JPH10130795A - Tb-dy-fe-t alloy single crystal and its production - Google Patents

Tb-dy-fe-t alloy single crystal and its production

Info

Publication number
JPH10130795A
JPH10130795A JP30348896A JP30348896A JPH10130795A JP H10130795 A JPH10130795 A JP H10130795A JP 30348896 A JP30348896 A JP 30348896A JP 30348896 A JP30348896 A JP 30348896A JP H10130795 A JPH10130795 A JP H10130795A
Authority
JP
Japan
Prior art keywords
alloy
axis
oriented
single crystal
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30348896A
Other languages
Japanese (ja)
Inventor
Takateru Umeda
高照 梅田
Toshimitsu Okane
利光 岡根
Takeshi Ume
武 梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP30348896A priority Critical patent/JPH10130795A/en
Publication of JPH10130795A publication Critical patent/JPH10130795A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain alloy single crystals having large magnetostriction by preferentially grow a rod composed of Tb, Dy, Fe and specified metals to form into twins, then sampling seed crystals oriented to specified axes and growing them at a specified rate. SOLUTION: A melted and cast homogeneous Tb-Dy-Fe-T alloy rod is preferentially grown by a unidirectional growing furnace to obtain Tb-Dy-Fe-T alloy twins oriented to the <11-2> axis. Successively, from this alloy twins, Tb- Dy-Fe-T alloy seed crystals oriented to the <111> axis and also vertical to the twin boundary face is obtd. This seed crystals are grown so as to regulate the moving speed to the range of 1 to 100mm/hr in a unidirectional growing furnace to obtain Tb-Dy-Fe-T alloy single crystals oriented to the <111> axis. This alloy can be expressed by Tbx Dy1-x (Fe1-y Ty )z . In the formula, T denotes one or more kinds among Co, Mn, Al and Ta, (x), (y) and (z) denote the number of atoms, and x: 0.25 to 0.5, y: 0 to 0.3 and z: 1.5 to 2.0 are regulated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、Tb−Dy−Fe−T
合金単結晶及びその製造方法に関する。
The present invention relates to Tb-Dy-Fe-T
The present invention relates to an alloy single crystal and a method for producing the same.

【0002】[0002]

【従来の技術】巨大磁歪合金として、希土類金属(R
E)と遷移金属(T)とからなる
2. Description of the Related Art As a giant magnetostrictive alloy, rare earth metals (R
E) and transition metal (T)

【化2】 ラーベス型金属間化合物を主相とする合金が知られてい
る。現在、下記のような組成として表される。
Embedded image Alloys having a Laves-type intermetallic compound as a main phase are known. Currently, it is represented as the following composition.

【化1】Tは、Co、Mn、AlまたはTaの一種以上
であり、但し、x、y及びzは原子数比であって、 x:0.25〜0.5 y:0〜0.3 z:1.5〜2.0 である。この種の合金の内、最も進んだ合金は、米国特
許No.4308474に開示されているターフェノー
ルと呼ばれている
## STR1 ## T is one or more of Co, Mn, Al and Ta, where x, y and z are atomic ratios: x: 0.25-0.5 y: 0-0. 3z: 1.5 to 2.0. The most advanced of such alloys is described in U.S. Pat. Called terphenol disclosed in US Pat. No. 4,308,474

【化3】 合金である。この合金は、Embedded image Alloy. This alloy is

【化2】ラーベス型金属間化合物結晶で、〈111〉軸
が磁化容易軸であり、磁歪の結晶異方性が大きいことが
知られている。すなわち、〈100〉軸方向の磁歪が小
さくて、〈111〉軸方向の磁歪が大きいことが知られ
ている。
It is known that the <111> axis is an axis of easy magnetization and the crystal anisotropy of magnetostriction is large in the Laves-type intermetallic compound crystal. That is, it is known that magnetostriction in the <100> axis direction is small and magnetostriction in the <111> axis direction is large.

