネシウムレンズ、放射検出器にはシリコ
ンホトダイオード、分光器としてマルチチャンネル分光
装置を用いた。
As shown in FIG. 1, the measuring method according to the present embodiment includes six measurements from measurement 1 to measurement 6, and a quantum efficiency calculation process using these measurement results. 2 to 7 show specific embodiments of Measurement 1 to Measurement 6, where the wavelength λ1 is 254 nm and the wavelength λ2 is 147n.
m, the incident angle θ1 between the optical axis of the light source and the normal to the incident surface of the radiation detector or the normal to the phosphor surface is 0 °, and the reflection angle θ
2 is 45 °, a deuterium lamp for the light source, and 1 for the optical system.
A magnesium fluoride lens whose transmission characteristics do not have wavelength dependence at 47 nm and 254 nm, a silicon photodiode as a radiation detector, and a multi-channel spectrometer as a spectroscope were used.

【0016】(I)まず、図2に示す測定1の構成によ
り、波長254nmの光の、測定しようとする蛍光体面
での入射量を測定する。図2における測定1は、重水素
ランプ1と、重水素ランプ1からの放射束を検出するた
め、光軸上に入射角0゜で置き、あらかじめ波長毎の絶
対入射量の値をつけたシリコンホトダイオード2と、シ
リコンホトダイオード2に重水素ランプ1からの放射束
を導くフッ化マグネシウムレンズ3と、波長254nm
のみを波長選択する干渉フィルタ4と、シリコンホトダ
イオード2に接続され、その出力信号を読み取るデジタ
ルマルチメータ5とから構成される。このとき、重水素
ランプ1とシリコンホトダイオード2との距離をL1と
する。ここで、重水素ランプ1と干渉フィルタ4が請求
項の光源1を、フッ化マグネシウムレンズが光学系を、
シリコンホトダイオード2とデジタルマルチメータ5が
放射検出器にそれぞれ対応する。
(I) First, the amount of light having a wavelength of 254 nm incident on the phosphor surface to be measured is measured by the configuration of measurement 1 shown in FIG. In the measurement 1 in FIG. 2, the deuterium lamp 1 and the silicon were placed at an incident angle of 0 ° on the optical axis to detect the radiant flux from the deuterium lamp 1, and the absolute incident amount for each wavelength was previously given. A photodiode 2, a magnesium fluoride lens 3 for guiding the radiant flux from the deuterium lamp 1 to the silicon photodiode 2, a wavelength of 254 nm
It comprises an interference filter 4 for selecting only the wavelength and a digital multimeter 5 connected to the silicon photodiode 2 and reading its output signal. At this time, the distance between the deuterium lamp 1 and the silicon photodiode 2 is L1. Here, the deuterium lamp 1 and the interference filter 4 correspond to the light source 1 of the claims, the magnesium fluoride lens corresponds to the optical system,
The silicon photodiode 2 and the digital multimeter 5 correspond to the radiation detector, respectively.

【0017】このように構成された測定1の動作を以下
説明する。重水素ランプ1を点灯し、安定するのを待
つ。重水素ランプ1から発せられた連続スペクトル光
は、干渉フィルタ4で主波長が254nmの照射光とな
ってフッ化マグネシウムレンズ3で集光された後、シリ
コンホトダイオード2に入射する。このとき、シリコン
ホトダイオード2の出力信号をデジタルマルチメータ5
で読み取る。シリコンホトダイオード2は波長毎にあら
かじめ入射量の値が付けられており、デジタルマルチメ
ータ5の読取値から254nmに対するシリコンホトダ
イオード2の位置における入射量Ein(254)が測定でき
る。
The operation of the measurement 1 configured as described above will be described below. Turn on the deuterium lamp 1 and wait for it to stabilize. Continuous spectrum light emitted from the deuterium lamp 1 becomes irradiation light having a main wavelength of 254 nm by the interference filter 4 and is condensed by the magnesium fluoride lens 3 before being incident on the silicon photodiode 2. At this time, the output signal of the silicon photodiode 2 is
Read with. The silicon photodiode 2 is given a value of the incident amount for each wavelength in advance, and the incident amount E in (254) at the position of the silicon photodiode 2 with respect to 254 nm can be measured from the read value of the digital multimeter 5.

【0018】次に、図3に示す測定2の構成で、波長1
47nmの、測定しようとする蛍光体面での入射量を測
定する。図3において、測定2は、重水素ランプ1と、
重水素ランプ1からの放射束を検出するため、光軸上に
入射角0゜で置いたシリコンホトダイオード2と、重水
素ランプ1からの放射をシリコンホトダイオード2に導
くフッ化マグネシウムレンズ3と、147nmのみを波
長選択する干渉フィルタ6と、測定雰囲気を真空に保つ
真空チャンバ7と、真空チャンバ7に接続された真空ポ
ンプ8と、シリコンホトダイオード2に接続され、その
出力信号を読み取るデジタルマルチメータ5とから構成
される。このとき、重水素ランプ1とシリコンホトダイ
オード2との距離は測定1のL1と等しくする。なお、
真空紫外域での放射量を測定するため、重水素ランプ1
の出射窓(図示せず)、フッ化マグネシウムレンズ3、
干渉フィルタ6、およびシリコンホトダイオード2は真
空チャンバ7内に設置する。ここで、重水素ランプ1と
干渉フィルタ6が請求項の光源2を、フッ化マグネシウ
ムレンズ3が光学系を、シリコンホトダイオード2とデ
ジタルマルチメータ5が放射検出器にそれぞれ対応す
る。なお、光学系にフッ化マグネシウムレンズ3を用い
ているので、254nmと147nmで透過特性に波長
選択性はない。
Next, in the configuration of measurement 2 shown in FIG.
The amount of 47 nm incident on the phosphor surface to be measured is measured. In FIG. 3, measurement 2 is a deuterium lamp 1 and
In order to detect the radiant flux from the deuterium lamp 1, a silicon photodiode 2 placed on the optical axis at an incident angle of 0 °, a magnesium fluoride lens 3 for guiding the radiation from the deuterium lamp 1 to the silicon photodiode 2, and 147 nm An interference filter 6 for selecting only the wavelength, a vacuum chamber 7 for keeping the measurement atmosphere in a vacuum, a vacuum pump 8 connected to the vacuum chamber 7, a digital multimeter 5 connected to the silicon photodiode 2 and reading its output signal. Consists of At this time, the distance between the deuterium lamp 1 and the silicon photodiode 2 is made equal to L1 of the measurement 1. In addition,
Deuterium lamp 1 to measure the amount of radiation in the vacuum ultraviolet region
Exit window (not shown), magnesium fluoride lens 3,
The interference filter 6 and the silicon photodiode 2 are installed in a vacuum chamber 7. Here, the deuterium lamp 1 and the interference filter 6 correspond to the claimed light source 2, the magnesium fluoride lens 3 corresponds to the optical system, and the silicon photodiode 2 and the digital multimeter 5 correspond to the radiation detector. Since the magnesium fluoride lens 3 is used for the optical system, there is no wavelength selectivity in transmission characteristics at 254 nm and 147 nm.

