JPH10130244A - Production of acyclonucleoside - Google Patents

Production of acyclonucleoside

Info

Publication number
JPH10130244A
JPH10130244A JP28657696A JP28657696A JPH10130244A JP H10130244 A JPH10130244 A JP H10130244A JP 28657696 A JP28657696 A JP 28657696A JP 28657696 A JP28657696 A JP 28657696A JP H10130244 A JPH10130244 A JP H10130244A
Authority
JP
Japan
Prior art keywords
compound
mmol
group
isopropyluracil
ethoxymethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28657696A
Other languages
Japanese (ja)
Inventor
Masaru Ubasawa
賢 姥澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28657696A priority Critical patent/JPH10130244A/en
Publication of JPH10130244A publication Critical patent/JPH10130244A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing an acyclouncleoside useful as an antiviral agent, anticancer agent and antibacterial agent or their synthetic intermediate. SOLUTION: This method for producing an acyclonucleoside is to silylate a base expressed by the formula: W-H (W is a 1-pyrimidinyl or 9-purinyl group, which may have a substituting group), and then react with an acetoxymethyl alkyl ether or a dialkoxymethane in the presence of iodotrimethylsilane or bromotrimethylsilane, or chloritrimethylsilane and an iodometal compound or a bromometal compound. Further, instead of performing the silylation, the base may be reacted in the presence of a silylating agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アシクロヌクレオ
シドの新規な製造方法に関するものであり、詳細には、
抗ウィルス剤、抗癌剤、抗菌剤またはそれらの合成中間
体として有用なアシクロヌクレオシドの製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a novel method for producing acyclonucleoside, and in particular,
The present invention relates to a method for producing an acyclonucleoside useful as an antiviral agent, an anticancer agent, an antibacterial agent or a synthetic intermediate thereof.

【0002】[0002]

【従来の技術】アシクロヌクレオシドの製造法について
は、従来より数多くの方法が検討されてきた。例えば下
記(3)式で示されるピリミジン塩基を、適当なシリル
化剤でシリル化してビス(トリメチルシリル)誘導体
(4)とし、これにハロゲノメチルアルキルエーテル
(5)を反応させ、アシクロヌクレオシド(6)を得る
方法が知られている。
2. Description of the Related Art Numerous methods have been studied for producing acyclonucleosides. For example, a pyrimidine base represented by the following formula (3) is silylated with a suitable silylating agent to give a bis (trimethylsilyl) derivative (4), which is reacted with a halogenomethylalkyl ether (5) to give an acyclonucleoside (6). ) Are known.

【0003】[0003]

【化5】 Embedded image

【0004】(上記(3)〜(6)式中、Xは酸素原子
または硫黄原子を表し、R′は水素原子又は、アルキル
基、ハロゲン原子等の置換基を、Rはアルキル基、Yは
ハロゲン原子を表す。)
(In the above formulas (3) to (6), X represents an oxygen atom or a sulfur atom, R ′ represents a hydrogen atom or a substituent such as an alkyl group or a halogen atom, R represents an alkyl group, and Y represents Represents a halogen atom.)

【0005】しかし、(5)で表わされるハロゲノメチ
ルアルキルエーテルは発癌性の可能性が指摘されてお
り、上記の反応を工業的に実施する際に問題となる点で
ある。この点を回避すべく、ジアルコキシメタンをトリ
メチルシリルトリフレートの存在下(4)と反応させ
(6)を得る方法が発表されたが(Synthesi
s,934−936(1995))、トリメチルシリル
トリフレートは高価である為、工業的スケールの合成に
は難があるものと考えられる。
However, it has been pointed out that the halogenomethylalkyl ether represented by the formula (5) has a carcinogenic potential, which is a problem when the above reaction is carried out industrially. In order to avoid this point, a method has been disclosed in which dialkoxymethane is reacted with (4) in the presence of trimethylsilyl triflate to obtain (6) (Synthesi).
s, 934-936 (1995)), since trimethylsilyl triflate is expensive, it is considered to be difficult to synthesize it on an industrial scale.

【0006】[0006]

【発明が解決しようとする課題】以上のように、今まで
に報告されているアシクロヌクレオシドの製造方法は、
工業的実施に適したものとは言いがたい。従って本発明
は、安全、安価で工業的に実施可能なアシクロヌクレオ
シドの製造方法を提供せんとするものである。
As described above, the processes for producing acyclonucleosides which have been reported so far are as follows.
It is hard to say that it is suitable for industrial implementation. Accordingly, an object of the present invention is to provide a safe, inexpensive and industrially feasible method for producing an acyclonucleoside.

【0007】[0007]

【課題を解決するための手段】本発明者は、ピリミジン
塩基又はプリン塩基のシリル化物とアセトキシメチルア
ルキルエーテル又はジアルコキシメタンとの反応が、ヨ
ードトリメチルシラン又はブロモトリメチルシランの存
在下においては容易に進行して、これらの塩基に対応す
るアシクロヌクレオシドを与えることを見出した。ま
た、この反応は、ヨードトリメチルシラン又はブロモト
リメチルシランの代りに、クロロトリメチルシランとヨ
ウ化金属化合物もしくは臭化金属化合物を用いても、同
様に進行することを見出した。
The present inventors have found that the reaction of a silylated product of a pyrimidine base or a purine base with acetoxymethyl alkyl ether or dialkoxymethane can be easily carried out in the presence of iodotrimethylsilane or bromotrimethylsilane. It has been found that progress has been made to give acyclonucleosides corresponding to these bases. It has also been found that this reaction proceeds similarly when chlorotrimethylsilane and a metal iodide compound or a metal bromide compound are used instead of iodotrimethylsilane or bromotrimethylsilane.

【0008】さらに、ピリミジン塩基又はプリン塩基を
予じめシリル化しておく代りに、反応系に、シリル化
剤とヨードトリメチルシランもしくはブロモトリメチル
シラン、又はシリル化剤とクロロトリメチルシランと
ヨウ化金属化合物もしくは臭化金属化合物とを存在させ
ておくと、ピリミジン塩基又はプリン塩基とアセトキシ
メチルアルキルエーテル又はジアルコキシメタンとが反
応して、これらの塩基に対応するアシクロヌクレオシド
を生成することを見出した。
Further, instead of preliminarily silylizing a pyrimidine base or a purine base, a silylating agent and iodotrimethylsilane or bromotrimethylsilane, or a silylating agent, chlorotrimethylsilane and a metal iodide compound are added to the reaction system. Alternatively, it has been found that in the presence of a metal bromide compound, a pyrimidine base or a purine base reacts with acetoxymethyl alkyl ether or dialkoxymethane to generate an acyclonucleoside corresponding to these bases.

【0009】本発明は、このような知見に基づいて達成
されたものであり、その特徴とするところは、ピリミジ
ン塩基若しくはプリン塩基又はそれらのシリル化物とア
セトキシメチルアルキルエーテル又はジアルコキシメタ
ンとを反応させて、ピリミジン塩基の1位又はプリン塩
基の9位にアルコキシメチル基を導入するに際し、反応
をヨードトリメチルシランもしくはブロモトリメチルシ
ランの存在下、又はクロロトリメチルシランとヨウ化金
属化合物もしくは臭化金属化合物との存在下に行ない、
安価なアシクロヌクレオシドの合成法を提供する点にあ
る。
The present invention has been accomplished based on such findings, and is characterized by reacting a pyrimidine base or a purine base or a silylated product thereof with acetoxymethyl alkyl ether or dialkoxymethane. When introducing an alkoxymethyl group at the 1-position of the pyrimidine base or the 9-position of the purine base, the reaction is carried out in the presence of iodotrimethylsilane or bromotrimethylsilane, or chlorotrimethylsilane and a metal iodide compound or a metal bromide compound. In the presence of
It is to provide an inexpensive method for synthesizing acyclonucleoside.