【0003】そこで、このTb−Dy−Fe−T合金の
磁歪量を大きくするためには、磁歪が大きい方向の結晶
軸を配向させて、異方性を付与することが有効である。
さらに、低印加磁場において、高い磁歪、大きい転換因
子のため、〈111〉軸に配向する単結晶が好ましい。
Therefore, in order to increase the magnetostriction of the Tb-Dy-Fe-T alloy, it is effective to orient the crystal axis in the direction in which the magnetostriction is large to impart anisotropy.
Furthermore, a single crystal oriented in the <111> axis is preferable because of a high magnetostriction and a large conversion factor in a low applied magnetic field.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来
は、帯溶融法、ブリッジマン法、チョクラルスキ法によ
っても〈111〉軸に配向するTb−Dy−Fe−T合
金単結晶を製造することができなかった。実用的に、最
も品質の高いものは、〈112〉軸に配向する双晶であ
る。〈112〉軸は〈111〉軸と約19.5°の角度
をなしているため、〈112〉軸成長した双晶結晶の磁
歪量は、〈111〉軸に配向しているときの磁歪量に比
べ、cos19.5°を乗じた値まで減少してしまう。
さらに、磁歪特性上、双晶界面の影響は無視できない。
双晶界面が、実用的に重要な磁化に悪影響をおよぼすこ
と及び界面における内部損失を惹起することが知られて
いる。そのため、双晶の形成と成長を抑制することは、
低印加磁場で高い磁歪、大きい転換因子が要求される用
途において重要である。
However, conventionally, a single crystal of a Tb-Dy-Fe-T alloy oriented in the <111> axis cannot be produced by the band melting method, the Bridgman method, or the Czochralski method. Was. In practice, the highest quality twins are oriented in the <112> axis. Since the <112> axis forms an angle of about 19.5 ° with the <111> axis, the magnetostriction of the twin crystal grown on the <112> axis is the magnetostriction when oriented to the <111> axis. , The value is reduced to a value obtained by multiplying cos by 19.5 °.
Further, due to the magnetostriction characteristics, the influence of the twin interface cannot be ignored.
Twin interfaces are known to adversely affect magnetization, which is of practical importance, and cause internal losses at the interface. Therefore, suppressing the formation and growth of twins
This is important in applications that require high magnetostriction at low applied magnetic fields and large conversion factors.

【0005】一方、粉末焼結法では、Tb−Dy−Fe
−T合金粉末を磁場中である程度配向させることはでき
るが、完全な〈111〉軸方向への配向は、従来できな
かった。磁場中配向した粉末焼結法によって製造された
Tb−Dy−Fe−T合金の特性は、〈112〉軸方向
に配向する双晶の特性より、やや劣るものである。
On the other hand, in the powder sintering method, Tb-Dy-Fe
Although it is possible to orient the -T alloy powder in a magnetic field to some extent, it has not been possible to achieve complete orientation in the <111> axis direction. The properties of the Tb-Dy-Fe-T alloy produced by the powder sintering method oriented in a magnetic field are slightly inferior to the properties of twins oriented in the <112> axial direction.

【0006】そこで、本発明は、前記の問題を解消し、
双晶界面がなく、〈111〉軸に配向するTb−Dy−
Fe−T合金単結晶及びその製造方法を提供することを
目的としている。
Therefore, the present invention solves the above-mentioned problem,
Tb-Dy- oriented without <111> axis without twin interface
It is an object of the present invention to provide an Fe-T alloy single crystal and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的は、本発明に係
るTb−Dy−Fe−T合金単結晶、すなわち、
The object of the present invention is to provide a Tb-Dy-Fe-T alloy single crystal according to the present invention,

