JPH10134797A - Film electrode and manufacture thereof - Google Patents

Film electrode and manufacture thereof

Info

Publication number
JPH10134797A
JPH10134797A JP8301028A JP30102896A JPH10134797A JP H10134797 A JPH10134797 A JP H10134797A JP 8301028 A JP8301028 A JP 8301028A JP 30102896 A JP30102896 A JP 30102896A JP H10134797 A JPH10134797 A JP H10134797A
Authority
JP
Japan
Prior art keywords
film
electrode
crystalline carbon
carbon
lithium ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8301028A
Other languages
Japanese (ja)
Other versions
JP3628822B2 (en
Inventor
Taro Inui
太郎 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilot Precision KK
Original Assignee
Pilot Precision KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilot Precision KK filed Critical Pilot Precision KK
Priority to JP30102896A priority Critical patent/JP3628822B2/en
Publication of JPH10134797A publication Critical patent/JPH10134797A/en
Application granted granted Critical
Publication of JP3628822B2 publication Critical patent/JP3628822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To ensure a smooth doping and dedoping of lithium ions in a film as wel as on the surface thereof to thereby secure high current charging/ discharging by forming an axis (c) of crystalline carbon dispersed at random substantially in parallel with the film surface. SOLUTION: A film electrode is structured where a hexagonal net surface of crystallite is almost perpendicular to a surface of a film electrode and crystallite is dispersed at random in the electrode. With the structure, lithium ions can be smoothly subjected to doping and dedoping from the surface of the film electrode between the hexagonal net surfaces and they are smoothly delivered between the inner hexagonal surface through a fine air holes formed in the electrode. Accordingly, the lithium ions are easily subjected to doping and dedoping in each crystalline carbon dispersed across the whole area in the electrode, thereby ensuring good charge/discharge characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、結晶質炭素を主体とす
るフィルム状電極に関するもので、特には2次電池用の
電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film electrode mainly composed of crystalline carbon, and more particularly to an electrode for a secondary battery.

【0002】[0002]

【従来の技術】近年、小型の映像機器、情報機器、通信
機器等の普及に伴って、小型で高性能を有する2次電池
の必要性が高まっており、その最有力候補として例えば
電極にアルカリ金属、特に金属リチウムを用いた2次電
池が開発されている。この2次電池は、従来のニッケル
−カドミウム電池と比べ高作動電圧(3.6V)、高エ
ネルギー密度を有するもので、新しい電池として嘱望さ
れているが、負極として金属リチウムを用いたものは、
繰り返しの充放電により負極であるリチウム金属の表面
にデンドライト(樹枝状結晶)が生成し、さらに充放電
を繰り返すうちにデンドライトが成長し、ついには正極
と短絡してしまい、電池として使用できない状況になっ
てしまうばかりか、発火等の危険性も充分考えられる。
要するに、負極にリチウム金属を用いた2次電池は寿命
が短く、危険性も高いというものであった。
2. Description of the Related Art In recent years, with the spread of small-sized video equipment, information equipment, communication equipment, etc., the necessity of a small and high-performance secondary battery is increasing. Secondary batteries using metals, particularly metallic lithium, have been developed. This secondary battery has a higher operating voltage (3.6 V) and a higher energy density than the conventional nickel-cadmium battery, and is expected to be a new battery.
Dendrite (dendritic crystal) is generated on the surface of the lithium metal as the negative electrode by repeated charge and discharge, and dendrite grows during repeated charge and discharge, and eventually short-circuits with the positive electrode, making it impossible to use it as a battery. Not only will it become dangerous, but also the dangers such as ignition can be considered.
In short, a secondary battery using lithium metal for the negative electrode has a short life and a high risk.

【0003】このため、負極にリチウム金属を使用せ
ず、炭素材料特には結晶質炭素を使用する方法が検討、
実施されており、この場合放電曲線が平坦で、かつリチ
ウム金属を使用した時の問題は解消し、きわめて良好な
負極となる。ところが、上記構成ではリチウム金属と比
べ重量当りのイオン濃度が低いので、充放電容量が低い
という問題がある。この充放電容量を高めるには、最適
の構造を持つ炭素材料を使用する必要がある。
For this reason, a method of using a carbon material, particularly crystalline carbon, without using lithium metal for the negative electrode has been studied.
In this case, the discharge curve is flat, and the problem when lithium metal is used is solved, resulting in a very good negative electrode. However, the above configuration has a problem that the charge / discharge capacity is low because the ion concentration per weight is lower than that of lithium metal. In order to increase the charge / discharge capacity, it is necessary to use a carbon material having an optimal structure.