【0010】[0010]

【発明の実施の形態】本発明について更に詳細に説明す
るに、本発明ではピリミジン塩基又はプリン塩基とし
て、式(1)で表わされる化合物を用いる。
BEST MODE FOR CARRYING OUT THE INVENTION In more detail, the present invention uses a compound represented by the formula (1) as a pyrimidine base or a purine base.

【0011】[0011]

【化6】W−H …(1)## STR6 ## WH (1)

【0012】(式中、Wは置換基を有していてもよい、
1−ピリミジニル基又は9−プリニル基を示す) 好ましくは、式(7)で表わされるピリミジン塩基、又
は式(8)で表わされるプリン塩基が用いられる。
(Wherein W may have a substituent,
(Indicating a 1-pyrimidinyl group or a 9-purinyl group) Preferably, a pyrimidine base represented by the formula (7) or a purine base represented by the formula (8) is used.

【0013】[0013]

【化7】 Embedded image

【0014】(上記の式(7)及び式(8)中、R1
よびR2 は、それぞれ独立して、水素原子;メチル基、
エチル基、n−プロピル基、i−プロピル基、n−ブチ
ル基、i−ブチル基、t−ブチル基、s−ブチル基、n
−ペンチル基等のC1 〜C5のアルキル基;ビニル基、
アリル基、1−プロペニル基、2−ブテニル基、1,3
−ブタジエニル基、2−ペンテニル基、2−ヘキセニル
基等のC2 〜C6 のアルケニル基;フッ素原子、塩素原
子、臭素原子、ヨウ素原子等のハロゲン原子;ベンジル
基;またはフェニルチオ基を表し、R3 およびR4 は、
それぞれ独立して、水素原子、ヒドロキシル基またはア
ミノ基を表わし、Xは酸素原子または硫黄原子を表し、
Yはヒドロキシル基またはアミノ基を表わす。)
(In the above formulas (7) and (8), R 1 and R 2 are each independently a hydrogen atom; a methyl group;
Ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t-butyl group, s-butyl group, n
A C 1 -C 5 alkyl group such as a pentyl group; a vinyl group,
Allyl group, 1-propenyl group, 2-butenyl group, 1,3
R 2 represents a C 2 -C 6 alkenyl group such as a butadienyl group, a 2-pentenyl group or a 2-hexenyl group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom; a benzyl group; 3 and R 4 are
Each independently represents a hydrogen atom, a hydroxyl group or an amino group, X represents an oxygen atom or a sulfur atom,
Y represents a hydroxyl group or an amino group. )

【0015】さらに、本発明においては、Wが5−エチ
ルウラシル、5−n−プロピルウラシル、5−i−プロ
ピルウラシル、5−ブチルウラシル等の5−アルキルウ
ラシル及びこれらの6位ベンジル又は6位アリールチオ
誘導体が好ましいものとして挙げられ、特に、好ましい
化合物としては、5−i−プロピルウラシルの6位ベン
ジル誘導体が挙げられる。なお、本発明の方法で製造さ
れる好ましい化合物としては、上記式(2)において、
Wが5−i−プロピルウラシル又はその6位ベンジル誘
導体で、Rがエチル基である、1−(エトキシメチル)
−5−イソプロピルウラシル又は6−ベンジル−1−
(エトキシメチル)−5−イソプロピルウラシルが挙げ
られる。なお、上記(7)式または(8)式の化合物に
おいて、YまたはR3 がヒドロキシル基を表わす場合、
以下の(9)式、(10)式に示す様なケト−エノール
互変異性により2種の異性体が存在するが、本発明にお
いてはかかる互変体をも包含するものである。
Further, in the present invention, W is a 5-alkyluracil such as 5-ethyluracil, 5-n-propyluracil, 5-i-propyluracil, 5-butyluracil and the like; Arylthio derivatives are preferred, and particularly preferred compounds are 6-benzyl derivatives of 5-i-propyluracil. In addition, as a preferable compound produced by the method of the present invention, in the above formula (2),
1- (ethoxymethyl) wherein W is 5-i-propyluracil or a benzyl derivative at the 6-position and R is an ethyl group
-5-isopropyluracil or 6-benzyl-1-
(Ethoxymethyl) -5-isopropyluracil. In the compound of the above formula (7) or (8), when Y or R 3 represents a hydroxyl group,
There are two isomers due to keto-enol tautomerism as shown in the following formulas (9) and (10), and the present invention includes such tautomers.

【0016】[0016]

【化8】 Embedded image

【0017】本発明の一態様では、これらのピリミジン
塩基又はプリン塩基を、先ず適当な方法でシリル化す
る。シリル化は、例えば、触媒量の硫安やクロロトリメ
チルシランの存在下に、これらの塩基を大量のヘキサメ
チルジシラザンと還流下に反応させることにより容易に
行なうことができる。反応混合物中には未反応のヘキサ
メチルジシラザンが大量に残留しているので蒸留してこ
れを除き、残留したシリル化物を、アセトニトリル、ジ
メチルホルムアミド、ジクロロメタン、ジクロロエタ
ン、テトラヒドロフラン等の溶媒に溶解して、次の反応
に供する。
In one embodiment of the present invention, these pyrimidine bases or purine bases are first silylated by a suitable method. The silylation can be easily carried out, for example, by reacting these bases with a large amount of hexamethyldisilazane under reflux in the presence of a catalytic amount of ammonium sulfate or chlorotrimethylsilane. Since a large amount of unreacted hexamethyldisilazane remains in the reaction mixture, this is removed by distillation, and the remaining silylated product is dissolved in a solvent such as acetonitrile, dimethylformamide, dichloromethane, dichloroethane, or tetrahydrofuran. For the next reaction.

【0018】また、別法として、上記したような溶媒中
に、ピリミジン塩基又はプリン塩基と、これに対し2〜
6モル倍のビストリメチルシリルアセトアミドとを加
え、室温で10分から数時間撹拌してシリル化するか、
又はビストリメチルシリルアセトアミドの代りに0.5
〜3モル倍のヘキサメチルジシラザンと触媒量の硫酸ア
ンモニウム又はクロロトリメチルシランとを用い、シリ
ル化することもできる。又、トリエチルアミン等の塩基
の存在下、クロロトリメチルシランと反応させることで
シリル化することもできる。このようなシリル化法によ
る場合には、反応混合物をそのまま次の反応に供するこ
とができる。
Alternatively, a pyrimidine base or a purine base and 2 to 2
6 mol times of bistrimethylsilyl acetamide is added and stirred at room temperature for 10 minutes to several hours to silylate or
Or 0.5 instead of bistrimethylsilylacetamide
Silylation can also be carried out using hexamethyldisilazane up to 3 mole times and a catalytic amount of ammonium sulfate or chlorotrimethylsilane. Further, silylation can also be carried out by reacting with chlorotrimethylsilane in the presence of a base such as triethylamine. In the case of using such a silylation method, the reaction mixture can be directly used for the next reaction.