【0019】このように構成された測定系2の動作を以
下に示す。まず、真空ポンプ8を動作させ、真空チャン
バ7内を10ー3〜10ー4Torr程度の真空に保つ。次
に、重水素ランプ1を点灯し、重水素ランプ1が安定点
灯するのを待って、測定1と同様の方法で147nmに
対するシリコンホトダイオード2の入射量Ein(147)を
測定する。このとき、測定1と異なるのは147nmの
光のみを照射するように、干渉フィルタ6を147nm
を透過させるものに変更している点と、147nm紫外
光の大気中での吸収減衰を防止するために、測定光学系
を真空チャンバ7内に設置している点である。
The operation of the measuring system 2 configured as described above will be described below. First, the vacuum pump 8 is operated to maintain the inside of the vacuum chamber 7 at a vacuum of about 10 -3 to 10 -4 Torr. Next, the deuterium lamp 1 is turned on, and after the deuterium lamp 1 is stably turned on, the incident amount E in (147) of the silicon photodiode 2 with respect to 147 nm is measured in the same manner as in the measurement 1. At this time, the interference filter 6 is different from the measurement 1 in that the interference filter 6 is irradiated with only the 147 nm light.
And a measurement optical system is installed in the vacuum chamber 7 in order to prevent absorption and attenuation of 147 nm ultraviolet light in the atmosphere.

【0020】次に、図4に示す測定3の構成で、波長2
54nmに対する、測定しようとする蛍光体の蛍光体面
での反射率を測定する。図4において、測定3は、重水
素ランプ1と、光軸上に入射角0゜で設置した蛍光体9
と、重水素ランプ1からの波長254nmの放射を光軸
上の測定しようとする蛍光体9に導くフッ化マグネシウ
ムレンズ3と、254nmのみを波長選択する干渉フィ
ルタ4と、反射角θ2=45゜の方向の光軸上に置いた
シリコンホトダイオード2と、シリコンホトダイオード
2に接続され、その出力信号を読み取るデジタルマルチ
メータ5とから構成される。このとき、重水素ランプ1
の照射光光軸上で、重水素ランプ1から蛍光体9までの
距離をL2とする。距離L2は図2および図3で重水素
ランプ1とシリコンホトダイオード2までの距離L1に
対し、同一であっても、異なってもかわまわない。
Next, in the configuration of measurement 3 shown in FIG.
The reflectance of the phosphor to be measured on the phosphor surface with respect to 54 nm is measured. In FIG. 4, the measurement 3 is performed by using a deuterium lamp 1 and a phosphor 9 installed on the optical axis at an incident angle of 0 °.
A magnesium fluoride lens 3 for guiding radiation of a wavelength of 254 nm from the deuterium lamp 1 to a phosphor 9 to be measured on the optical axis, an interference filter 4 for selecting only the wavelength of 254 nm, and a reflection angle θ2 = 45 ° And a digital multimeter 5 connected to the silicon photodiode 2 and reading its output signal. At this time, the deuterium lamp 1
The distance from the deuterium lamp 1 to the phosphor 9 on the optical axis of the irradiation light is L2. The distance L2 may be the same as or different from the distance L1 between the deuterium lamp 1 and the silicon photodiode 2 in FIGS.

【0021】このように構成された測定3の動作を以下
に示す。重水素ランプ1から発せられた連続スペクトル
光は、干渉フィルタ4で254nmのみの照射光とな
り、フッ化マグネシウムレンズ3で集光された後、測定
しようとする蛍光体9に入射する。254nmの照射光
は測定しようとする蛍光体9の表面で大部分吸収され、
残りの拡散反射された照射光の一部は反射角45゜方向
に反射され、その光軸上に設置したシリコンホトダイオ
ード2に入射する。シリコンホトダイオード2への入射
量を反射量Eout(254)としてデジタルマルチメータ5で
測定する。
The operation of Measurement 3 configured as described above will be described below. The continuous spectrum light emitted from the deuterium lamp 1 becomes irradiation light of only 254 nm by the interference filter 4, is condensed by the magnesium fluoride lens 3, and then enters the phosphor 9 to be measured. Irradiation light of 254 nm is mostly absorbed on the surface of the phosphor 9 to be measured,
A part of the remaining diffusely reflected irradiation light is reflected in the direction of the reflection angle of 45 ° and enters the silicon photodiode 2 installed on the optical axis. The amount of light incident on the silicon photodiode 2 is measured by the digital multimeter 5 as the amount of reflection E out (254).