【化1】Tは、Co、Mn、AlまたはTaの一種以上
であり、但し、x、y及びzは原子数比であって、 x:0.25〜0.5 y:0〜0.3 z:1.5〜2.0 であり、〈111〉軸に配向するTb−Dy−Fe−T
合金単結晶によって、解決される。ここで、(hkl)
面及び[uvw]軸はミラー指数であり、互いに等価な
面及び軸を総称するときは、{hkl}面及び〈uv
w〉で表わすが、これもミラー指数である。
## STR1 ## T is one or more of Co, Mn, Al and Ta, where x, y and z are atomic ratios: x: 0.25-0.5 y: 0-0. 3z: 1.5 to 2.0, and Tb-Dy-Fe-T oriented to the <111> axis
This is solved by alloy single crystals. Where (hkl)
The plane and the [uvw] axis are Miller indices, and the {hkl} plane and the <uv> plane are generically equivalent to each other.
w>, which is also the Miller index.

【0008】また、上記目的は、本発明に係る、Tb−
Dy−Fe−T合金単結晶の製造方法、すなわち、T
b、Dy、Fe及びTを溶解鋳造で均質なTb−Dy−
Fe−T合金ロッドを得、次に、一方向成長炉によっ
て、当該Tb−Dy−Fe−T合金ロッドを優先成長さ
せて、〈11−2〉軸に配向したTb−Dy−Fe−T
合金双晶を得、続いて、当該Tb−Dy−Fe−T合金
双晶から、〈111〉軸に配向し、かつ、双界面と垂直
なTb−Dy−Fe−T合金種結晶を採取し、当該Tb
−Dy−Fe−T合金種結晶を用いて、一方向成長炉
で、移動速度を1mm/hrから100mm/hrまで
の範囲内で成長させて、
[0008] The object of the present invention is to provide Tb-
A method for producing a Dy-Fe-T alloy single crystal, that is, T
b, Dy, Fe and T are melt-cast and homogeneous Tb-Dy-
An Fe—T alloy rod is obtained, and then the Tb—Dy—Fe—T alloy rod is preferentially grown by a unidirectional growth furnace, and Tb—Dy—Fe—T oriented to the <11-2> axis.
An alloy twin was obtained, and then a Tb-Dy-Fe-T alloy seed crystal oriented in the <111> axis and perpendicular to the twin interface was collected from the Tb-Dy-Fe-T alloy twin. , The Tb
-Using a Dy-Fe-T alloy seed crystal and growing in a unidirectional growth furnace at a moving speed of 1 mm / hr to 100 mm / hr,

【化1】Tは、Co、Mn、Al及びTaの一種以上で
あり、但し、x、y及びzは原子数比であって、 x:0.25〜0.5 y:0〜0.3 z:1.5〜2.0 であり、〈111〉軸に配向するTb−Dy−Fe−T
合金単結晶の製造方法によって、解決される。
Wherein T is one or more of Co, Mn, Al and Ta, where x, y and z are atomic ratios, x: 0.25 to 0.5 y: 0 to 0. 3z: 1.5 to 2.0, and Tb-Dy-Fe-T oriented to the <111> axis
The problem is solved by a method for producing an alloy single crystal.

【0009】[0009]

【作用】双晶界面が{111}面であることを利用し
て、〈11−2〉軸に配向するTb−Dy−Fe−T合
金双晶から、〈111〉軸に配向し、かつ、双晶界面と
垂直な種結晶を採取する。この種結晶を用いることによ
って、成長時における一方向成長は、〈111〉方向と
平行、かつ、種結晶中の双晶界面と垂直であるため、双
晶の成長が抑制されやすい。
[Effect] By utilizing the fact that the twin interface is a {111} plane, a Tb-Dy-Fe-T alloy twin oriented to the <11-2> axis is oriented to the <111> axis, and A seed crystal perpendicular to the twin interface is collected. By using this seed crystal, the unidirectional growth during growth is parallel to the <111> direction and perpendicular to the twin interface in the seed crystal, so that twin growth is easily suppressed.

【0010】一方向成長炉で、移動速度を100mm/
hr以下にすると、〈111〉軸に配向した種結晶か
ら、優先成長と双晶成長が抑制される。そのため、双晶
界面がなく、〈111〉軸に配向した単結晶が得られ
る。
In a unidirectional growth furnace, the moving speed is 100 mm /
When the temperature is less than hr, preferential growth and twin growth are suppressed from the seed crystal oriented in the <111> axis. Therefore, a single crystal having no twin interface and oriented in the <111> axis can be obtained.