【0019】このようにして得られたシリル化物を含む
溶液に、シリル化物に対し1〜3モル倍のアセトキシメ
チルアルキルエーテル又はジアルコキシメタンと、0.
1〜3モル倍のヨードトリメチルシラン又はブロモトリ
メチルシランとを加え、−40℃ないしは溶媒の還流温
度で、1時間〜4日間程度撹拌下に反応させると、目的
物が良好な収率で生成する。なお、ヨードトリメチルシ
ラン又はブロモトリメチルシランの代りに、安価で取り
扱い易いクロロトリメチルシランとヨウ化金属化合物も
しくは臭化金属化合物とを用いても、同様に目的物が良
好な収率で生成する。この場合には、クロロトリメチル
シランとヨウ化金属化合物もしくは臭化金属化合物とか
らヨードトリメチルシラン又はブロモトリメチルシラン
が生成し、これが触媒として作用するものと思われる。
ヨウ化金属化合物としては、ヨウ化カリウム、ヨウ化ナ
トリウム、ヨウ化セシウム等のアルカリ金属のヨウ化物
が通常用いられ、臭化金属化合物としては、臭化カリウ
ム、臭化ナトリウム、臭化セシウム等のアルカリ金属の
臭化物が通常用いられる。シリル化物に対するクロロト
リメチルシランとヨウ化金属化合物もしくは臭化金属化
合物の使用比率は、通常シリル化に供した塩基に対しク
ロロトリメチルシランが0.1〜3モル倍、ヨウ化金属
化合物もしくは臭化金属化合物が0.1〜3モル倍でよ
い。
The solution containing the silylated product thus obtained is mixed with acetoxymethyl alkyl ether or dialkoxymethane in an amount of 1 to 3 moles per mole of the silylated product, and 0.1 to 1 mol of the silylated product.
When 1 to 3 mole times of iodotrimethylsilane or bromotrimethylsilane is added, and the mixture is reacted under stirring at -40 ° C or the reflux temperature of the solvent for about 1 hour to 4 days, the desired product is produced in good yield. . It should be noted that even if chlorotrimethylsilane and a metal iodide compound or a metal bromide compound which are inexpensive and easy to handle are used instead of iodotrimethylsilane or bromotrimethylsilane, the desired product is similarly produced at a good yield. In this case, iodotrimethylsilane or bromotrimethylsilane is generated from chlorotrimethylsilane and a metal iodide compound or a metal bromide compound, and this is considered to act as a catalyst.
As the metal iodide compound, potassium iodide, sodium iodide, iodides of alkali metals such as cesium iodide are usually used, and as the metal bromide compound, potassium bromide, sodium bromide, cesium bromide and the like Alkali metal bromides are commonly used. The ratio of chlorotrimethylsilane to the metal iodide compound or the metal bromide compound to the silylated product is usually 0.1 to 3 times by mole of the chlorotrimethylsilane to the base subjected to the silylation, and the metal iodide compound or the metal bromide is used. The compound may be 0.1 to 3 molar times.

【0020】本発明の他の一態様では、ピリミジン塩基
又はプリン塩基を予じめシリル化することなく、シリル
化剤とヨードトリメチルシラン又はブロモトリメチルシ
ランとの共存下に、アセトキシメチルアルキルエーテル
又はジアルコキシメタンと反応させる。例えば、アセト
ニトリル、ジメチルホルムアミド、ジクロロメタン、ジ
クロロエタン、テトラヒドロフラン等の有機溶媒中に、
ピリミジン塩基又はプリン塩基と、これに対し0.1〜
3モル倍のヘキサメチルジシラザン、0.1〜3モル倍
のヨードトリメチルシラン又はブロモトリメチルシラ
ン、及び1〜3モル倍のアセトキシメチルアルキルエー
テル又はジアルコキシメタンとを添加し、−40℃ない
しは溶媒の還流温度で1時間〜数日反応させると、目的
物が良好な収率で生成する。この反応は、塩基が先ずシ
リル化され、次いでこれがアセトキシメチルアルキルエ
ーテル又はジアルコキシメタンと反応するという過程を
経るものと思われる。また、この反応においても、ヨー
ドトリメチルシラン又はブロモトリメチルシランの代り
に、クロロトリメチルシランとヨウ化金属化合物もしく
は臭化金属化合物との組合せを用いることができる。こ
の場合にも、塩基に対し、クロロトリメチルシランは
0.1〜3モル倍、ヨウ化金属化合物もしくは臭化金属
化合物は0.1〜3モル倍の比率で用いればよい。
In another embodiment of the present invention, a pyrimidine base or a purine base is not preliminarily silylated, but is used in the presence of a silylating agent and iodotrimethylsilane or bromotrimethylsilane in the presence of an acetoxymethyl alkyl ether or dibromotrimethylsilane. React with alkoxymethane. For example, in an organic solvent such as acetonitrile, dimethylformamide, dichloromethane, dichloroethane, tetrahydrofuran,
Pyrimidine bases or purine bases and 0.1 to
3 mole times hexamethyldisilazane, 0.1 to 3 mole times iodotrimethylsilane or bromotrimethylsilane, and 1 to 3 mole times acetoxymethylalkyl ether or dialkoxymethane are added, and the mixture is added at -40 ° C or a solvent. When the reaction is carried out at a reflux temperature of 1 hour to several days, the desired product is produced in a good yield. The reaction appears to go through a process in which the base is first silylated, which then reacts with the acetoxymethyl alkyl ether or dialkoxymethane. Also in this reaction, a combination of chlorotrimethylsilane and a metal iodide compound or a metal bromide compound can be used instead of iodotrimethylsilane or bromotrimethylsilane. Also in this case, the chlorotrimethylsilane and the metal iodide compound or the metal bromide compound may be used in a ratio of 0.1 to 3 times by mole to the base in a ratio of 0.1 to 3 times by mole.

【0021】上記した2つの態様は、それぞれ下記の反
応式(11)又は(12)で示される。
The above two embodiments are represented by the following reaction formulas (11) and (12), respectively.

【0022】[0022]

【化9】 Embedded image

【0023】(上記式中、Rは炭素数1〜5のアルキル
基を表す) 反応生成液からの目的物の分離・精製は、抽出、シリカ
ゲルカラムクロマトグラフィー、適当な溶媒からの結晶
化など、通常の有機化合物の精製方法を用いることがで
きる。
(In the above formula, R represents an alkyl group having 1 to 5 carbon atoms.) Separation and purification of the target product from the reaction product solution include extraction, silica gel column chromatography, crystallization from an appropriate solvent, and the like. Conventional methods for purifying organic compounds can be used.

【0024】[0024]

【発明の効果】本発明の製造方法により、アシクロヌク
レオシドを安全、安価、簡便かつ効率的に製造すること
ができる。
According to the production method of the present invention, acyclonucleoside can be produced safely, inexpensively, easily and efficiently.

【0025】[0025]