【0004】ところで、従来の炭素材料を使用したフィ
ルム状の電極では、一般的に厚み、強さを付与するため
に一軸あるいは二軸方向に延伸する方法で作製されてお
り、このフィルムに含有されている結晶質炭素は配向性
を有することになる。つまり、結晶質炭素の六角網面が
フィルム面とほぼ平行に並んでいる。充放電サイクルで
は、結晶質炭素を構成する層状の六角網面の間にリチウ
ムイオンが取り込まれること(ドーピング)により充電
がなされ、逆にリチウムイオンが離れること(脱ドーピ
ング)により放電がなされる。つまりフィルム状電極
は、対向する極とリチウムイオンをやりとりする際、フ
ィルム面上の反応面においてリチウムイオンのドーピン
グ、脱ドーピングがなされるのであるが、フィルム面と
ほぼ平行に配向された六角網面を構成する従来の構造で
は、面上より取り込んだリチウムイオンがさらに六角網
面の層間に入らねばならず、そのためスムーズなドーピ
ングが生じにくくなる。一般に、結晶質炭素の配向方向
(a軸、b軸)とは垂直な方向(c軸)からのリチウム
イオンの層間への挿入は、強固な炭素骨格によって妨害
される。リチウムイオンは、結晶質炭素の配向方向と平
行な方向からの層間挿入に限定されるのである。従っ
て、従来の構成では高い充放電容量は得られ難い。この
問題を解決する方法として、特開平4−357862号
が知られている。この内容は、炭素繊維を束にして固化
し切断することを特徴とするもので、この構成による
と、フィルム面とは垂直に炭素繊維が形成され、電極面
よりスムーズに炭素繊維中の炭素の六角網面間に、リチ
ウムイオンが挿入できるものとなっている。
[0004] By the way, a film-shaped electrode using a conventional carbon material is generally manufactured by a method of stretching in a uniaxial or biaxial direction in order to impart thickness and strength. The crystalline carbon that is present will have orientation. That is, the hexagonal mesh plane of the crystalline carbon is arranged substantially parallel to the film plane. In the charge / discharge cycle, lithium ions are taken in (doping) between the layered hexagonal mesh planes constituting the crystalline carbon, and charging is performed. Conversely, discharge is performed by separating lithium ions (undoping). In other words, when exchanging lithium ions with the opposite electrode, lithium ions are doped and undoped on the reaction surface on the film surface, but the hexagonal mesh plane oriented almost parallel to the film surface In the conventional structure which constitutes the above, the lithium ions taken in from the surface must further enter between the layers of the hexagonal mesh surface, so that smooth doping hardly occurs. Generally, insertion of lithium ions between layers in a direction (c-axis) perpendicular to the orientation direction (a-axis, b-axis) of crystalline carbon is hindered by a strong carbon skeleton. Lithium ions are limited to intercalation from a direction parallel to the orientation direction of crystalline carbon. Therefore, it is difficult to obtain a high charge / discharge capacity with the conventional configuration. As a method for solving this problem, Japanese Patent Application Laid-Open No. 4-357682 is known. The feature is that the carbon fibers are bundled and solidified and cut. According to this configuration, the carbon fibers are formed perpendicular to the film surface, and the carbon in the carbon fibers is more smoothly formed than the electrode surface. Lithium ions can be inserted between the hexagonal mesh planes.

【0005】[0005]

【発明が解決しようとする課題】上記の構成は、充放電
容量を高める上で好ましい構造である。しかしながら、
炭素繊維自体は長手方向に六角網面が連続して発達して
いるものが多く、全ての網面間にリチウムイオンがスム
ーズに挿入しきれない恐れが生ずる。さらに、製造的に
も作製に手間がかかり、コストが高くなるという問題が
ある。
The above structure is a preferable structure for increasing the charge / discharge capacity. However,
In many cases, hexagonal meshes are continuously developed in the longitudinal direction of the carbon fiber itself, and there is a possibility that lithium ions cannot be inserted smoothly between all the meshes. Further, there is a problem that it takes time and effort to manufacture the device and the cost increases.

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題に鑑
み鋭意検討した結果完成されたものであり、結晶質炭素
を主体とするフィルム状の電極内において、ランダムに
分散された結晶質炭素のc軸をフィルム面とは略平行に
構成することにより、良好な充放電容量を有するフィル
ム状電極を提供するものである。
DISCLOSURE OF THE INVENTION The present invention has been completed as a result of intensive studies in view of the above-mentioned problems, and it has been found that crystalline carbon dispersed randomly in a film-like electrode mainly composed of crystalline carbon. By forming the c-axis substantially parallel to the film surface, a film-shaped electrode having good charge / discharge capacity is provided.

【0007】[0007]

【発明の実施の形態】本発明のフィルム状電極は、フィ
ルム中にランダムに分散された結晶質炭素を主体とし、
その構造として結晶子のc軸がフィルム面と略平行に構
成された結晶質炭素と、この結晶質炭素を保持する骨格
材とからなるフィルム状電極である。つまり、結晶子の
六角網面がフィルムの表面に対して略垂直に構成されて
おり、しかもこの結晶質炭素はフィルム中にランダムに
分散されているため、六角網面の間にフィルム面上より
リチウムイオンがスムーズにドーピング、脱ドーピング
される。またフィルム内に形成される微細な気孔を通じ
て内部の六角網面の間にも、スムーズにリチウムイオン
が行き渡り、フィルム内の全域にわたって分散された1
つ1つの結晶子内にリチウムイオンが容易にドーピン
グ、脱ドーピングするため、良好な充放電容量が得られ
るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The film-shaped electrode of the present invention mainly comprises crystalline carbon randomly dispersed in a film,
The film-shaped electrode is composed of crystalline carbon having a c-axis of crystallite substantially parallel to the film surface and a skeleton material holding the crystalline carbon. In other words, the hexagonal mesh plane of the crystallite is formed substantially perpendicular to the surface of the film, and since this crystalline carbon is randomly dispersed in the film, the hexagonal mesh plane is located between the hexagonal mesh plane and on the film surface. Doping and undoping of lithium ions are performed smoothly. In addition, lithium ions smoothly spread between the internal hexagonal mesh planes through fine pores formed in the film, and were dispersed throughout the film.
Since lithium ions are easily doped and dedoped in each crystallite, a good charge / discharge capacity can be obtained.