【0011】一方、一方向成長炉で、移動速度を1mm
/hr以下とすると、〈112〉軸や〈110〉軸に、
配向した双晶種結晶から、双晶の成長を抑制される可能
性もあるが、移動速度が遅すぎるため、生産効率が悪
い。
On the other hand, in a unidirectional growth furnace, the moving speed is 1 mm.
/ Hr or less, the <112> axis and the <110> axis
Although the growth of twins may be suppressed from the oriented twin seed crystals, the production efficiency is poor because the moving speed is too slow.

【0012】他方、移動速度を100mm/hr以上と
すると、双晶形成と双晶成長が起こり、さらに、〈11
2〉方位の優先成長が起こるようになる。
On the other hand, when the moving speed is 100 mm / hr or more, twin formation and twin growth occur, and further, <11
2> Preferred growth of the azimuth occurs.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して、説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、本発明の実施形態のTb−Dy−
Fe−T合金単結晶の製造方法を示す工程図である。
FIG. 1 is a cross-sectional view of the embodiment of the present invention.
It is a flowchart showing the manufacturing method of the Fe-T alloy single crystal.

【0015】[0015]

【化3】及びEmbedded image and

【化4】 (Tは、Co、Mn、AlまたはTa)を目標組成にし
て3N級のテルビウム(Tb)、3N級の87.6重量
%ディスプロシウム(Dy)−鉄(Fe)合金、電解鉄
及び純T元素を配量し、原料とした。この原料をアーク
溶融装置のチャンバー内に設置し、密閉し、真空排気
後、アルゴン・ガスで置換し、アルゴン・ガス雰囲気と
した。そして、タングステン製の非消耗電極と原料との
間にアーク放電を生じさせ、原料を溶融し合金化した。
アーク溶融を3〜7回繰返して、合金を均質化し、その
後に、アークキャスティングにより、直径5〜8mmの
Tb−Dy−Fe−T合金ロッド1次試料を作成した。
Embedded image (T is Co, Mn, Al or Ta) with a target composition of 3N-class terbium (Tb), 3N-class 87.6% by weight dysprosium (Dy) -iron (Fe) alloy, electrolytic iron and pure iron T element was measured and used as a raw material. This raw material was placed in a chamber of an arc melting apparatus, sealed, evacuated, and then replaced with argon gas to obtain an argon gas atmosphere. Then, arc discharge was generated between the non-consumable electrode made of tungsten and the raw material, and the raw material was melted and alloyed.
Arc melting was repeated 3 to 7 times to homogenize the alloy, and thereafter, a primary sample of a Tb-Dy-Fe-T alloy rod having a diameter of 5 to 8 mm was prepared by arc casting.

【0016】次に、不活性ガス雰囲気中で、Tb−Dy
−Fe−T合金ロッド1次試料を自由直立浮遊式帯溶融
法一方向成長炉によって、一方向成長させ、優先成長さ
せて、〈11−2〉軸に配向したTb−Dy−Fe−T
合金双晶2次試料1を作成した。
Next, in an inert gas atmosphere, Tb-Dy
-A primary sample of a Fe-T alloy rod is unidirectionally grown in a free-standing floating zone melting method unidirectional growth furnace, and is preferentially grown, and Tb-Dy-Fe-T oriented in the <11-2> axis.
An alloy twin secondary sample 1 was prepared.

【0017】図1(a)に示すように、Tb−Dy−F
e−T合金双晶2次試料1の双晶面は{111}面であ
るから、Tb−Dy−Fe−T合金双晶2次試料1か
ら、〈111〉軸に配向し、かつ、双晶界面と垂直な種
結晶2を切り出し、採取した。
As shown in FIG. 1A, Tb-Dy-F
Since the twin plane of the e-T alloy twin secondary sample 1 is a {111} plane, it is oriented from the Tb-Dy-Fe-T alloy twin secondary sample 1 to the <111> axis, and A seed crystal 2 perpendicular to the crystal interface was cut out and collected.