【実施例】以下に実施例により本発明を更に具体的に説
明するが、本発明はこれらの実施例に限定されるもので
はない。 実施例1 1−(エトキシメチル)−5−イソプロピル
ウラシルの合成 5−イソプロピルウラシル154mg(1mmol)を
ヘキサメチルジシラザン10mlに懸濁し、硫安10m
gを加え、6時間還流温度で加熱した。過剰のヘキサメ
チルジシラザンを減圧留去し、残留物をアセトニトリル
10mlに溶解した。これにアセトキシメチルエチルエ
ーテル0.142g(1.2mmol)、ヨードトリメ
チルシラン0.014ml(0.1mmol)を加え、
室温で3時間撹拌した。溶媒を留去後、飽和重曹水10
mlを加え、10mlのクロロホルムで抽出する操作を
5回反復した。抽出液を合せて硫酸マグネシウムで乾燥
後、減圧濃縮した。得られた残留物をジクロロメタン−
n−ヘプタンに溶解し、これから目的物の結晶を得た。 収量:0.182g(収率86%) 融点:78.4℃ UV(MeOH):λmax 263nm1 H−NMR(CDCl3 ,δ):1.17(d,J=
6.9Hz,6H),1.23(t,J=7.0Hz,
3H),2.91(dqq,J=0.8Hz,6.9H
z,1H),3.61(q,J=7.0Hz,2H),
5.14(s,2H),7.04(d,J=0.8H
z,1H),8.24(bs,1H)
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Example 1 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil 154 mg (1 mmol) of 5-isopropyluracil was suspended in 10 ml of hexamethyldisilazane, and ammonium sulfate 10 m
g was added and heated at reflux for 6 hours. Excess hexamethyldisilazane was distilled off under reduced pressure, and the residue was dissolved in 10 ml of acetonitrile. To this, 0.142 g (1.2 mmol) of acetoxymethyl ethyl ether and 0.014 ml (0.1 mmol) of iodotrimethylsilane were added,
Stir at room temperature for 3 hours. After evaporating the solvent, saturated aqueous sodium bicarbonate 10
The operation of adding ml and extracting with 10 ml of chloroform was repeated 5 times. The extracts were combined, dried over magnesium sulfate, and concentrated under reduced pressure. The residue obtained is dichloromethane-
The crystals were dissolved in n-heptane, and the desired crystals were obtained therefrom. Yield: 0.182 g (86% yield) Melting point: 78.4 ° C. UV (MeOH): λmax 263 nm 1 H-NMR (CDCl 3 , δ): 1.17 (d, J =
6.9 Hz, 6H), 1.23 (t, J = 7.0 Hz,
3H), 2.91 (dqq, J = 0.8 Hz, 6.9H
z, 1H), 3.61 (q, J = 7.0 Hz, 2H),
5.14 (s, 2H), 7.04 (d, J = 0.8H)
z, 1H), 8.24 (bs, 1H)

【0026】実施例2 1−(2−エトキシメチル)−
5−イソプロピルウラシルの合成 5−イソプロピルウラシル154mg(1mmol)を
アセトニトリル10mlに懸濁し、ビス(トリメチルシ
リル)アセトアミド0.54ml(2.2mmol)を
加え、室温にて30分間撹拌した。得られた均一溶液
に、アセトキシメチルエチルエーテル0.142g
(1.2mmol)、ヨードトリメチルシラン0.01
4ml(0.1mmol)を加え、室温で3時間撹拌し
た。溶媒を留去後、飽和重曹水10mlを加え、10m
lのクロロホルムで抽出する操作を5回反復した。抽出
液を合せて硫酸マグネシウムで乾燥後、減圧濃縮した。
得られた残留物をジクロロメタン−n−ヘプタンに溶解
し、これから目的物の結晶を得た。
Example 2 1- (2-ethoxymethyl)-
Synthesis of 5-isopropyluracil 154 mg (1 mmol) of 5-isopropyluracil was suspended in 10 ml of acetonitrile, 0.54 ml (2.2 mmol) of bis (trimethylsilyl) acetamide was added, and the mixture was stirred at room temperature for 30 minutes. 0.142 g of acetoxymethyl ethyl ether was added to the obtained homogeneous solution.
(1.2 mmol), iodotrimethylsilane 0.01
4 ml (0.1 mmol) was added, and the mixture was stirred at room temperature for 3 hours. After evaporating the solvent, 10 ml of saturated aqueous sodium hydrogen carbonate was added, and 10 m
The operation of extracting with 1 l of chloroform was repeated 5 times. The extracts were combined, dried over magnesium sulfate, and concentrated under reduced pressure.
The obtained residue was dissolved in dichloromethane-n-heptane to obtain a desired crystal.

【0027】実施例3 1−(エトキシメチル)−5−
イソプロピルウラシルの合成 実施例1において、ヨードトリメチルシランの代りにク
ロロトリメチルシラン0.127ml(1.0mmo
l)とヨウ化カリウム166mg(1.0mmol)を
用い、室温にて3時間反応する他は全て同様にして、目
的物を得た。 実施例4 1−(エトキシメチル)−5−イソプロピル
ウラシルの合成 実施例3においてヨウ化カリウムの代りにヨウ化ナトリ
ウム150mg(1.0mmol)を用い、他は全て同
様にして、目的物を得た。
Example 3 1- (ethoxymethyl) -5
Synthesis of isopropyluracil In Example 1, 0.127 ml (1.0 mmol) of chlorotrimethylsilane was used instead of iodotrimethylsilane.
Using l) and 166 mg (1.0 mmol) of potassium iodide, the desired product was obtained in the same manner except that the reaction was carried out at room temperature for 3 hours. Example 4 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil In Example 3, 150 mg (1.0 mmol) of sodium iodide was used in place of potassium iodide, and in all other respects the target product was obtained. .

【0028】実施例5 1−(エトキシメチル)−5−
イソプロピルウラシルの合成 実施例2においてヨードトリメチルシランの代りにクロ
ロトリメチルシラン0.127ml(1.0mmol)
とヨウ化カリウム166mg(1.0mmol)を用
い、他は全て同様にして目的物を得た。 実施例6 1−(エトキシメチル)−5−イソプロピル
ウラシルの合成 実施例5においてヨウ化カリウムの代りに、ヨウ化ナト
リウム150mg(1.0mmol)を用い、他は全て
同様にして、目的物を得た。
Example 5 1- (ethoxymethyl) -5
Synthesis of isopropyluracil 0.127 ml (1.0 mmol) of chlorotrimethylsilane instead of iodotrimethylsilane in Example 2
And 166 mg (1.0 mmol) of potassium iodide. Example 6 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil In Example 5, 150 mg (1.0 mmol) of sodium iodide was used in place of potassium iodide, and the other steps were repeated to obtain the desired product. Was.

【0029】実施例7 1−(エトキシメチル)−5−
イソプロピルウラシルの合成 実施例1においてアセトキシメチルエチルエーテルの代
りにジエトキシメタン0.149ml(1.2mmo
l)を用い、反応時間を9時間にした他は全て同様にし
て目的物を得た。 実施例8 1−(エトキシメチル)−5−イソプロピル
ウラシルの合成 実施例2においてアセトキシメチルエチルエーテルの代
りに、ジエトキシメタン0.149ml(1.2mmo
l)を用い、反応時間を9時間にした他は全て同様にし
て目的物を得た。
Example 7 1- (ethoxymethyl) -5
Synthesis of isopropyluracil In Example 1, 0.149 ml (1.2 mmol) of diethoxymethane was used instead of acetoxymethyl ethyl ether.
The desired product was obtained in the same manner as in 1) except that the reaction time was changed to 9 hours. Example 8 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil In Example 2, instead of acetoxymethyl ethyl ether, 0.149 ml of diethoxymethane (1.2 mmol) was used.
The desired product was obtained in the same manner as in 1) except that the reaction time was changed to 9 hours.

【0030】実施例9 1−(エトキシメチル)−5−
イソプロピルウラシルの合成 実施例3においてアセトキシメチルエチルエーテルの代
りに、ジエトキシメタン0.149ml(1.2mmo
l)を用い、反応時間を9時間にした他は全て同様にし
て目的物を得た。 実施例10 1−(エトキシメチル)−5−イソプロピ
ルウラシルの合成 実施例4においてアセトキシメチルエチルエーテルの代
りに、ジエトキシメタン0.149ml(1.2mmo
l)を用い、反応時間を9時間にした他は全て同様にし
て目的物を得た。
Example 9 1- (ethoxymethyl) -5
Synthesis of Isopropyluracil Instead of acetoxymethyl ethyl ether in Example 3, 0.149 ml of diethoxymethane (1.2 mmo) was used.
The desired product was obtained in the same manner as in 1) except that the reaction time was changed to 9 hours. Example 10 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil Instead of acetoxymethyl ethyl ether in Example 4, 0.149 ml of diethoxymethane (1.2 mmol) was used.
The desired product was obtained in the same manner as in 1) except that the reaction time was changed to 9 hours.