【0022】同様に、図5に示す測定4の構成で、波長
147nmに対する、測定しようとする蛍光体9の蛍光
体面での反射率を測定する。図5では、測定4は、重水
素ランプ1と、147nmのみの照射を決定する干渉フ
ィルタ6と、重水素ランプ1からの波長147nmの放
射を、光軸上の測定しようとする蛍光体9に導くフッ化
マグネシウムレンズ3と、測定雰囲気を真空に保つ真空
チャンバ7と、真空チャンバ7に接続された真空ポンプ
8と、反射角45゜の方向の光軸上に置いたシリコンホ
トダイオード2と、シリコンホトダイオード2に接続さ
れ、その出力信号を読み取るデジタルマルチメータ5と
から構成される。このとき、重水素ランプ1の照射光光
軸上で、重水素ランプ1から蛍光体9までの距離L2
が、図2および図3で重水素ランプ1とシリコンホトダ
イオード2までの距離L1に対し、同一であっても、異
なっても問題はない。
Similarly, in the configuration of measurement 4 shown in FIG. 5, the reflectance on the phosphor surface of the phosphor 9 to be measured at a wavelength of 147 nm is measured. In FIG. 5, the measurement 4 includes the deuterium lamp 1, the interference filter 6 that determines the irradiation of only 147 nm, and the emission of the wavelength 147 nm from the deuterium lamp 1 to the phosphor 9 to be measured on the optical axis. A magnesium fluoride lens 3 to be guided, a vacuum chamber 7 for keeping a measurement atmosphere in a vacuum, a vacuum pump 8 connected to the vacuum chamber 7, a silicon photodiode 2 placed on an optical axis in a direction of a reflection angle of 45 °, and silicon A digital multimeter 5 connected to the photodiode 2 and reading its output signal. At this time, the distance L2 from the deuterium lamp 1 to the phosphor 9 on the optical axis of the irradiation light of the deuterium lamp 1
However, there is no problem if the distance L1 between the deuterium lamp 1 and the silicon photodiode 2 in FIGS. 2 and 3 is the same or different.

【0023】このように構成された測定4の動作を以下
に示す。まず、真空ポンプ8を動作させ、真空チャンバ
8内を10ー3〜10ー4Torr程度の真空に保つ。つぎ
に、重水素ランプ1を点灯し、安定するのを待って、測
定3と同様の方法で147nmに対する蛍光体9の反射
角45゜方向の反射量Eout(147)を測定する。
The operation of the measurement 4 configured as described above will be described below. First, the vacuum pump 8 is operated to maintain the inside of the vacuum chamber 8 at a vacuum of about 10 -3 to 10 -4 Torr. Next, the deuterium lamp 1 is turned on, and after being stabilized, the reflection amount E out (147) of the phosphor 9 in the direction of the reflection angle of 45 ° with respect to 147 nm is measured in the same manner as in Measurement 3.

【0024】次に、図6に示す測定5の構成で波長25
4nmに対する、測定しようとする蛍光体9の発光スペ
クトルを測定する。図6では、測定5は、重水素ランプ
1と、254nmのみを波長選択する干渉フィルタ4
と、重水素ランプ1からの波長254nmの放射を、光
軸上の測定しようとする蛍光体9に導くフッ化マグネシ
ウムレンズ3と、蛍光体9の蛍光体面の法線から45゜
方向の光軸上に設置した光ファイバ10と、光ファイバ
10に接続されたマルチチャンネル分光装置11とから
構成される。このとき、重水素ランプ1からの照射光軸
上で重水素ランプ1から蛍光体9までの距離L3が、図
4および図5で重水素ランプ1と蛍光体9までの距離L
2と等しく(L3=L2)なるように蛍光体9を配置す
る。
Next, in the configuration of the measurement 5 shown in FIG.
The emission spectrum of the phosphor 9 to be measured at 4 nm is measured. In FIG. 6, the measurement 5 includes the deuterium lamp 1 and the interference filter 4 that selects only the wavelength of 254 nm.
And a magnesium fluoride lens 3 for guiding radiation of a wavelength of 254 nm from the deuterium lamp 1 to the phosphor 9 to be measured on the optical axis, and an optical axis 45 ° from the normal to the phosphor surface of the phosphor 9 It comprises an optical fiber 10 installed above, and a multi-channel spectrometer 11 connected to the optical fiber 10. At this time, the distance L3 from the deuterium lamp 1 to the phosphor 9 on the irradiation optical axis from the deuterium lamp 1 is the distance L3 between the deuterium lamp 1 and the phosphor 9 in FIGS.
The phosphors 9 are arranged so as to be equal to 2 (L3 = L2).

【0025】このように構成された測定5の動作を以下
に示す。重水素ランプ1から発せられた連続スペクトル
光は、干渉フィルタ4で254nmのみの照射光となっ
てフッ化マグネシウムレンズ3で集光された後、測定し
ようとする蛍光体9に入射する。254nmの照射光
(励起光)は測定しようとする蛍光体9に大部分吸収さ
れる。吸収された励起光により蛍光体9は特有の蛍光発
光スペクトル分布P(λ)(254)を持った拡散発光を示
す。蛍光体9からの蛍光発光は光ファイバ10に入射
し、光ファイバ10に接続されたマルチチャンネル分光
装置11で蛍光体9の発光スペクトル分布P(λ)(254)
を測定する。
The operation of the measurement 5 configured as described above will be described below. Continuous spectrum light emitted from the deuterium lamp 1 becomes irradiation light of only 254 nm by the interference filter 4 and is condensed by the magnesium fluoride lens 3 before being incident on the phosphor 9 to be measured. The 254 nm irradiation light (excitation light) is mostly absorbed by the phosphor 9 to be measured. Due to the absorbed excitation light, the phosphor 9 shows diffused light emission having a unique fluorescence emission spectrum distribution P (λ) (254). The fluorescent light emitted from the phosphor 9 is incident on the optical fiber 10, and the emission spectrum distribution P (λ) (254) of the phosphor 9 is obtained by the multi-channel spectroscope 11 connected to the optical fiber 10.
Is measured.