【0018】図1(b)に示すように、種結晶2は円柱
形状であり、上底面201の法線すなわち中心軸は〈1
12〉方位であり、半径方向は〈11−1〉方位の双晶
である。
As shown in FIG. 1B, the seed crystal 2 has a columnar shape, and the normal to the upper bottom surface 201, that is, the central axis is <1.
12> orientation, and the radial direction is twin with <11-1> orientation.

【0019】図1(c)に示すように、種結晶2を90
°回転し、中心軸を水平面内に配置し、半径方向を垂直
方向に配置して、不活性ガス雰囲気を保ったイメージ炉
あるいはランブ式炉を用い、垂直上方へ、移動速度1m
m/hrから100mm/hrまでの範囲内で一方向成
長させて、〈111〉軸に配向したTb−Dy−Fe−
T合金単結晶を得た。得られた単結晶の寸法は直径が5
〜100mmであった。図1(d)はイメージ炉中での
一方向成長の様子を示す。下端には種結晶2が〈11
2〉方位を水平面内に配置し、〈11−1〉方位を垂直
上方に向けて配置され、垂直上方へ向かって一方向成長
させると、種結晶の上に隣接して、成長したままの〈1
11〉軸に配向した単結晶3が形成され、その上に隣接
して溶融ゾーン4が形成され、さらに上に隣接してフィ
ード5がある。一方向成長方向は垂直上方へ向かってい
る。
As shown in FIG. 1C, 90
Rotate °, arrange the central axis in the horizontal plane, arrange the radial direction in the vertical direction, use an image furnace or a Rambe furnace that maintains an inert gas atmosphere, and move vertically upward at a speed of 1 m
Tb-Dy-Fe- grown by unidirectional growth in the range of m / hr to 100 mm / hr,
A T alloy single crystal was obtained. The size of the obtained single crystal is 5
〜100 mm. FIG. 1D shows a state of unidirectional growth in an image furnace. Seed crystal 2 <11 at bottom
2> The orientation is arranged in a horizontal plane, and the <11-1> orientation is arranged vertically upward. When the crystal is grown unidirectionally vertically upward, the <11-1> 1
11> A single crystal 3 oriented in the axis is formed, a melting zone 4 is formed adjacent thereto, and a feed 5 is provided further above. The unidirectional growth direction is vertically upward.

【0020】得られた単結晶について、X線回折測定を
行った。(この単結晶の配向はMAC−SCIENCE
社製強力X線回折装置MXP18で測定した。条件は、
Cuターゲット(
An X-ray diffraction measurement was performed on the obtained single crystal. (The orientation of this single crystal is MAC-SCIENCE
It was measured with a powerful X-ray diffractometer MXP18 manufactured by KK. condition is,
Cu target (

【化5】 α線、1.54050Embedded image α ray, 1.54050

【化6】 ))、電圧40kV、電流200mAである。図2は、
本発明の実施形態の
Embedded image )), The voltage is 40 kV, and the current is 200 mA. FIG.
Of the embodiment of the present invention

【化3】合金単結晶のX線回折チャート図である。縦軸
はカウント数であり、横軸は回折角を示す。このX線回
折チャート図から(111)、(222)、(333)
に対応した、急峻なピークが認められ、得られた試料は
〈111〉軸に配向した単結晶であることがわかった。
3 is an X-ray diffraction chart of an alloy single crystal. The vertical axis indicates the count number, and the horizontal axis indicates the diffraction angle. From the X-ray diffraction chart, (111), (222), (333)
And a steep peak was observed, indicating that the obtained sample was a single crystal oriented along the <111> axis.