【0008】本発明のフィルム状電極においては、フィ
ルム面とは略垂直に微細な気孔が数多く形成されている
のが好ましい。この気孔により、リチウムイオンはフィ
ルム面上からフィルム内にくまなく挿入され、さらに効
率が増加する。この気孔は、製造時において溶剤などの
除去時、あるいは有機高分子物質の分解時に作製され
る。気孔の孔径は任意であるが、好ましくは0.001
〜5μmの範囲が良好である。この範囲内においてリチ
ウムイオンが容易に侵入し易く、またフィルムの強度を
高く保持でき、使用上きわめて安定したフィルムとな
る。
In the film-like electrode of the present invention, it is preferable that many fine pores are formed substantially perpendicular to the film surface. These pores allow lithium ions to be inserted all over the film surface into the film, further increasing the efficiency. These pores are formed at the time of production, such as when removing a solvent or the like, or when decomposing an organic polymer substance. The pore size of the pores is arbitrary, but is preferably 0.001.
The range of 55 μm is good. Within this range, lithium ions can easily penetrate, and the strength of the film can be kept high, resulting in a film which is extremely stable in use.

【0009】本発明のフィルム状電極を構成する骨格材
としては、有機高分子物質が用いられ、例えばリグニ
ン、セルロース、トラガカントガム、アラビアゴム、天
然ゴムおよびその誘導体などの水溶性樹脂、またポリフ
ッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリ
アクリルニトリル、ポリ塩化ビニル、ポリ塩化ビニリデ
ン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニ
ルピロリドン、エチルセルロース、カルボキシメチルセ
ルロース、ポリ塩化ビニル−酢酸ビニル共重合体ポリブ
タジエンなどの熱可塑性樹脂、またフェノール樹脂、フ
ラン樹脂、エポキシ樹脂、キシレン樹脂、COPNA樹
脂などの熱硬化性樹脂などが挙げられ、またフッ素樹脂
や、さらに石炭、石油系のピッチ、アスファルトなども
挙げられ、上記物質を単独もしくは組み合わせて用い
る。
As the skeleton material constituting the film-shaped electrode of the present invention, an organic polymer substance is used. For example, water-soluble resins such as lignin, cellulose, tragacanth gum, gum arabic, natural rubber and derivatives thereof, and polyvinylidene fluoride Thermoplastic resins such as polypropylene, polyethylene, polyacrylonitrile, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyvinyl pyrrolidone, ethyl cellulose, carboxymethyl cellulose, polyvinyl chloride-vinyl acetate copolymer polybutadiene, and phenol Thermosetting resins such as resins, furan resins, epoxy resins, xylene resins, and COPNA resins; and fluorocarbon resins, and also coal, petroleum pitch, and asphalt. Used alone or in combination.

【0010】また骨格材として、上記有機高分子物質を
600〜2000℃で焼成して得られる炭素物質、もし
くは2000℃以上で焼成して得られるグラファイト化
された炭素物質などが挙げられる。骨格材として炭素物
質を用いた場合、フィルム全体としての炭素材料の密度
が高くなり、また内部抵抗も低く、単位体積当りの容量
が十分に得られ易いという点で好ましい。
Examples of the skeleton material include a carbon material obtained by firing the above organic polymer material at 600 to 2000 ° C., and a graphitized carbon material obtained by firing at 2000 ° C. or higher. The use of a carbon material as the skeleton material is preferable in that the density of the carbon material as a whole film is high, the internal resistance is low, and a sufficient capacity per unit volume is easily obtained.

【0011】本発明で用いる結晶質炭素としては、格子
面間隔d(002)が概ね3.4オングストローム以下
の構造を有する炭素材料であればいずれを用いてもよ
く、例えば高配向性気相熱分解黒鉛、天然黒鉛、キッシ
ュ黒鉛、人造黒鉛、黒鉛ウィスカなどが好適に使用され
るが、このほかにカーボンブラック、石油コークス等の
非晶質炭素を非酸化性雰囲気下にて概ね2000℃以上
の焼成温度でグラファイト化したもの、あるいはメソフ
ェーズ、ピッチ類、樹脂、オリゴマー等の高分子物質を
非酸化性雰囲気下にて概ね2000℃以上の焼成温度で
グラファイト化したものなどが挙げられ、これらを単独
もしくは組み合わせて用いる。ここで結晶質炭素の形状
として、粉体、鱗片状、ウィスカなどが挙げられ、いず
れを用いてもよいが、好ましくは配向のし易いアスペク
ト比の大きい鱗片状、ウィスカが良好である。
As the crystalline carbon used in the present invention, any carbon material may be used as long as the carbon material has a structure having a lattice spacing d (002) of about 3.4 angstroms or less. Decomposed graphite, natural graphite, quiche graphite, artificial graphite, graphite whiskers, etc. are preferably used. In addition, carbon black, amorphous carbon such as petroleum coke, and the like at about 2000 ° C. or more in a non-oxidizing atmosphere. Graphite at the firing temperature, or those obtained by graphitizing polymer materials such as mesophases, pitches, resins, and oligomers at a firing temperature of approximately 2000 ° C. or higher in a non-oxidizing atmosphere, and the like. Or use them in combination. Here, examples of the shape of the crystalline carbon include powder, flakes, whiskers, etc., and any of them may be used, but flakes and whiskers having a large aspect ratio, which are easily oriented, are preferable.