【0031】実施例11 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 実施例5においてアセトキシメチルエチルエーテルの代
りに、ジエトキシメタン0.149ml(1.2mmo
l)を用い、反応時間を9時間にした他は全て同様にし
て目的物を得た。 実施例12 1−(エトキシメチル)−5−イソプロピ
ルウラシルの合成 実施例6においてアセトキシメチルエチルエーテルの代
りに、ジエトキシメタン0.149ml(1.2mmo
l)を用い、反応時間を9時間にした他は全て同様にし
て目的物を得た。
Example 11 1- (ethoxymethyl) -5
Synthesis of -Isopropyluracil Instead of acetoxymethyl ethyl ether in Example 5, 0.149 ml (1.2 mmol) of diethoxymethane was used.
The desired product was obtained in the same manner as in 1) except that the reaction time was changed to 9 hours. Example 12 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil Instead of acetoxymethylethyl ether in Example 6, 0.149 ml of diethoxymethane (1.2 mmol) was used.
The desired product was obtained in the same manner as in 1) except that the reaction time was changed to 9 hours.

【0032】実施例13 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 5−イソプロピルウラシル154mg(1mmol)を
アセトニトリル10mlに懸濁し、ヘキサメチルジシラ
ザン0.148ml(0.7mmol)、クロロトリメ
チルシラン0.127ml(1.0mmol)、アセト
キシメチルエチルエーテル0.142mg(1.2mm
ol)、ヨウ化カリウム166mg(1mmol)を加
え、還流温度に加熱して1時間撹拌した。溶媒を留去
後、飽和重曹水50mlを加え、50mlのクロロホル
ムで抽出する操作を5回反復した。抽出液を合せて硫酸
マグネシウムで乾燥後、減圧濃縮した。得られた残留物
をジクロロメタン−n−ヘプタンに溶解し、これから目
的物の結晶を得た。 収量:0.184g(収率87%)
Example 13 1- (ethoxymethyl) -5
Synthesis of -isopropyluracil 154 mg (1 mmol) of 5-isopropyluracil was suspended in 10 ml of acetonitrile, 0.148 ml (0.7 mmol) of hexamethyldisilazane, 0.127 ml (1.0 mmol) of chlorotrimethylsilane, and acetoxymethyl ethyl ether 0 .142 mg (1.2 mm
ol) and 166 mg (1 mmol) of potassium iodide, and the mixture was heated to reflux temperature and stirred for 1 hour. After evaporating the solvent, the operation of adding 50 ml of saturated aqueous sodium hydrogen carbonate and extracting with 50 ml of chloroform was repeated 5 times. The extracts were combined, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained residue was dissolved in dichloromethane-n-heptane to obtain a desired crystal. Yield: 0.184 g (87% yield)

【0033】実施例14 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 実施例13においてヨウ化カリウムの代りにヨウ化ナト
リウム150mg(1mmol)を用い、他は全て同様
にして、目的物を得た。 実施例15 1−(エトキシメチル)−5−イソプロピ
ルウラシルの合成 実施例13においてヨウ化カリウムの代りにヨウ化セシ
ウム0.26g(1mmol)を用い、他は全て同様に
して、目的物を得た。
Example 14 1- (ethoxymethyl) -5
Synthesis of Isopropyluracil The target compound was obtained in the same manner as in Example 13 except that 150 mg (1 mmol) of sodium iodide was used instead of potassium iodide. Example 15 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil In Example 13, 0.26 g (1 mmol) of cesium iodide was used in place of potassium iodide, and the other conditions were the same to obtain the desired product. .

【0034】実施例16 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 実施例13においてアセトキシメチルエチルエーテルの
代りにジエトキシメタン0.149ml(1.2mmo
l)を用い、他は全て同様にして、目的物を得た。 実施例17 1−(エトキシメチル)−5−イソプロピ
ルウラシルの合成 実施例13においてアセトキシメチルエチルエーテルの
代りにジエトキシメタン0.149ml(1.2mmo
l)を、ヨウ化カリウムの代りにヨウ化ナトリウム15
0mg(1mmol)を用い、他は全て同様にして、目
的物を得た。
Example 16 1- (ethoxymethyl) -5
Synthesis of -Isopropyluracil In Example 13, 0.149 ml (1.2 mmol) of diethoxymethane was used instead of acetoxymethyl ethyl ether.
The desired product was obtained in the same manner as in 1) except for using l). Example 17 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil In Example 13, 0.149 ml of diethoxymethane (1.2 mmol) was used in place of acetoxymethyl ethyl ether.
l) is replaced with sodium iodide 15 instead of potassium iodide.
0 mg (1 mmol) was used, and in the same manner as in the other cases, the desired product was obtained.

【0035】実施例18 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 実施例13においてアセトキシメチルエチルエーテルの
代りにジエトキシメタン0.149ml(1.2mmo
l)を、ヨウ化カリウムの代りにヨウ化セシウム0.2
6g(1mmol)を用い、他は全て同様にして、目的
物を得た。
Example 18 1- (ethoxymethyl) -5
Synthesis of -Isopropyluracil In Example 13, 0.149 ml (1.2 mmol) of diethoxymethane was used instead of acetoxymethyl ethyl ether.
l) is replaced by cesium iodide 0.2 instead of potassium iodide
6 g (1 mmol) was used, and the other conditions were the same as above to obtain the desired product.

【0036】実施例19 1−(2−エトキシメチル)
−5−イソプロピルウラシルの合成 実施例2において、ヨードトリメチルシランの代りに臭
化トリメチルシラン153mg(1mmol)を用い、
他は全て同様にして目的物を得た。 実施例20 1−(2−エトキシメチル)−5−イソプ
ロピルウラシルの合成 実施例5において、ヨウ化カリウムの代りに臭化カリウ
ム119mg(1.0mmol)を用い、他は全て同様
にして目的物を得た。
Example 19 1- (2-ethoxymethyl)
Synthesis of -5-isopropyluracil In Example 2, 153 mg (1 mmol) of trimethylsilane bromide was used in place of iodotrimethylsilane,
In all other respects, the desired product was obtained. Example 20 Synthesis of 1- (2-ethoxymethyl) -5-isopropyluracil In Example 5, 119 mg (1.0 mmol) of potassium bromide was used in place of potassium iodide, and the other procedures were repeated except that the target compound was used. Obtained.

【0037】実施例21 1−(2−エトキシメチル)
−5−イソプロピルウラシルの合成 実施例13において、ヨウ化カリウムの代りに臭化カリ
ウム119mg(1.0mmol)を用い、他は全て同
様にして目的物を得た。 実施例22 1−(2−エトキシメチル)−5−イソプ
ロピルウラシルの合成 実施例17において、ヨウ化ナトリウムの代りに臭化ナ
トリウム103mg(1.0mmol)を用い、他は全
て同様にして目的物を得た。
Example 21 1- (2-ethoxymethyl)
Synthesis of -5-isopropyluracil In Example 13, 119 mg (1.0 mmol) of potassium bromide was used in place of potassium iodide, and in all other respects the desired product was obtained. Example 22 Synthesis of 1- (2-ethoxymethyl) -5-isopropyluracil In Example 17, 103 mg (1.0 mmol) of sodium bromide was used in place of sodium iodide. Obtained.