【0026】同様に図7に示す構成の測定6で、波長1
47nmに対する、測定しようとする蛍光体9の発光ス
ペクトルを測定する。図7では、測定6は、重水素ラン
プ1と、147nmのみを波長選択する干渉フィルタ6
と、重水素ランプ1からの波長147nmの放射を、光
軸上の測定しようとする蛍光体9に導くフッ化マグネシ
ウムレンズ3と、測定雰囲気を真空に保つ真空チャンバ
7と、真空チャンバ7に接続された真空ポンプ8と、蛍
光体9の蛍光体面の法線から反射角45゜方向の光軸上
に設置した光ファイバ10と、光ファイバ10に接続さ
れたマルチチャンネル分光装置11とから構成される。
このとき、重水素ランプ1からの照射光軸上で重水素ラ
ンプ1から蛍光体9までの距離L3が、図4および図5
で重水素ランプ1と蛍光体9までの距離L2と等しく
(L3=L2)なるように蛍光体9を配置する。
Similarly, in measurement 6 of the configuration shown in FIG.
The emission spectrum of the phosphor 9 to be measured at 47 nm is measured. In FIG. 7, the measurement 6 is a deuterium lamp 1 and an interference filter 6 for selecting only the wavelength of 147 nm.
And a magnesium fluoride lens 3 for guiding radiation having a wavelength of 147 nm from the deuterium lamp 1 to the phosphor 9 to be measured on the optical axis, a vacuum chamber 7 for keeping the measurement atmosphere in a vacuum, and a connection to the vacuum chamber 7. Vacuum pump 8, an optical fiber 10 installed on an optical axis at a reflection angle of 45 ° from the normal to the phosphor surface of the phosphor 9, and a multi-channel spectrometer 11 connected to the optical fiber 10. You.
At this time, the distance L3 from the deuterium lamp 1 to the phosphor 9 on the irradiation optical axis from the deuterium lamp 1 is different from that shown in FIGS.
The phosphor 9 is arranged so that the distance L2 between the deuterium lamp 1 and the phosphor 9 is equal to (L3 = L2).

【0027】このように構成された測定6の動作を以下
に示す。重水素ランプ1から発せられた連続スペクトル
光は干渉フィルタ6で147nmのみの照射光となって
フッ化マグネシウムレンズ3で集光された後、測定しよ
うとする蛍光体9に入射する。147nmの照射光(励
起光)は、測定しようとする蛍光体9に大部分吸収され
る。吸収された励起光により、蛍光体9は特有の蛍光発
光スペクトル分布P(λ)(147)を持つ拡散発光を示す。
蛍光体9からの蛍光発光は光ファイバ10に入射し、光
ファイバ10に接続されたマルチチャンネル分光装置1
1で測定する。
The operation of the measurement 6 configured as described above will be described below. Continuous spectrum light emitted from the deuterium lamp 1 becomes irradiation light of only 147 nm by the interference filter 6 and is condensed by the magnesium fluoride lens 3 before being incident on the phosphor 9 to be measured. The 147 nm irradiation light (excitation light) is mostly absorbed by the phosphor 9 to be measured. Due to the absorbed excitation light, the phosphor 9 emits diffused light having a unique fluorescence emission spectrum distribution P (λ) (147).
The fluorescent light emitted from the phosphor 9 enters the optical fiber 10 and is connected to the optical fiber 10.
Measure at 1.

【0028】以上、測定1から測定6の波長254nm
における蛍光体9の入射量Ein(254)、蛍光体9の反射
量Eout(254)、蛍光体9の発光スペクトルP(λ)(254)
と、波長147nmにおける蛍光体9の入射量Ein(14
7)、蛍光体9の反射量Eout(147)蛍光体9の発光スペク
トルP(λ)(147)が求まる。
As described above, the wavelength 254 nm of the measurement 1 to the measurement 6
Incident amount of the phosphor 9 in E in (254), the reflection amount E out (254) of the phosphor 9, the emission spectrum P of the phosphor 9 (λ) (254)
And the incident amount E in (14) of the phosphor 9 at a wavelength of 147 nm.
7), the reflection amount E out of the phosphor 9 (147) and the emission spectrum P (λ) (147) of the phosphor 9 are obtained.

【0029】なお、本発明において光源に重水素ランプ
を使用したが、キセノンランプなどの紫外放射光源を使
用しても構わない。
Although a deuterium lamp is used as a light source in the present invention, an ultraviolet radiation light source such as a xenon lamp may be used.

【0030】また、本発明において、波長λ1に254
nm、波長λ2に147nmを例として挙げたが、特定
波長の吸収率と量子効率が既知であれば他の任意の波長
でも構わない。
Further, in the present invention, the wavelength λ1 is set to 254.
Although 147 nm has been given as an example of the wavelength and the wavelength λ2, other arbitrary wavelengths may be used as long as the absorptance and quantum efficiency at a specific wavelength are known.

【0031】更に、放射検出器にシリコンホトダイオー
ドを使用したが、熱形放射検出器を使用しても構わな
い。
Further, although the silicon photodiode is used as the radiation detector, a thermal radiation detector may be used.

【0032】なお、本発明において、入射角θ1を0
゜、反射角θ2を45゜としたが、入射角が45゜な
ど、任意の角度に設定しても構わない。
In the present invention, the incident angle θ1 is set to 0
Although the reflection angle θ2 is set to 45 °, the incident angle may be set to an arbitrary angle such as 45 °.