【0012】次に製造方法を説明すると、まず黒鉛等の
結晶質炭素と有機高分子物質および必要に応じて可塑
材、溶剤などを添加して混練し、この混練物を一方向に
成形して長尺棒状体を作製する。この成形方法として
は、例えば押出成形、射出成形などが挙げられる。この
時、延伸操作を加えてもよい。この長尺棒状体の断面は
丸状、四角状など任意であり、使用される電池の形状に
従って適宜設定される。この長尺棒状体を必要に応じて
乾燥したのち、棒状体の長手方向(押出方向)とは垂直
に、つまり棒状体の断面を目的とする厚みに切断するこ
とにより、薄いフィルム状電極が得られる。
Next, the production method will be described. First, crystalline carbon such as graphite, an organic polymer substance and, if necessary, a plasticizer and a solvent are added and kneaded, and the kneaded product is formed in one direction. Produce a long rod. Examples of the molding method include extrusion molding and injection molding. At this time, a stretching operation may be added. The cross section of the long rod is arbitrary, such as a round shape or a square shape, and is appropriately set according to the shape of the battery to be used. After drying the long rod as needed, a thin film electrode is obtained by cutting the rod in a direction perpendicular to the longitudinal direction (extrusion direction) of the rod, that is, by cutting the cross section of the rod to a desired thickness. Can be

【0013】この製造方法において、当初の長尺棒状体
は一方向に成形されるため、長尺棒状体内の結晶質炭素
は長手方向に沿って結晶子のa軸、b軸が略平行に配向
され、結果として結晶子のc軸は長尺棒状体の長手方向
とは略垂直に配置される。この長尺棒状体の断面を切
断、つまり長手方向とは垂直に切断して薄片状に切出
し、フィルム状電極として用いることにより、対応する
極に対して結晶子のc軸がフィルム面とは略平行、すな
わち六角網面がフィルム面と略垂直に構成されることと
なる。この方法により、表面形状が良好でまた安定した
厚さを有するフィルム状電極が得られる。かかる層状構
造を有する結晶質炭素が分散された炭素電極を、二次電
池の電極に用いた場合、充放電の際にフィルム面より六
角網面間にスムーズにリチウムイオンがドーピング、脱
ドーピングする。
In this manufacturing method, since the initially elongated rod is formed in one direction, the crystalline carbon in the elongated rod is oriented along the longitudinal direction so that the a-axis and the b-axis of the crystallites are substantially parallel. As a result, the c-axis of the crystallite is arranged substantially perpendicular to the longitudinal direction of the elongated rod. By cutting the cross section of this long rod-shaped body, that is, cutting it in a direction perpendicular to the longitudinal direction and cutting it into flakes, and using it as a film-shaped electrode, the c-axis of the crystallite with respect to the corresponding pole is substantially equal to the film surface. Parallel, that is, the hexagonal mesh plane is configured to be substantially perpendicular to the film plane. According to this method, a film-shaped electrode having a good surface shape and a stable thickness can be obtained. When a carbon electrode in which crystalline carbon having such a layered structure is dispersed is used for an electrode of a secondary battery, lithium ions are doped and dedoped smoothly between hexagonal mesh planes from the film plane during charging and discharging.

【0014】上記製造方法によりフィルム状電極として
もよいが、さらに高温で焼成して用いることもできる。
即ち、長尺棒状体の断面を切断したのち、得られたフィ
ルムを非酸化性雰囲気下にて概ね600〜2000℃の
温度で焼成して有機高分子物質を炭素化するか、あるい
は非酸化性雰囲気下にて概ね2000℃以上の温度で焼
成し、有機高分子物質をグラファイト化して骨格材とす
る。この方法で得られたフィルム状電極は、切断後薄い
フィルム状で焼成するため分解ガスが飛び易くなり、フ
ィルム内でのフクレや割れがなくなり、強度が高く,微
細で安定した気孔を有する良好なフィルムが得られるの
である。
Although a film-shaped electrode may be obtained by the above-mentioned manufacturing method, it may be further used by firing at a high temperature.
That is, after cutting the cross section of the long rod-shaped body, the obtained film is calcined at a temperature of about 600 to 2000 ° C. in a non-oxidizing atmosphere to carbonize the organic polymer substance, or It is baked at a temperature of about 2000 ° C. or more in an atmosphere to graphitize the organic polymer substance to obtain a skeleton material. The film-like electrode obtained by this method is fired in a thin film shape after cutting, so that the decomposition gas is easy to fly, and there is no blistering or cracking in the film, high strength, good strength and fine and stable pores. A film is obtained.