【0021】次に、得られた単結晶について、X線ラウ
エ分析を行った。(Rigaku Geigerflex ラウエX線装置
を利用した。条件は、電圧40kV、電流30mA、試
料−フイルム距離30mmである。図3は、本発明の実
施形態の
Next, the obtained single crystal was subjected to X-ray Laue analysis. (A Rigaku Geigerflex Laue X-ray apparatus was used. The conditions were a voltage of 40 kV, a current of 30 mA, and a sample-film distance of 30 mm. FIG. 3 shows an embodiment of the present invention.

【化3】合金単結晶のX線ラウエ像を示す写真である。
このX線ラウエ像を示す写真から、この試料は双晶では
なく、単結晶であることが確認された。
3 is a photograph showing an X-ray Laue image of an alloy single crystal.
From the photograph showing the X-ray Laue image, it was confirmed that this sample was not twin but a single crystal.

【0022】さらに、得られた単結晶について、磁歪特
性を測定した。図4は、本発明の実施形態のTb−Dy
−Fe合金単結晶の軸方向についての磁場に対する磁歪
の関係を示すグラフである。予加圧が0、3、7.5、
15MPaのいずれの場合にも、極めて良好な磁歪特性
が得られており、特に低印加磁場における磁歪が著しい
ことがわかった。飽和磁歪が2000ppmを越える、
300エルステェッドで、1000ppmを越す。
Further, the magnetostriction characteristics of the obtained single crystal were measured. FIG. 4 shows Tb-Dy of the embodiment of the present invention.
4 is a graph showing a relationship between magnetostriction and a magnetic field in an axial direction of an Fe alloy single crystal. Pre-pressurization is 0, 3, 7.5,
In each case of 15 MPa, extremely good magnetostriction characteristics were obtained, and it was found that magnetostriction was particularly remarkable in a low applied magnetic field. The saturation magnetostriction exceeds 2000 ppm,
At 300 ersted, above 1000 ppm.

【0023】[0023]

【発明の効果】本発明のTb−Dy−Fe−T合金単結
晶の製造方法によって、初めて〈111〉軸に配向した
According to the method for producing a Tb-Dy-Fe-T alloy single crystal of the present invention, the <111> axis is first oriented.

【化1】Tは、Co、Mn、AlまたはTaの一種以上
であり、但し、x、y及びzは原子数比であって、 x:0.25〜0.5 y:0〜0.3 z:1.5〜2.0 であるTb−Dy−Fe−T合金単結晶が得られた。
## STR1 ## T is one or more of Co, Mn, Al and Ta, where x, y and z are atomic ratios: x: 0.25-0.5 y: 0-0. 3z: A Tb-Dy-Fe-T alloy single crystal of 1.5 to 2.0 was obtained.

【0024】本発明のTb−Dy−Fe−T合金単結晶
は、その軸方向について、極めて大きな磁歪が得られる
とともに、良好な磁場応答性が得られた。したがって、
本発明のTb−Dy−Fe−T合金単結晶は、精密で高
感度の磁歪センサー・デバイスや圧力センサーに用いる
ことができる。
In the Tb-Dy-Fe-T alloy single crystal of the present invention, extremely large magnetostriction was obtained in the axial direction and good magnetic field response was obtained. Therefore,
The Tb-Dy-Fe-T alloy single crystal of the present invention can be used for a precise and highly sensitive magnetostrictive sensor device or pressure sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態のTb−Dy−Fe−T合金
単結晶の製造方法を示す工程図である。
FIG. 1 is a process chart showing a method for producing a Tb-Dy-Fe-T alloy single crystal according to an embodiment of the present invention.

【図2】本発明の実施形態のTb−Dy−Fe合金単結
晶のX線回折チャート図である。
FIG. 2 is an X-ray diffraction chart of a Tb-Dy-Fe alloy single crystal according to an embodiment of the present invention.

【図3】本発明の実施形態のTb−Dy−Fe合金単結
晶のX線ラウエ像を示す写真である。
FIG. 3 is a photograph showing an X-ray Laue image of a Tb-Dy-Fe alloy single crystal according to an embodiment of the present invention.