【0033】なお、本発明において、フッ化マグネシウ
ムレンズを光学系に用いたが、測定しようとする波長に
対し、波長選択性を持たない光学素子、例えばサファイ
アレンズなどを光学系に用いてもよい。
In the present invention, the magnesium fluoride lens is used for the optical system. However, an optical element having no wavelength selectivity with respect to the wavelength to be measured, for example, a sapphire lens may be used for the optical system. .

【0034】また、本発明において、254nmの測定
時に、測定雰囲気を大気中で行なったが、真空中もしく
は窒素中でもさしつかえない。
In the present invention, the measurement atmosphere was performed in the atmosphere at the time of measurement at 254 nm, but the measurement may be performed in vacuum or in nitrogen.

【0035】(II)次に、これらの測定値を用いて、
147nmにおける量子効率ε147を求める過程につい
て説明する。
(II) Next, using these measured values,
A process for obtaining the quantum efficiency ε 147 at 147 nm will be described.

【0036】まず、測定1で測定した254nmに対す
る、測定しようとする蛍光体面の入射量Ein(254)は、
測定1での入射光学系の測定値と真値との差を補正する
補正係数をK1とし、重水素ランプ1からの254nm
の照射量(干渉フィルタ5で254nmのみを透過)を
254とすると
First, the incident amount E in (254) of the phosphor surface to be measured with respect to 254 nm measured in measurement 1 is
The correction coefficient for correcting the difference between the measured value of the incident optical system in measurement 1 and the true value is K1, and 254 nm from the deuterium lamp 1
Let P 254 be the irradiation amount of (passing only 254 nm by the interference filter 5)

【0037】[0037]

【数3】Ein(254)=K1・P254 となる。## EQU3 ## E in (254) = K1 · P 254

【0038】次に、測定3の入射光学系の補正係数をK
2、反射光学系の補正係数をK3とすると、蛍光体面へ
の入射量Xは
Next, the correction coefficient of the incident optical system in measurement 3 is represented by K
2. Assuming that the correction coefficient of the reflection optical system is K3, the incident amount X on the phosphor surface is

【0039】[0039]

【数4】X=K2・P254 となり、測定3で測定した、254nmに対する蛍光体
9の反射量Eout(254)は、反射量をYとすると
X = K2 · P 254 , and the reflection amount E out (254) of the phosphor 9 with respect to 254 nm measured in Measurement 3 is represented by Y

【0040】[0040]

【数5】Eout(254)=K3・Y と表わせる。E out (254) = K3 · Y

【0041】ここで、254nmに対する蛍光体の反射
率をβ、吸収率をρとすると(数4)、(数5)式より
Here, assuming that the reflectance of the phosphor at 254 nm is β and the absorptance is ρ, from the equations (4) and (5),

【0042】[0042]

【数6】 (Equation 6)

【0043】となる。(数3)、(数6)式からP254
を消去して
Is as follows. From Equations (3) and (6), P 254
Erase

【0044】[0044]

【数7】 (Equation 7)

【0045】となり、Becomes

【0046】[0046]

【数8】 (Equation 8)

【0047】と表わせる。Can be expressed as follows.

【0048】(数8)式ではρは蛍光体の254nmに
対する吸収率であり、あらかじめわかっている量であ
り、Ein(254)、Eout(254)とも、測定1、測定3での
測定値であるので、(数8)式より放射量測定系の補正
係数K1と反射量測定系の補正係数K2、K3の合成値
(K1/(K2・K3))が求まる。
In the equation (8), ρ is the absorbance of the phosphor at 254 nm, which is a known amount, and E in (254) and E out (254) are both measured in Measurement 1 and Measurement 3. Since the value is a value, a composite value (K1 / (K2 · K3)) of the correction coefficient K1 of the radiation amount measurement system and the correction coefficients K2 and K3 of the reflection amount measurement system is obtained from Expression (8).

【0049】さらに、254nmにおける蛍光体の量子
効率ε254は測定5で求めた分光スペクトル分布P(λ)
(254)を用い、マルチチャンネル分光装置の入射光学系
の補正係数K4とすると、
Further, the quantum efficiency ε 254 of the phosphor at 254 nm is determined by the spectral spectrum distribution P (λ) obtained in Measurement 5.
Using (254) as a correction coefficient K4 of the incident optical system of the multi-channel spectrometer,

【0050】[0050]

【数9】 (Equation 9)

【0051】で表わせる。(数9)式から、Can be expressed by From equation (9),

【0052】[0052]

【数10】 (Equation 10)

【0053】となり、マルチチャンネル分光装置の入射
光学系の補正係数K4が求まる。
Thus, a correction coefficient K4 of the incident optical system of the multi-channel spectrometer is obtained.

【0054】次に、測定2で測定した147nmに対す
る蛍光体面の入射量Ein(147)は測定光学系に波長選択
性がないので、重水素ランプの147nmの照射量をP
147とすると、
Next, the incident amount E in (147) of the phosphor surface with respect to 147 nm measured in Measurement 2 was determined by setting the irradiation amount of the deuterium lamp at 147 nm to P since the measuring optical system has no wavelength selectivity.
Assuming 147

【0055】[0055]

【数11】Ein(147)=K1・P147 となる。さらに測定4で測定した147nmに対する蛍
光体面の反射量Eout(147)とすると、測定4でも測定光
学系に波長選択性をもたないものを用いているので、蛍
光体の147nmに対する反射率γは254nmの場合
と同様に、
E in (147) = K1 · P 147 Further, assuming that the reflection amount E out (147) of the phosphor surface with respect to 147 nm measured in Measurement 4 is that the measurement optical system having no wavelength selectivity is also used in Measurement 4, the reflectance γ of the phosphor with respect to 147 nm is used. Is similar to the case of 254 nm,

【0056】[0056]

【数12】 (Equation 12)

【0057】と表わせる。ここで、(数12)式に(数
8)式を代入して
Can be expressed as follows. Here, equation (8) is substituted into equation (12), and

【0058】[0058]

【数13】 (Equation 13)

【0059】となり、蛍光体の147nmに対する反射
率γが求まる。
Thus, the reflectance γ of the phosphor at 147 nm is obtained.