【0015】ここで骨格材として炭素物質を用いる場合
には、その方法として長尺棒状体を非酸化性雰囲気下に
て概ね600〜2000℃の温度で焼成し、有機高分子
物質を炭素化するか、あるいは非酸化性雰囲気下にて概
ね2000℃以上の温度で焼成して有機高分子物質をグ
ラファイト化して骨格材とし、この焼成された棒状体の
断面を適宜の厚さに切断して薄片状とし、フィルム状電
極とすることもできる。この方法では、焼成後に切断す
るため表面形状の良好なフィルムが得られ易く、また安
定した厚さを有するフィルムが得られ易い。
In the case where a carbon material is used as the skeleton material, a long rod is fired at a temperature of approximately 600 to 2000 ° C. in a non-oxidizing atmosphere to carbonize the organic polymer material. Alternatively, calcination is performed at a temperature of approximately 2000 ° C. or more in a non-oxidizing atmosphere to graphitize the organic polymer substance to form a skeleton material, and the cross section of the baked rod is cut into an appropriate thickness to obtain a flake. And a film-like electrode. In this method, since the film is cut after firing, a film having a good surface shape is easily obtained, and a film having a stable thickness is easily obtained.

【0016】なお、本発明ではフィルム状としたが、そ
の厚みは任意であり、平板状、ブロック状に切断するこ
とも可能である。
Although the film is formed in the present invention, the thickness is arbitrary, and it can be cut into a plate or a block.

【0017】また本発明のフィルム状電極は、フィルム
面とは略垂直に微細な気孔が形成され、この気孔を通し
て内部の結晶質炭素の六角網面間にも、十分にリチウム
イオンが侵入するのである。つまり、長尺棒状体を作製
する際、内部の材料は一方向に配向されるので、材料自
体が一方向に異方性を有することとなり、そのため材料
間に存在する微細な気孔も一方向に形成され易くなるも
のと考えられる。従って長尺棒状体を切断した場合に
は、内部の溶剤等の蒸発などによりフィルム面からみれ
ば垂直な気孔が形成されるのである。また特には、焼成
した場合に樹脂の分解などによりさらに微細な気孔がよ
り多く形成され、上記の効果はより顕著となるのであ
る。
Further, in the film-like electrode of the present invention, fine pores are formed substantially perpendicular to the film surface, and lithium ions sufficiently penetrate between the hexagonal mesh planes of the crystalline carbon inside through the pores. is there. In other words, when producing a long rod-shaped body, the material inside is oriented in one direction, so that the material itself has anisotropy in one direction, so that the fine pores existing between the materials are also in one direction. It is considered that it is easily formed. Therefore, when the long rod is cut, vertical pores are formed when viewed from the film surface due to evaporation of the solvent and the like inside. In particular, when fired, more fine pores are formed due to decomposition of the resin and the like, and the above-mentioned effect becomes more remarkable.

【0018】[0018]

【実施例】【Example】

実施例1 結晶質炭素(鱗片状の天然黒鉛・平均粒径6μm) 80重量部 有機高分子物質(ポリフッ化ビニリデン) 20重量部 N−メチルピロリドン 100重量部 上記材料を混合機にて混練し、この混練物を押出成形し
て外径が15mmφの長尺棒状体を作製した。その後N
−メチルピロリドンを常温で蒸発させて長手方向に微細
な気孔を形成させ、前記棒状体の断面を厚さ100μm
で切断してフィルム状電極とした。この電極は、ポリフ
ッ化ビニリデンを骨格材とし、天然黒鉛の結晶子のc軸
がフィルム面と略平行に構成され、さらにフィルム面と
は略垂直に形成された多数の気孔を有する電極となり、
十分な充放電容量を有するものとなった。次に比較例と
して、本実施例の材質を用いて圧延ロールによりフィル
ム状に形成して電極としたところ、本実施例の電極と比
べ十分な特性は得られなかった。
Example 1 80 parts by weight of crystalline carbon (flaky natural graphite, average particle size of 6 μm) 20 parts by weight of an organic polymer substance (polyvinylidene fluoride) 100 parts by weight of N-methylpyrrolidone This kneaded product was extruded to produce a long rod having an outer diameter of 15 mmφ. Then N
-Evaporating methylpyrrolidone at room temperature to form fine pores in the longitudinal direction, and the cross section of the rod is 100 μm thick.
To form a film-shaped electrode. This electrode has a framework material of polyvinylidene fluoride, a c-axis of crystallite of natural graphite is configured to be substantially parallel to the film surface, and further has an electrode having a number of pores formed substantially perpendicular to the film surface,
It has sufficient charge / discharge capacity. Next, as a comparative example, when the material of this example was formed into a film shape by a rolling roll using a rolling roll to form an electrode, sufficient characteristics were not obtained as compared with the electrode of this example.