【図4】本発明の実施形態のTb−Dy−Fe合金単結
晶の軸方向についての磁場に対する磁歪の関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the magnetic field and the magnetostriction in the axial direction of the Tb-Dy-Fe alloy single crystal according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 Tb−Dy−Fe−T合金双晶2次試料 2 種結晶 201 上底面 3 単結晶 4 溶融ゾーン 5 フィード DESCRIPTION OF SYMBOLS 1 Tb-Dy-Fe-T alloy twin secondary sample 2 seed crystal 201 Upper bottom surface 3 Single crystal 4 Melting zone 5 Feed

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅 武 東京都台東区三ノ輪2−15−8−201 ──────────────────────────────────────────────────続 き Continued on the front page (72) Takeshi Ume 2-15-8-201 Minowa, Taito-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 【化1】 Tは、Co、Mn、AlまたはTaの一種以上であり、
x、y及びzは原子数比であって、 x:0.25〜0.5 y:0〜0.3 z:1.5〜2.0 であり、〈111〉軸に配向するTb−Dy−Fe−T
合金単結晶。
[Claim 1] T is one or more of Co, Mn, Al or Ta;
x, y and z are atomic ratios, x: 0.25 to 0.5 y: 0 to 0.3 z: 1.5 to 2.0, and Tb − oriented to the <111> axis. Dy-Fe-T
Alloy single crystal.
【請求項2】 Tb、Dy、Fe及びTを不活性雰囲気
中で溶解することによって合金を均質化させ、Tb−D
y−Fe−T合金ロッドを得、次に、一方向成長炉によ
って、当該Tb−Dy−Fe−T合金ロッドを優先成長
させて、〈11−2〉軸に配向したTb−Dy−Fe−
T合金双晶を得、続いて、当該Tb−Dy−Fe−T合
金双晶から、〈111〉軸に配向し、かつ、双晶界面と
垂直なTb−Dy−Fe−T合金種双晶を採取し、当該
Tb−Dy−Fe−T合金種双晶から、結晶サイズに応
じた一方向成長炉を用い、移動速度を1mm/hrから
100mm/hrまでの範囲内で成長させて、 【化1】Tは、Co、Mn、AlまたはTaの一種以上
であり、x、y及びzは原子数比であって、 x:0.25〜0.5 y:0〜0.3 z:1.5〜2.0 であり、〈111〉軸に配向する相当直径100mm以
下のTb−Dy−Fe−T合金単結晶を得る、Tb−D
y−Fe−T合金単結晶の製造方法。
2. The alloy is homogenized by melting Tb, Dy, Fe and T in an inert atmosphere, and the Tb-D
A y-Fe-T alloy rod was obtained, and then the Tb-Dy-Fe-T alloy rod was preferentially grown by a unidirectional growth furnace to obtain a <11-2> axis-oriented Tb-Dy-Fe-
Obtaining a T alloy twin, and subsequently, from the Tb-Dy-Fe-T alloy twin, a Tb-Dy-Fe-T alloy seed twin oriented to the <111> axis and perpendicular to the twin interface From the Tb-Dy-Fe-T alloy seed twin, using a unidirectional growth furnace corresponding to the crystal size, and growing at a moving speed of 1 mm / hr to 100 mm / hr, Wherein T is at least one of Co, Mn, Al and Ta, and x, y and z are atomic ratios; x: 0.25 to 0.5 y: 0 to 0.3 z: To obtain a Tb-Dy-Fe-T alloy single crystal having an equivalent diameter of 100 mm or less oriented to the <111> axis.
A method for producing a single crystal of a y-Fe-T alloy.
JP30348896A 1996-10-30 1996-10-30 Tb-dy-fe-t alloy single crystal and its production Pending JPH10130795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30348896A JPH10130795A (en) 1996-10-30 1996-10-30 Tb-dy-fe-t alloy single crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30348896A JPH10130795A (en) 1996-10-30 1996-10-30 Tb-dy-fe-t alloy single crystal and its production

Publications (1)

Publication Number Publication Date
JPH10130795A true JPH10130795A (en) 1998-05-19

Family

ID=17921567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30348896A Pending JPH10130795A (en) 1996-10-30 1996-10-30 Tb-dy-fe-t alloy single crystal and its production

Country Status (1)

Country Link
JP (1) JPH10130795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073420A1 (en) * 2004-01-30 2005-08-11 Tdk Corporation Magnetostrictive material and method for production thereof
CN102569638A (en) * 2012-02-15 2012-07-11 北京航空航天大学 Adhesive giant magnetostrictive material with laminated structure height (111) orientation and preparation method thereof
JP2020050543A (en) * 2018-09-27 2020-04-02 住友金属鉱山株式会社 Manufacturing method of seed crystal for single crystal growth of iron gallium alloy, and single crystal growth method of iron gallium alloy
CN113046619A (en) * 2021-03-13 2021-06-29 湖南大学 Large-expansion-amount rare earth giant magnetostrictive material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073420A1 (en) * 2004-01-30 2005-08-11 Tdk Corporation Magnetostrictive material and method for production thereof
CN102569638A (en) * 2012-02-15 2012-07-11 北京航空航天大学 Adhesive giant magnetostrictive material with laminated structure height (111) orientation and preparation method thereof
JP2020050543A (en) * 2018-09-27 2020-04-02 住友金属鉱山株式会社 Manufacturing method of seed crystal for single crystal growth of iron gallium alloy, and single crystal growth method of iron gallium alloy
CN113046619A (en) * 2021-03-13 2021-06-29 湖南大学 Large-expansion-amount rare earth giant magnetostrictive material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN1034248C (en) Fe-Ni based soft magnetic alloys having nanocrystalline structure
Grin et al. Structural Chemistry and Magnetic Behaviour of Ternary Uranium Gallides U {Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt} Ga5
Verhoeven et al. Directional solidification and heat treatment of Terfenol-D magnetostrictive materials
JP3630164B2 (en) Magnetic alloy material and method for producing the same
EP0509628B1 (en) Magnetostrictive alloys and method of manufacturing thereof
CN101109057B (en) &lt;100&gt; Fe-Ga magnetostriction material on axial orientation and method of preparing the same
JP2005068451A (en) Fe BASED SOFT MAGNETIC BULK AMORPHOUS-NANOCRYSTAL DUAL PHASE ALLOY, AND ITS PRODUCTION METHOD
KR101074304B1 (en) Metallic silicon and process for producing the same
JP3947066B2 (en) Magnetic alloy material
JPH10130795A (en) Tb-dy-fe-t alloy single crystal and its production
CN115418704B (en) Flux growth method of rare earth iron boron permanent magnet monocrystal
JP4371040B2 (en) Magnetic alloy material and method for producing the same
Wang et al. Single-crystal growth of iridium with [100] and [110] orientations by electron beam zone melting
Balzuweit et al. On the relationship between morphology, composition and structure of Al-Cu-Fe crystals and quasicrystals
CN114496441A (en) High-saturation-magnetic-induction-intensity iron-based alloy strip and preparation method thereof
JP2021066627A (en) Magnetostrictive material and magnetostrictive element
JPWO2017033297A1 (en) Ferromagnetic alloy and method for producing ferromagnetic alloy
CN109576608B (en) In-situ generated cladding structure iron-based block amorphous alloy composition and preparation method thereof
Sinnema et al. Crystal growth of R2T17 and R2Fe14B intermetallics (R= rare earth, T= Co, Fe)
US5275688A (en) Monocrystal growth method
JP4146120B2 (en) Magnetostrictive material
Warchol et al. Growth of sizable single crystals of Y–Co Compounds
Menovsky et al. The crystal growth of uranium tetraboride UB4 from the melt
Akdeniz et al. Structures in rapidly solidified zinc
Saito Magnetic Properties of Pr–Fe–Al Alloys Produced by the Metallic Mold Casting Method