【0060】さらに、147nmにおける蛍光体の量子
効率ε147は、測定6で測定した分光スペクトル分布P
(λ)(254)を用い、マルチチャンネル分光装置の入射光
学系の補正係数K4が波長選択性を持たないとすると、
Further, the quantum efficiency ε 147 of the phosphor at 147 nm is determined by the spectral spectrum distribution P measured in Measurement 6.
Using (λ) (254), assuming that the correction coefficient K4 of the incident optical system of the multi-channel spectrometer does not have wavelength selectivity,

【0061】[0061]

【数14】 [Equation 14]

【0062】となり、(数14)式に(数10)式およ
び(数13)式を代入して、
[Mathematical formula-see original document] Substituting equations (10) and (13) into equation (14),

【0063】[0063]

【数15】 (Equation 15)

【0064】となる。Is obtained.

【0065】(数15)式で、254nmに対する蛍光
体の量子効率ε254と蛍光体の254nmに対する吸収
率ρは既知であり、また、254nmに対する蛍光体へ
の入射量Ein(254)と蛍光体からの反射量Eout(254)、
分光スペクトルP(λ)(254)および147nmに対する
蛍光体への入射量Ein(147)と反射量Eout(147)、分光
スペクトルP(λ)(147)は、測定1から測定6の測定で
求まる。したがって、式(数15)を用いれば、147
nmに対する蛍光体の量子効率ε147を求めることがで
きる。
In the equation (15), the quantum efficiency ε 254 of the phosphor at 254 nm and the absorptivity ρ of the phosphor at 254 nm are known, and the incident amount E in (254) on the phosphor at 254 nm and the fluorescence The amount of reflection from the body E out (254),
The amount of incident light E in (147) and the amount of reflection E out (147) to the phosphor with respect to the spectral spectra P (λ) (254) and 147 nm, and the spectral spectrum P (λ) (147) are measured from Measurement 1 to Measurement 6. Is determined by Therefore, if equation (Equation 15) is used, 147
The quantum efficiency ε 147 of the phosphor with respect to nm can be determined.

【0066】[0066]

【発明の効果】以上述べたところから明らかなように、
本発明は、積分球と分光反射率標準を用いないで、簡素
な構成で光源からの放射の絶対量の測定をせずに、波長
λ1で量子効率が既知の蛍光体の波長λ2での量子効率の
測定ができる。
As is apparent from the above description,
The present invention does not use an integrating sphere and a spectral reflectance standard, and uses a simple configuration without measuring the absolute amount of radiation from a light source. Efficiency can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の測定過程を示す測定流
れ図である。
FIG. 1 is a measurement flowchart showing a measurement process according to an embodiment of the present invention.

【図2】本発明の一実施の形態の測定1を示す図であ
る。
FIG. 2 is a diagram showing Measurement 1 according to one embodiment of the present invention.

【図3】本発明の一実施の形態の測定2を示す図であ
る。
FIG. 3 is a diagram showing measurement 2 according to the embodiment of the present invention.

【図4】本発明の一実施の形態の測定3を示す図であ
る。
FIG. 4 is a diagram showing measurement 3 according to the embodiment of the present invention.

【図5】本発明の一実施の形態の測定4を示す図であ
る。
FIG. 5 is a diagram showing measurement 4 according to the embodiment of the present invention.

【図6】本発明の一実施の形態の測定5を示す図であ
る。
FIG. 6 is a diagram showing measurement 5 according to the embodiment of the present invention.

【図7】本発明の一実施の形態の測定6を示す図であ
る。
FIG. 7 is a diagram showing a measurement 6 according to an embodiment of the present invention.

【図8】従来の量子効率測定方法を示す図である。FIG. 8 is a diagram showing a conventional quantum efficiency measurement method.

【符号の説明】[Explanation of symbols]