【0019】実施例2 結晶質炭素(鱗片状の天然黒鉛・平均粒径6μm) 70重量部 有機高分子物質(ポリ塩化ビニル・平均重合度1000) 30重量部 メチルエチルケトン 100重量部 上記材料を混合機にて混練し、この混練物を押出成形し
て外径が15mmφの長尺棒状体を作製した。その後メ
チルエチルケトンを常温で蒸発させて長手方向に微細な
気孔を形成させ、前記棒状体の断面を切断してフィルム
を作製した。このフィルムをアルゴンガス雰囲気下にお
いて、5℃/分の昇温速度で1100℃まで昇温し、1
100℃で3時間保持して厚さ100μmのフィルム状
電極を得た。このフィルム状電極は、天然黒鉛の結晶子
のc軸がフィルム面と略平行に構成され、天然黒鉛とこ
れを保持する骨格材としての炭素物質からなり、さらに
フィルム面とは略垂直に形成された多数の微細な気孔を
有する電極となり、十分な充放電容量を有するものとな
った。さらに本実施例では、骨格材として炭素物質(非
晶質炭素)を用いているため、単位体積当りの炭素材料
の密度が高くなり、充放電容量がより高くなると共に、
内部抵抗も低くなるという特徴を有する。
Example 2 70 parts by weight of crystalline carbon (flaky natural graphite, average particle size: 6 μm) 30 parts by weight of organic high molecular substance (polyvinyl chloride, average degree of polymerization: 1000) 100 parts by weight of methyl ethyl ketone 100 parts by weight , And the kneaded product was extruded to prepare a long rod having an outer diameter of 15 mmφ. Thereafter, methyl ethyl ketone was evaporated at normal temperature to form fine pores in the longitudinal direction, and a cross section of the rod was cut to prepare a film. This film was heated to 1100 ° C. at a rate of 5 ° C./min in an argon gas atmosphere,
The film was kept at 100 ° C. for 3 hours to obtain a film-shaped electrode having a thickness of 100 μm. This film-shaped electrode is configured such that the c-axis of the crystallite of natural graphite is substantially parallel to the film surface, is made of natural graphite and a carbon material as a skeleton material holding the same, and is formed substantially perpendicular to the film surface. The resulting electrode has a large number of fine pores, and has a sufficient charge / discharge capacity. Further, in this embodiment, since the carbon material (amorphous carbon) is used as the skeleton material, the density of the carbon material per unit volume is increased, and the charge / discharge capacity is further increased.
It has the characteristic that the internal resistance is also reduced.

【0020】実施例3 結晶質炭素(鱗片状の天然黒鉛・平均粒径6μm) 60重量部 有機高分子物質(コールタールピッチ・軟化点85℃) 40重量部 上記材料を混合機にて加熱混練後、この混練物を押出成
形して、外径が15mmφの長尺棒状体を作製した。次
にこの棒状体を、最初に空気雰囲気下において250
℃、10時間保持して不融化処理を行ったのち、アルゴ
ンガス雰囲気下において0.5℃/分の昇温速度で11
00℃まで昇温し、1100℃で3時間保持した。この
時、押出方向に沿って多数の気孔が形成された。この焼
成された棒状体の断面を、厚さ100μmに切断してフ
ィルム状電極を得た。このフィルム状電極は、天然黒鉛
の結晶子のc軸がフィルム面と略平行に構成され、天然
黒鉛とこれを保持する骨格材としての炭素物質から成
り、さらにフィルム面とは略垂直に形成された多数の気
孔を有する電極となり、十分な充放電容量を有するもの
となった。さらに本実施例では、骨格材として炭素物質
(非晶質炭素)を用いているため、単位体積当りの炭素
材料の密度が高くなり、充放電容量がより高くなると共
に内部抵抗も低くなるという特徴を有する。
Example 3 Crystalline carbon (flaky natural graphite, average particle size: 6 μm) 60 parts by weight Organic polymer substance (coal tar pitch, softening point 85 ° C.) 40 parts by weight The above materials are heated and kneaded by a mixer. Thereafter, the kneaded material was extruded to produce a long rod having an outer diameter of 15 mmφ. The rod is then first placed in an air atmosphere for 250
After performing the infusibilization treatment at 10 ° C. for 10 hours, the mixture was heated at a rate of 0.5 ° C./min.
The temperature was raised to 00 ° C and kept at 1100 ° C for 3 hours. At this time, many pores were formed along the extrusion direction. A cross section of the fired rod was cut into a thickness of 100 μm to obtain a film electrode. This film-shaped electrode is configured so that the c-axis of the crystallite of natural graphite is substantially parallel to the film surface, is made of natural graphite and a carbon material as a skeleton material holding the same, and is formed substantially perpendicular to the film surface. The resulting electrode has a large number of pores, and has a sufficient charge / discharge capacity. Furthermore, in this embodiment, since a carbon material (amorphous carbon) is used as the skeleton material, the density of the carbon material per unit volume is increased, the charge / discharge capacity is further increased, and the internal resistance is also reduced. Having.

【0021】実施例4 実施例2の材料を用い、実施例2と同様の工程でフィル
ムを作製した。このフィルムをアルゴンガス雰囲気下に
おいて5℃/分の昇温速度で2500℃まで昇温し、2
500℃で3時間保持して厚さ100μmのフィルム状
電極を得た。このフィルム状電極は、天然黒鉛の結晶子
のc軸がフィルム面と略平行に構成され、天然黒鉛とこ
れを保持する骨格材としての炭素物質とから成り、さら
にフィルム面とは略垂直に形成された多数の気孔を有す
る電極となり、十分な充放電容量を有するものとなっ
た。さらに本実施例では、骨格材としてグラファイト化
した炭素物質(結晶質炭素)を用いているため、この炭
素物質にもリチウムイオンが取り込まれる。従って、充
放電容量がきわめて高くなり、しかも内部抵抗も低いと
いう特徴を有するものである。
Example 4 Using the material of Example 2, a film was produced in the same manner as in Example 2. The film was heated to 2500 ° C. at a rate of 5 ° C./min in an argon gas atmosphere,
The film was kept at 500 ° C. for 3 hours to obtain a film-shaped electrode having a thickness of 100 μm. This film-shaped electrode is configured such that the c-axis of the crystallite of natural graphite is substantially parallel to the film surface, and is made of natural graphite and a carbon material as a skeleton material holding the same, and is formed substantially perpendicular to the film surface. The resulting electrode has a large number of pores and has a sufficient charge / discharge capacity. Further, in this embodiment, since a carbon material which has been graphitized (crystalline carbon) is used as the skeleton material, lithium ions are also taken into this carbon material. Therefore, it has a feature that the charge / discharge capacity is extremely high and the internal resistance is low.