【0038】実施例23 6−ベンジル−1−(2−エ
トキシメチル)−5−イソプロピルウラシルの合成 6−ベンジル−5−イソプロピルウラシル244mg
(1mmol)をアセトニトリル10mlに懸濁し、ビ
ス(トリメチルシリル)アセトアミド0.54ml
(2.2mmol)を加え、室温にて30分間撹拌し
た。得られた均一溶液に、アセトキシメチルエチルエー
テル284mg(2.4mmol)、クロロトリメチル
シラン0.127ml(1.0mmol)、ヨウ化カリ
ウム166mg(1mmol)を加え、0℃にて3時間
撹拌した。溶媒を留去後、飽和重曹水10mlを加え、
10mlのクロロホルムで抽出する操作を5回反復し
た。抽出液を合せて硫酸マグネシウムで乾燥後、減圧濃
縮した。得られた残留物をエタノールに溶解し、これか
ら目的物の結晶を得た。
Example 23 Synthesis of 6-benzyl-1- (2-ethoxymethyl) -5-isopropyluracil 244 mg of 6-benzyl-5-isopropyluracil
(1 mmol) was suspended in 10 ml of acetonitrile, and 0.54 ml of bis (trimethylsilyl) acetamide was suspended.
(2.2 mmol) and stirred at room temperature for 30 minutes. To the obtained homogeneous solution, 284 mg (2.4 mmol) of acetoxymethyl ethyl ether, 0.127 ml (1.0 mmol) of chlorotrimethylsilane, and 166 mg (1 mmol) of potassium iodide were added, and the mixture was stirred at 0 ° C for 3 hours. After evaporating the solvent, 10 ml of saturated aqueous sodium hydrogen carbonate was added,
The operation of extracting with 10 ml of chloroform was repeated 5 times. The extracts were combined, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained residue was dissolved in ethanol, from which crystals of the desired product were obtained.

【0039】収量:281mg(収率93%) 融点:109−110℃(EtOH) UV(MeOH):λmax268nm1 H−NMR(CDCl3 )δ:1.19(t,J=
7.0Hz,3H,OCH2 Me),1.29(d,J
=6.9Hz,6H,5−CHMe2 ),2.87(q
q,J=6.9Hz,1H,5−CHMe2 ),3.6
2(q,J=7.0Hz,2H,OCH2 Me),4.
18(s,2H,CH2 Ph),5.12(s,2H,
NCH2 O),7.10−7.37(m,5H,P
h),8.40(br,1H,NH).
Yield: 281 mg (93% yield) Melting point: 109-110 ° C. (EtOH) UV (MeOH): λmax 268 nm 1 H-NMR (CDCl 3 ) δ: 1.19 (t, J =
7.0 Hz, 3H, OCH 2 Me), 1.29 (d, J
= 6.9Hz, 6H, 5-CHMe 2), 2.87 (q
q, J = 6.9 Hz, 1H, 5-CHMe 2 ), 3.6
3. 2 (q, J = 7.0 Hz, 2H, OCH 2 Me);
18 (s, 2H, CH 2 Ph), 5.12 (s, 2H,
NCH 2 O), 7.10-7.37 (m , 5H, P
h), 8.40 (br, 1H, NH).

【0040】実施例24 6−ベンジル−1−(2−エ
トキシメチル)−5−イソプロピルウラシルの合成 実施例23において、クロロトリメチルシラン、ヨウ化
カリウムの代りに臭化トリメチルシラン153mg(1
mmol)を用い、他は全て同様にして目的物を得た。
Example 24 Synthesis of 6-benzyl-1- (2-ethoxymethyl) -5-isopropyluracil In Example 23, 153 mg of trimethylsilane bromide (1 mg) was used in place of chlorotrimethylsilane and potassium iodide.
mmol), and the procedure was carried out in the same manner for all other steps to obtain the desired product.

【0041】実施例25 6−ベンジル−1−(2−エ
トキシメチル)−5−イソプロピルウラシルの合成 実施例23において、アセトキシメチルエチルエーテル
の代りにジエトキシメタン0.298ml(2.4mm
ol)を用い、反応時間を24時間にした他は全て同様
にして、目的物を得た。
Example 25 Synthesis of 6-benzyl-1- (2-ethoxymethyl) -5-isopropyluracil In Example 23, 0.298 ml (2.4 mm) of diethoxymethane was used instead of acetoxymethyl ethyl ether.
ol) and the reaction time was changed to 24 hours to obtain the desired product in the same manner.

【0042】実施例26 6−ベンジル−1−(エトキ
シメチル)−5−イソプロピルウラシルの合成 6−ベンジル−5−イソプロピルウラシル244mg
(1mmol)をアセトニトリル10mlに懸濁し、ヘ
キサメチルジシラザン0.148ml(0.7mmo
l)、クロロトリメチルシラン0.127ml(1.0
mmol)、アセトキシメチルエチルエーテル284m
g(2.4mmol)、ヨウ化カリウム166mg(1
mmol)を加え、0℃にて9時間撹拌した。溶媒を留
去後、飽和重曹水50mlを加え、50mlのクロロホ
ルムで抽出する操作を5回反復した。抽出液を合せて硫
酸マグネシウムで乾燥後、減圧濃縮した。得られた残留
物をジクロロメタン−n−ヘプタンに溶解し、これから
目的物の結晶を得た。 収量:0.281g(収率 93%)
Example 26 Synthesis of 6-benzyl-1- (ethoxymethyl) -5-isopropyluracil 244 mg of 6-benzyl-5-isopropyluracil
(1 mmol) was suspended in 10 ml of acetonitrile, and 0.148 ml (0.7 mmol) of hexamethyldisilazane was suspended.
l), 0.127 ml of chlorotrimethylsilane (1.0
mmol), acetoxymethyl ethyl ether 284m
g (2.4 mmol), 166 mg of potassium iodide (1
mmol) and stirred at 0 ° C. for 9 hours. After evaporating the solvent, the operation of adding 50 ml of saturated aqueous sodium hydrogen carbonate and extracting with 50 ml of chloroform was repeated 5 times. The extracts were combined, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained residue was dissolved in dichloromethane-n-heptane to obtain a desired crystal. Yield: 0.281 g (93% yield)

【0043】実施例27 6−ベンジル−1−(エトキ
シメチル)−5−イソプロピルウラシルの合成 実施例26においてヨウ化カリウムの代りにヨウ化ナト
リウム150mg(1mmol)を用い、他は全て同様
にして、目的物を得た。 実施例28 6−ベンジル−1−(エトキシメチル)−
5−イソプロピルウラシルの合成 実施例26においてヨウ化カリウムの代りに臭化カリウ
ム119mg(1mmol)を用い、他は全て同様にし
て、目的物を得た。
Example 27 Synthesis of 6-benzyl-1- (ethoxymethyl) -5-isopropyluracil In Example 26, sodium iodide (150 mg, 1 mmol) was used in place of potassium iodide, and all other conditions were the same. The desired product was obtained. Example 28 6-benzyl-1- (ethoxymethyl)-
Synthesis of 5-isopropyluracil The desired product was obtained in the same manner as in Example 26 except that 119 mg (1 mmol) of potassium bromide was used instead of potassium iodide.

【0044】実施例29 6−ベンジル−1−(エトキ
シメチル)−5−イソプロピルウラシルの合成 実施例26においてアセトキシメチルエチルエーテルの
代りにジエトキシメタン0.298ml(2.4mmo
l)を用い、反応時間を48時間にした他は全て同様に
して、目的物を得た。
Example 29 Synthesis of 6-benzyl-1- (ethoxymethyl) -5-isopropyluracil In Example 26, 0.298 ml (2.4 mmol) of diethoxymethane was used instead of acetoxymethyl ethyl ether.
The desired product was obtained in the same manner as in 1) except that the reaction time was changed to 48 hours.