1 重水素ランプ 2 シリコンホトダイオード 3 フッ化マグネシウムレンズ 4 干渉フィルタ(254nm) 5 デジタルマルチメータ 6 干渉フィルタ(147nm) 7 真空チャンバ 8 真空ポンプ 9 蛍光体 10 光ファイバ 11 マルチチャンネル分光装置 DESCRIPTION OF SYMBOLS 1 Deuterium lamp 2 Silicon photodiode 3 Magnesium fluoride lens 4 Interference filter (254 nm) 5 Digital multimeter 6 Interference filter (147 nm) 7 Vacuum chamber 8 Vacuum pump 9 Phosphor 10 Optical fiber 11 Multichannel spectrometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀井 滋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松岡 富造 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shigeru Horii 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】特定波長λ1での放射に対する吸収率と量
子効率が既知の、測定しようとする蛍光体と、波長λ1
の放射束を発生する光源(1)と、波長λ2の放射束を
発生する光源(2)と、前記波長λ1とλ2の放射束を前
記蛍光体に導き波長λ1とλ2に対し、波長選択性を持た
ない光学系と、前記波長λ1とλ2の放射量と反射量を測
定する放射検出器と、前記蛍光体の発光スペクトルを測
定する分光測定器とを備え、前記蛍光体の波長λ2の放
射束と波長λ1の放射束の蛍光体面での入射量を前記放
射検出器で測定し、前記蛍光体の波長λ2での放射束と
波長λ1での放射束の光源(1)あるいは光源(2)の
光軸と、前記放射検出器の入射面の法線あるいは蛍光体
面の法線とのなす入射角θ1と反射角θ2の反射量を前
記放射検出器で測定し、波長λ1とλ2の前記蛍光体への
入射量と、反射角θ2方向への反射量と、波長λ1にお
ける吸収率とから、前記蛍光体の波長λ2に対する放射
束の吸収率を求め、波長λ1とλ2の入射量と吸収率から
吸収量を求め、波長λ1とλ2の発光スペクトルから発光
量を求め、吸収量の光量子と発光量の光量子を除算し、
さらに波長λ1の量子効率と比較して、波長λ2の蛍光体
の量子効率を求めることを特徴とする蛍光体量子効率測
定装置。
1. A phosphor to be measured whose absorption and quantum efficiency for radiation at a specific wavelength λ1 are known,
A light source (1) for generating a radiant flux of the wavelength λ2, a light source (2) for generating a radiant flux of the wavelength λ2, and guiding the radiant flux of the wavelengths λ1 and λ2 to the phosphor to obtain a wavelength selectivity for the wavelengths λ1 and λ2. , A radiation detector for measuring the radiation amount and the reflection amount of the wavelengths λ1 and λ2, and a spectrometer for measuring the emission spectrum of the phosphor, the radiation of the phosphor having a wavelength λ2 The amount of incidence of the flux and the radiant flux having the wavelength λ1 on the phosphor surface is measured by the radiation detector, and the light source (1) or the light source (2) of the radiant flux at the wavelength λ2 and the radiant flux at the wavelength λ1 of the phosphor is used. The reflection amount of the incident angle θ1 and the reflection angle θ2 between the optical axis of the radiation detector and the normal of the incident surface of the radiation detector or the normal of the phosphor surface is measured by the radiation detector, and the fluorescence of wavelengths λ1 and λ2 is measured. From the amount of light incident on the body, the amount of reflection in the reflection angle θ2 direction, and the absorptance at the wavelength λ1, the wavelength Calculate the absorptance of the radiant flux to be obtained, calculate the absorptive amount from the incident amounts and the absorptances of the wavelengths λ1 and λ2, obtain the luminous amount from the emission spectra of the wavelengths λ1 and λ2, and divide the photon of the absorbed amount and the photon of the luminescent amount ,
A phosphor quantum efficiency measuring apparatus characterized in that the quantum efficiency of a phosphor having a wavelength of λ2 is determined in comparison with the quantum efficiency of a wavelength λ1.
【請求項2】波長λ1とλ2が紫外域の波長であり、測定
雰囲気が窒素または真空である請求項1記載の蛍光体量
子効率測定装置。
2. The phosphor quantum efficiency measuring apparatus according to claim 1, wherein the wavelengths λ1 and λ2 are in the ultraviolet region, and the measurement atmosphere is nitrogen or vacuum.
【請求項3】波長λ1が254nmの紫外光であり、波
長λ2が波長200nm以下の真空紫外域であり、波長
λ2の測定雰囲気が窒素または真空である請求項1記載
の蛍光体量子効率測定装置。
3. The phosphor quantum efficiency measuring apparatus according to claim 1, wherein the wavelength λ1 is ultraviolet light having a wavelength of 254 nm, the wavelength λ2 is a vacuum ultraviolet region having a wavelength of 200 nm or less, and the measuring atmosphere having the wavelength λ2 is nitrogen or vacuum. .
【請求項4】入射角θ1が0゜、反射角θ2が45゜で
ある請求項1または2記載の蛍光体量子効率測定装置。
4. The phosphor quantum efficiency measuring apparatus according to claim 1, wherein the incident angle θ1 is 0 ° and the reflection angle θ2 is 45 °.
【請求項5】特定波長λ1での放射に対する吸収率と量
子効率が既知の、測定しようとする蛍光体と、波長λ1
の放射束を発生する光源(1)と、波長λ2の放射束を
発生する光源(2)と、前記波長λ1とλ2の放射束を前
記蛍光体に導き波長λ1とλ2に対し、波長選択性を持た
ない光学系と、前記波長λ1とλ2の放射量と反射量を測
定する放射検出器と、前記蛍光体の発光スペクトルを測
定する分光測定器とを用いて蛍光体の量子効率を測定す
る方法であって、前記蛍光体の波長λ2の放射束と波長
λ1の放射束の蛍光体面での入射量を前記放射検出器で
測定し、前記蛍光体の波長λ2での放射束と波長λ1での
放射束の光源(1)あるいは光源(2)の光軸と、前記
放射検出器の入射面の法線あるいは蛍光体面の法線との
なす入射角θ1と反射角θ2の反射量を前記放射検出器
で測定し、波長λ1とλ2の前記蛍光体への入射量と、反
射角θ2方向への反射量と、波長λ1における吸収率と
から、前記蛍光体の波長λ2に対する放射束の吸収率を
求め、波長λ1とλ2の入射量と吸収率から吸収量を求
め、波長λ1とλ2の発光スペクトルから発光量を求め、
吸収量の光量子と発光量の光量子を除算し、さらに波長
λ1の量子効率と比較して、波長λ2の蛍光体の量子効率
を求めることを特徴とする蛍光体量子効率測定方法。
5. A phosphor to be measured whose absorption and quantum efficiency for radiation at a specific wavelength λ1 are known,
A light source (1) for generating a radiant flux of the wavelength λ2, a light source (2) for generating a radiant flux of the wavelength λ2, and guiding the radiant flux of the wavelengths λ1 and λ2 to the phosphor to obtain a wavelength selectivity for the wavelengths λ1 and λ2. The quantum efficiency of the phosphor is measured using an optical system having no, a radiation detector for measuring the radiation and reflection of the wavelengths λ1 and λ2, and a spectrometer for measuring the emission spectrum of the phosphor. A method, wherein the radiation detector measures the amount of incidence of the luminous flux of wavelength λ2 and the radiant flux of wavelength λ1 on the phosphor surface of the phosphor with the radiation detector, and determines the radiant flux of the phosphor at wavelength λ2 and the wavelength λ1. The reflection amount of the incident angle θ1 and the reflection angle θ2 between the optical axis of the light source (1) or the light source (2) of the radiant flux and the normal to the incident surface or the normal to the phosphor surface of the radiation detector. Measured by a detector, the incident amounts of the wavelengths λ1 and λ2 to the phosphor, the amount of reflection in the reflection angle θ2 direction, and the wavelength λ1 And a kicking absorptivity, determine the absorption of the radiant flux for the wavelength .lambda.2 of the phosphor determines the absorption from the incident amount and rate of absorption of the wavelength λ1 and .lambda.2, obtains light emission amount from the emission spectrum of a wavelength λ1 and .lambda.2,
A method for measuring the quantum efficiency of a phosphor, comprising: dividing the photon of the amount of light absorbed and the photon of the amount of light emitted, and comparing the result with the quantum efficiency of the wavelength λ1 to obtain the quantum efficiency of the phosphor having the wavelength λ2.
JP30147896A 1996-11-13 1996-11-13 Method and apparatus for measuring quantum efficiency of phosphor Expired - Lifetime JP3247845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30147896A JP3247845B2 (en) 1996-11-13 1996-11-13 Method and apparatus for measuring quantum efficiency of phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30147896A JP3247845B2 (en) 1996-11-13 1996-11-13 Method and apparatus for measuring quantum efficiency of phosphor