【0022】実施例5 実施例3の材料を用い、実施例3と同様の工程で長尺棒
状体を作製した。次にこの棒状体を、最初に空気雰囲気
下において250℃、10時間保持して不融化処理を行
ったのち、アルゴンガス雰囲気下において0.5℃/分
の昇温速度で2500℃まで昇温し、2500℃で3時
間保持した。この焼成された棒状体の断面を、厚さ10
0μmに切断してフィルム状電極を得た。このフィルム
状電極は、天然黒鉛の結晶子のc軸がフィルム面と略平
行に構成され、天然黒鉛とこれを保持する骨格材として
の炭素物質とから成り、さらにフィルム面とは略垂直に
形成された多数の気孔を有する電極となり、十分な充放
電容量を有するものとなった。さらに本実施例では、骨
格材としてグラファイト化した炭素物質(結晶質炭素)
を用いているため、この炭素物質にもリチウムイオンが
取り込まれる。従って、充放電容量がきわめて高くな
り、しかも内部抵抗も低いという特徴を有するものであ
る。
Example 5 Using the material of Example 3, a long rod was produced in the same process as in Example 3. Next, the rod is first subjected to infusibilization treatment at 250 ° C. for 10 hours in an air atmosphere, and then heated to 2500 ° C. at a rate of 0.5 ° C./min in an argon gas atmosphere. And kept at 2500 ° C. for 3 hours. A cross section of the fired rod is formed with a thickness of 10 mm.
It was cut to 0 μm to obtain a film electrode. This film-shaped electrode is configured such that the c-axis of the crystallite of natural graphite is substantially parallel to the film surface, and is made of natural graphite and a carbon material as a skeleton material holding the same, and is formed substantially perpendicular to the film surface. The resulting electrode has a large number of pores and has a sufficient charge / discharge capacity. Further, in the present embodiment, a graphitized carbon material (crystalline carbon) is used as a skeleton material.
, Lithium ions are also incorporated into this carbon material. Therefore, it has a feature that the charge / discharge capacity is extremely high and the internal resistance is low.

【0023】[0023]

【発明の効果】本発明のフィルム状電極は、結晶質炭素
の結晶子のc軸がフィルム面と略平行に構成され、かつ
フィルム内にランダムに分散されているため、フィルム
面上およびフィルム内でのリチウムイオンのドーピン
グ、脱ドーピングがスムーズに行われるので、高電流充
放電が可能になる。また、従来の結晶質炭素を用いた電
極と比較して、十分な充放電容量が得られるという工業
上多大な効果を奏するものである。
The film-shaped electrode of the present invention has a structure in which the c-axis of the crystalline carbon crystallite is substantially parallel to the film surface and is randomly dispersed in the film. Doping and undoping of lithium ions in the semiconductor device can be performed smoothly, so that high-current charging and discharging can be performed. In addition, compared to the conventional electrode using crystalline carbon, there is an industrially significant effect that a sufficient charge / discharge capacity can be obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 結晶子のc軸がフィルム面と略平行に構
成された結晶質炭素と、フィルム内にランダムに分散さ
れた前記結晶質炭素を保持する骨格材とから成るフィル
ム状電極。
1. A film-like electrode comprising crystalline carbon having a c-axis of a crystallite substantially parallel to a film surface and a skeleton material holding the crystalline carbon randomly dispersed in the film.
【請求項2】 微細な気孔がフィルム面と略垂直に多数
形成されてなる請求項1記載のフィルム状電極。
2. The film-like electrode according to claim 1, wherein a large number of fine pores are formed substantially perpendicular to the film surface.
【請求項3】 少なくとも結晶質炭素および有機高分子
物質とを混練し、一方向に成形して長尺棒状体を作製
し、前記長尺棒状体を長手方向とは垂直に切断してなる
フィルム状電極の製造方法。
3. A film formed by kneading at least crystalline carbon and an organic polymer substance, forming the mixture in one direction to produce a long rod, and cutting the long rod perpendicular to the longitudinal direction. Method for manufacturing a shaped electrode.
【請求項4】 少なくとも結晶質炭素および有機高分子
物質とを混練し、一方向に成形して長尺棒状体を作製
し、前記長尺棒状体を長手方向とは垂直に切断したのち
焼成してなるフィルム状電極の製造方法。
4. A kneaded mixture of at least crystalline carbon and an organic polymer material, and molding in one direction to produce a long rod, cutting the long rod perpendicular to the longitudinal direction, and firing. A method for producing a film-shaped electrode.
【請求項5】 少なくとも結晶質炭素および有機高分子
物質とを混練し、一方向に成形して長尺棒状体を作製
し、前記長尺棒状体を焼成したのち長手方向とは垂直に
切断してなるフィルム状電極の製造方法。
5. A kneaded mixture of at least crystalline carbon and an organic polymer substance, and molding in one direction to produce a long rod, firing the long rod, and cutting the rod in a direction perpendicular to the longitudinal direction. A method for producing a film-shaped electrode.
JP30102896A 1996-10-25 1996-10-25 Film electrode and method for producing the same Expired - Fee Related JP3628822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30102896A JP3628822B2 (en) 1996-10-25 1996-10-25 Film electrode and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30102896A JP3628822B2 (en) 1996-10-25 1996-10-25 Film electrode and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10134797A true JPH10134797A (en) 1998-05-22
JP3628822B2 JP3628822B2 (en) 2005-03-16