【0045】実施例30 6−ベンジル−1−(エトキ
シメチル)−5−イソプロピルウラシルの合成 実施例29においてヨウ化カリウムの代りにヨウ化ナト
リウム150mg(1mmol)を用い、他は全て同様
にして目的物を得た。 実施例31 6−ベンジル−1−(エトキシメチル)−
5−イソプロピルウラシルの合成 実施例29においてヨウ化カリウムの代りに臭化ナトリ
ウム103mg(1mmol)を用い、他は全て同様に
して目的物を得た。
Example 30 Synthesis of 6-benzyl-1- (ethoxymethyl) -5-isopropyluracil In Example 29, 150 mg (1 mmol) of sodium iodide was used in place of potassium iodide, and the other conditions were the same. I got something. Example 31 6-benzyl-1- (ethoxymethyl)-
Synthesis of 5-isopropyluracil The desired product was obtained in the same manner as in Example 29 except that 103 mg (1 mmol) of sodium bromide was used instead of potassium iodide.

【0046】実施例32 6−ベンジル−1−(エトキ
シメチル)−5−イソプロピルウラシルの合成 6−ベンジル−5−イロプロピルウラシル244mg
(1mmol)をアセトニトリル10mlに懸濁し、ヘ
キサメチルジシラザン0.148ml(0.7mmo
l)、クロロトリメチルシラン0.09ml(0.35
mmol)を加え、還流温度で1時間加熱撹拌した。反
応液を0℃に冷却し、アセトキシメチルエチルエーテル
284mg(2.4mmol)、クロロトリメチルシラ
ン0.127ml(1.0mmol)、ヨウ化カリウム
166mg(1mmol)を加え、0℃にて2時間撹拌
した。溶媒を留去後、飽和重曹水50mlを加え、50
mlのクロロホルムで抽出する操作を5回反復した。抽
出液を合わせて硫酸マグネシウムで乾燥後、減圧濃縮し
た。得られた残留物をジクロロエタン−n−ヘプタンに
溶解し、これから目的物の結晶を得た。 収量:0.283g(収率 94%)
Example 32 Synthesis of 6-benzyl-1- (ethoxymethyl) -5-isopropyluracil 244 mg of 6-benzyl-5-isopropylpropyluracil
(1 mmol) was suspended in 10 ml of acetonitrile, and 0.148 ml (0.7 mmol) of hexamethyldisilazane was suspended.
l), 0.09 ml of chlorotrimethylsilane (0.35
mmol), and the mixture was heated and stirred at the reflux temperature for 1 hour. The reaction solution was cooled to 0 ° C., 284 mg (2.4 mmol) of acetoxymethyl ethyl ether, 0.127 ml (1.0 mmol) of chlorotrimethylsilane, and 166 mg (1 mmol) of potassium iodide were added, and the mixture was stirred at 0 ° C. for 2 hours. . After evaporating the solvent, 50 ml of saturated aqueous sodium hydrogen carbonate was added, and 50 ml of sodium bicarbonate was added.
The operation of extracting with chloroform of ml was repeated 5 times. The extracts were combined, dried over magnesium sulfate, and concentrated under reduced pressure. The obtained residue was dissolved in dichloroethane-n-heptane, from which crystals of the desired product were obtained. Yield: 0.283 g (94% yield)

【0047】実施例33 6−ベンジル−1−(エトキ
シメチル)−5−イソプロピルウラシルの合成 実施例32において、アセトキシメチルエチルエーテル
の代りにジエトキシメタン0.298ml(2.4mm
ol)を用い、0℃にての反応を9時間にした他は全て
同様にして、目的物を94%の収率で得た。
Example 33 Synthesis of 6-benzyl-1- (ethoxymethyl) -5-isopropyluracil In Example 32, 0.298 ml (2.4 mm) of diethoxymethane was used instead of acetoxymethyl ethyl ether.
ol), and the reaction was carried out at 0 ° C. for 9 hours in the same manner as described above to obtain the desired product in a yield of 94%.

【0048】実施例34 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 5−イソプロピルウラシル154mg(1mmol)を
アセトニトリル10mlに懸濁し、ヘキサメチルジシラ
ザン0.316ml(1.5mmol)と硫安10mg
を加え、還流温度で1時間撹拌した。得られた均一溶液
に、アセトキシメチルエチルエーテル0.142mg
(1.2mmol)、クロロトリメチルシラン0.12
7ml(1.0mmol)、ヨウ化カリウム166mg
(1mmol)を加え室温で9時間撹拌した。反応液に
飽和重曹水50mlを加え、クロロホルム(50ml×
3回)で目的物を抽出し、有機層を硫酸マグネシウムで
乾燥後、減圧濃縮して得られた残留物よりジクロロメタ
ン−n−ヘプタンを用いて目的物の結晶を得た。
Example 34 1- (ethoxymethyl) -5
Synthesis of -Isopropyluracil 154 mg (1 mmol) of 5-isopropyluracil was suspended in 10 ml of acetonitrile, and 0.316 ml (1.5 mmol) of hexamethyldisilazane and 10 mg of ammonium sulfate were suspended.
Was added and stirred at reflux temperature for 1 hour. 0.142 mg of acetoxymethyl ethyl ether was added to the obtained homogeneous solution.
(1.2 mmol), chlorotrimethylsilane 0.12
7 ml (1.0 mmol), 166 mg of potassium iodide
(1 mmol) was added and the mixture was stirred at room temperature for 9 hours. 50 ml of a saturated aqueous solution of sodium bicarbonate was added to the reaction solution, and chloroform (50 ml ×
3 times), and the organic layer was dried over magnesium sulfate and concentrated under reduced pressure. From the obtained residue, crystals of the target product were obtained using dichloromethane-n-heptane.

【0049】実施例35 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 実施例34においてアセトキシメチルエチルエーテルの
代りにジエトキシメタン0.149ml(1.2mmo
l)を用い、他は全て同様にして目的物を得た。 実施例36 1−(エトキシメチル)−5−イソプロピ
ルウラシルの合成 実施例34においてヨウ化カリウムの代りにヨウ化ナト
リウム150mg(1mmol)を用い、他は全て同様
にして目的物を得た。
Example 35 1- (ethoxymethyl) -5
-Synthesis of isopropyluracil In Example 34, 0.149 ml of diethoxymethane (1.2 mmo) was used in place of acetoxymethyl ethyl ether.
The desired product was obtained in the same manner except for using l). Example 36 Synthesis of 1- (ethoxymethyl) -5-isopropyluracil In Example 34, 150 mg (1 mmol) of sodium iodide was used in place of potassium iodide, and in all other respects the desired product was obtained.

【0050】実施例37 1−(エトキシメチル)−5
−イソプロピルウラシルの合成 実施例25においてヨウ化カリウムの代りにヨウ化ナト
リウム150mg(1mmol)を用い、他は全て同様
にして目的物を得た。
Example 37 1- (ethoxymethyl) -5
Synthesis of -Isopropyluracil In Example 25, 150 mg (1 mmol) of sodium iodide was used in place of potassium iodide, and in all other respects the target product was obtained.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 式(1) 【化1】W−H …(1) (式中、Wは置換基を有していてもよい、1−ピリミジ
ニル基又は9−プリニル基を示す)で表わされる化合物
をシリル化したのち、ヨードトリメチルシランもしく
はブロモトリメチルシランの存在下、又はクロロトリ
メチルシラン及びヨウ化金属化合物もしくは臭化金属化
合物の存在下、アセトキシメチルアルキルエーテル又は
ジアルコキシメタンと反応させることを特徴とする、式
(2) 【化2】W−CH2 −O−R …(2) (式中、Wは式(1)における定義に同じであり、Rは
1 〜C5 のアルキル基を表す)で表わされる、アシク
ロヌクレオシドの製造方法。
1. A compound represented by the formula (1): W—H (1) wherein W represents a 1-pyrimidinyl group or a 9-purinyl group which may have a substituent. Reacting with acetoxymethyl alkyl ether or dialkoxymethane in the presence of iodotrimethylsilane or bromotrimethylsilane, or in the presence of chlorotrimethylsilane and a metal iodide compound or a metal bromide compound, after silylation of the compound to be obtained. wherein the formula (2) ## STR2 ## W-CH 2 -O-R ... (2) ( wherein, W is the same as defined in the formula (1), R is alkyl of C 1 -C 5 A process for producing an acyclonucleoside represented by the formula:
【請求項2】 式(1) 【化3】W−H …(1) (式中、Wは置換基を有していてもよい、1−ピリミジ
ニル基又は9−プリニル基を示す)で表わされる化合物
を、シリル化剤及びヨードトリメチルシランもしくは
ブロモトリメチルシランの存在下、又はシリル化剤、
クロロトリメチルシラン及びヨウ化金属化合物もしくは
臭化金属化合物の存在下、アセトキシメチルアルキルエ
ーテル又はジアルコキシメタンと反応させることを特徴
とする、式(2) 【化4】W−CH2 −O−R …(2) で表わされる、アシクロヌクレオシドの製造方法。
2. A compound represented by the formula (1): W—H (1) wherein W represents a 1-pyrimidinyl group or a 9-purinyl group which may have a substituent. Compound in the presence of a silylating agent and iodotrimethylsilane or bromotrimethylsilane, or a silylating agent,
Reacting with acetoxymethyl alkyl ether or dialkoxymethane in the presence of chlorotrimethylsilane and a metal iodide compound or a metal bromide compound, characterized by the following formula (2): W—CH 2 —O—R ... A method for producing an acyclonucleoside represented by the following formula (2).
【請求項3】 ヨウ化金属化合物がヨウ化カリウム、ヨ
ウ化ナトリウム、及びヨウ化セシウムからなる群から選
ばれ、臭化金属化合物が、臭化カリウム、臭化ナトリウ
ム、及び臭化セシウムからなる群から選ばれることを特
徴とする、請求項1または2のいずれかに記載の方法。
3. The metal iodide compound is selected from the group consisting of potassium iodide, sodium iodide, and cesium iodide, and the metal bromide compound is a group consisting of potassium bromide, sodium bromide, and cesium bromide. The method according to claim 1, wherein the method is selected from the group consisting of:
【請求項4】 Wが、5−i−プロピルウラシル又は6
−ベンジル−5−i−プロピルウラシルであり、Rがエ
チル基であることを特徴とする請求項1〜3のいずれか
に記載の方法。
4. W is 5-i-propyluracil or 6
The method according to any one of claims 1 to 3, wherein the compound is -benzyl-5-i-propyluracil, and R is an ethyl group.
JP28657696A 1996-09-06 1996-10-29 Production of acyclonucleoside Pending JPH10130244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28657696A JPH10130244A (en) 1996-09-06 1996-10-29 Production of acyclonucleoside

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23693996 1996-09-06
JP8-236939 1996-09-06
JP28657696A JPH10130244A (en) 1996-09-06 1996-10-29 Production of acyclonucleoside

Publications (1)

Publication Number Publication Date
JPH10130244A true JPH10130244A (en) 1998-05-19

Family

ID=26532959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28657696A Pending JPH10130244A (en) 1996-09-06 1996-10-29 Production of acyclonucleoside

Country Status (1)

Country Link
JP (1) JPH10130244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061566A1 (en) * 1999-04-13 2000-10-19 Triangle Pharmaceuticals, Inc. Process for preparing mkc-442
US8106064B2 (en) 2006-07-24 2012-01-31 Korea Research Institute Of Chemical Technology Pyrimidine-2,4-dione HIV reverse transcriptase inhibitors
US8119800B2 (en) 2007-12-21 2012-02-21 Korea Research Institute Of Chemical Technology Processes for preparing HIV reverse transcriptase inhibitors
US8334295B2 (en) 2007-06-29 2012-12-18 Korea Research Institute Of Chemical Technology Pyrimidine derivatives as HIV reverse transcriptase inhibitors
US8354421B2 (en) 2007-06-29 2013-01-15 Korea Research Insitute Of Chemical Technology HIV reverse transcriptase inhibitors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061566A1 (en) * 1999-04-13 2000-10-19 Triangle Pharmaceuticals, Inc. Process for preparing mkc-442
US8106064B2 (en) 2006-07-24 2012-01-31 Korea Research Institute Of Chemical Technology Pyrimidine-2,4-dione HIV reverse transcriptase inhibitors
US8334295B2 (en) 2007-06-29 2012-12-18 Korea Research Institute Of Chemical Technology Pyrimidine derivatives as HIV reverse transcriptase inhibitors
US8354421B2 (en) 2007-06-29 2013-01-15 Korea Research Insitute Of Chemical Technology HIV reverse transcriptase inhibitors
US8119800B2 (en) 2007-12-21 2012-02-21 Korea Research Institute Of Chemical Technology Processes for preparing HIV reverse transcriptase inhibitors

Similar Documents

Publication Publication Date Title
JP6573848B2 (en) Method for synthesizing entecavir and intermediate compound thereof
JPH10130244A (en) Production of acyclonucleoside
JPH10168068A (en) Production of acyclonucleoside
JP2002535403A (en) Method for producing alkylmercaptomethylergoline derivative
KR100369274B1 (en) Improved process for producing 4-hydroxy-2-pyrrolidone
JPH10130245A (en) Production of acyclonucleoside
JP3602796B2 (en) Preparation of thiobarbituric acid derivatives
JPH083143A (en) Production of 6-aralkyl substituted pyrimidine derivative
JP2001114767A (en) Production of pyrimidine compound and production of its intermediate
US20030032797A1 (en) Process for the preparation of cytidine derivatives
JP3527255B2 (en) 6-N-substituted aminopicolinic acid derivatives and their production
JPH08208591A (en) 2-aminobenzenesulfonic acid derivative and 2-aminobenzenesulfonyl chloride,derivative their production,and their use as synthetic intermediates
HU198949B (en) Process for producing 5-substituted-3'azido-2',3'-dideoxyribonucleosides
WO2001072704A1 (en) AZETIDINONE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND A METHOD FOR PRODUCING 1-β-ALKYL AZETIDINONE USING THE SAME
JPH10287657A (en) Production of radiosensitizer
JPH05213903A (en) Production of acyclonucleoside derivative
JPH09124612A (en) Production of acyclonucleoside
JP2903805B2 (en) Preparation of optically active benzyl glycidyl ether
JP4449211B2 (en) 6- (1-fluoroethyl) -5-iodo-4-pyrimidone and process for producing the same
JP3013760B2 (en) Method for producing 4-hydroxy-2-pyrrolidone
JPH0834769A (en) Vitamin d derivative containing substituent group at second position
JPH06192285A (en) Production of 1-@(3754/24)beta-d-erythro-pentofuran-2-urosyl) pyrimidine derivative
JPH05230058A (en) 4'-carbon substituted pyrimidine nucleoside and its production
JPH01319496A (en) Uracil derivative
JPH0977749A (en) Production of 2-mercaptopyrimidineacyclonucleocside derivative