Publications (2)

Publication Number Publication Date
JPH10142152A true JPH10142152A (en) 1998-05-29
JP3247845B2 JP3247845B2 (en) 2002-01-21

Family

ID=17897396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30147896A Expired - Lifetime JP3247845B2 (en) 1996-11-13 1996-11-13 Method and apparatus for measuring quantum efficiency of phosphor

Country Status (1)

Country Link
JP (1) JP3247845B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632401B1 (en) 1998-04-14 2003-10-14 Bodenseewerk Perkin-Elmer Gmbh Device for the detection of a fluorescent dye
KR100420144B1 (en) * 1998-06-30 2004-04-17 삼성에스디아이 주식회사 Fluorescent material optical property measuring device
JP2007147305A (en) * 2005-11-24 2007-06-14 Toshiba Corp Analyzer
JP2009031176A (en) * 2007-07-30 2009-02-12 Hitachi High-Technologies Corp Spectrofluorophotometer
US8119996B2 (en) 2009-01-20 2012-02-21 Otsuka Electronics Co., Ltd. Quantum efficiency measurement apparatus and quantum efficiency measurement method
US8415639B2 (en) 2010-03-18 2013-04-09 Otsuka Electronics Co., Ltd. Quantum efficiency measurement method, quantum efficiency measurement apparatus, and integrator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6632401B1 (en) 1998-04-14 2003-10-14 Bodenseewerk Perkin-Elmer Gmbh Device for the detection of a fluorescent dye
KR100420144B1 (en) * 1998-06-30 2004-04-17 삼성에스디아이 주식회사 Fluorescent material optical property measuring device
JP2007147305A (en) * 2005-11-24 2007-06-14 Toshiba Corp Analyzer
JP2009031176A (en) * 2007-07-30 2009-02-12 Hitachi High-Technologies Corp Spectrofluorophotometer
US8119996B2 (en) 2009-01-20 2012-02-21 Otsuka Electronics Co., Ltd. Quantum efficiency measurement apparatus and quantum efficiency measurement method
US8415639B2 (en) 2010-03-18 2013-04-09 Otsuka Electronics Co., Ltd. Quantum efficiency measurement method, quantum efficiency measurement apparatus, and integrator

Also Published As

Publication number Publication date
JP3247845B2 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
JP3287775B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
JP3682528B2 (en) Method and apparatus for measuring absolute fluorescence quantum efficiency of solid sample
Piper et al. Experimental determination of the Einstein coefficients for the N2 (B–A) transition
DeRose et al. Qualification of a fluorescence spectrometer for measuring true fluorescence spectra
JP4418731B2 (en) Photoluminescence quantum yield measurement method and apparatus used therefor
JP3098241B2 (en) Drift compensation method and device
JP3247845B2 (en) Method and apparatus for measuring quantum efficiency of phosphor
Schmidt Determination of the phosphorescence quantum yield of singlet molecular oxygen (1Δg) by means of a radiometer and an infrared luminescence spectrometer
KR100367240B1 (en) Fluorescence spectrum differential measurement method of substrate coating
EP0729017B1 (en) Method for measurement and compensation of stray light in a spectrometer
JPH0348443B2 (en)
Becker-Ross et al. A scanning echelle monochromator for ICP-OES with dynamic wavelength stabilization and CCD detection
JP3102485B2 (en) Spectrophotometer
Ohkubo et al. Quantum efficiency measurement of lamp phosphors in accordance with radiometric standards
JP4336775B2 (en) Optical measurement method, light emitting element measuring method, and light emitting element measuring apparatus
JP2761215B2 (en) Fluorescent color measurement device
US20230258566A1 (en) Fluorimeter cell and its calibration
Suzuki Absolute Photoluminescence Quantum Yield of Phosphors
JPH0812111B2 (en) A method for correcting the fluorescence excitation spectrum and fluorescence emission spectrum of a fluorescence spectrophotometer.
JPH0443222B2 (en)
JPH07103825A (en) Infrared spectroscopic radiation energy measuring equipment
Goodman Calibration of light sources and detectors
SU1226079A1 (en) Method of calibrating non-selective light detector
Pulli Improvements in spectroradiometric measurements and applications
JPH06105187B2 (en) Photometric standard receiver

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12

EXPY Cancellation because of completion of term