Family

ID=17891986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30102896A Expired - Fee Related JP3628822B2 (en) 1996-10-25 1996-10-25 Film electrode and method for producing the same

Country Status (1)

Country Link
JP (1) JP3628822B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146580A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Negative electrode active material sheet for lithium ion secondary battery, and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641219A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Manufacture of polarizable electrode
JPH01164017A (en) * 1987-12-21 1989-06-28 Elna Co Ltd Manufacture of electrode for electric double layer condenser
JPH07307251A (en) * 1995-04-20 1995-11-21 Elna Co Ltd Manufacture of electrode of electric double-layer capacitor
JPH08111219A (en) * 1994-10-11 1996-04-30 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JPH08138978A (en) * 1994-11-02 1996-05-31 Japan Gore Tex Inc Electric double layer capacitor and manufacture of its electrode
JPH08227714A (en) * 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof
JPH08339805A (en) * 1995-06-13 1996-12-24 Mitsubishi Chem Corp Manufacture of nonaqueous solvent secondary battery electrode material
JPH09245770A (en) * 1996-03-06 1997-09-19 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JPH09306477A (en) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH1012217A (en) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd Negative electrode for lithium ion secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641219A (en) * 1987-06-24 1989-01-05 Matsushita Electric Ind Co Ltd Manufacture of polarizable electrode
JPH01164017A (en) * 1987-12-21 1989-06-28 Elna Co Ltd Manufacture of electrode for electric double layer condenser
JPH08111219A (en) * 1994-10-11 1996-04-30 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JPH08138978A (en) * 1994-11-02 1996-05-31 Japan Gore Tex Inc Electric double layer capacitor and manufacture of its electrode
JPH08227714A (en) * 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof
JPH07307251A (en) * 1995-04-20 1995-11-21 Elna Co Ltd Manufacture of electrode of electric double-layer capacitor
JPH08339805A (en) * 1995-06-13 1996-12-24 Mitsubishi Chem Corp Manufacture of nonaqueous solvent secondary battery electrode material
JPH09245770A (en) * 1996-03-06 1997-09-19 Sanyo Electric Co Ltd Non-aqueous electrolyte battery
JPH09306477A (en) * 1996-05-09 1997-11-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH1012217A (en) * 1996-06-26 1998-01-16 Mitsubishi Pencil Co Ltd Negative electrode for lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146580A (en) * 2007-12-11 2009-07-02 Osaka Gas Chem Kk Negative electrode active material sheet for lithium ion secondary battery, and manufacturing method thereof

Also Published As

Publication number Publication date
JP3628822B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
US6139989A (en) Cathode formed of graphite/carbon composite for lithium ion secondary battery
JP3873325B2 (en) Carbon material for lithium secondary battery negative electrode and method for producing the same
KR100751772B1 (en) Carbon material for battery electrode and production method and use thereof
KR100488133B1 (en) Nonaqueous Electrolyte Secondary Cell Cathode Material and Nonaqueous Electrolyte Secondary Cell Employing the Cathode Material
WO2008026380A1 (en) Carbon material for negative electrode for lithium ion rechargeable battery, carbon material for negative electrode for low crystalline carbon-impregnated lithium ion rechargeable battery, negative electrode plate, and lithium ion rechargeable battery
KR102139736B1 (en) Composite anode active material, a method of preparing the composite anode material, and Lithium secondary battery comprising the composite anode active material
KR101430733B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
WO2002093666A1 (en) Nonaqueous electrolytic secondary battery and method of producing anode material thereof
JP2004071542A (en) Negative electrode active material, negative electrode using same, nonaqueous electrolyte battery using same, and manufacture of negative electrode active material
JPH04237971A (en) Nonaqueous electrolyte secondary battery
JP3658805B2 (en) Negative electrode for lithium battery and lithium battery using the same
EP1288351B1 (en) Carbon fiber, electrode material for lithium secondary battery, and lithium secondary battery
US20210367229A1 (en) Conducting polymer network/expanded graphite-enabled negative electrode for a lithium-ion battery
JPH1012217A (en) Negative electrode for lithium ion secondary battery
KR101004443B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
KR20170136855A (en) Anode active material, method for fabricating the same, anode comprising the same and lithium secondarty battery comprising the same
JPH10134797A (en) Film electrode and manufacture thereof
JP3587935B2 (en) Lithium secondary battery
JPH09320590A (en) Lithium ton secondary battery negative electrode material and its manufacture
JPH11219700A (en) Lithium secondary battery, its negative electrode and its manufacture
JP3939842B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode material
JP3698516B2 (en) Film electrode and manufacturing method thereof
JPH09106819A (en) Manufacture of lithium secondary battery and laminate of film-like carbon
JP3237456B2 (en) Electrode material for lithium secondary battery and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees