JPH10125526A - Maglev train with torsional oscillation detecting coil for superconducting magnet - Google Patents

Maglev train with torsional oscillation detecting coil for superconducting magnet

Info

Publication number
JPH10125526A
JPH10125526A JP28208096A JP28208096A JPH10125526A JP H10125526 A JPH10125526 A JP H10125526A JP 28208096 A JP28208096 A JP 28208096A JP 28208096 A JP28208096 A JP 28208096A JP H10125526 A JPH10125526 A JP H10125526A
Authority
JP
Japan
Prior art keywords
coil
magnetic
superconducting
coils
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28208096A
Other languages
Japanese (ja)
Other versions
JP3704630B2 (en
Inventor
Yoko Furukawa
陽子 古川
Eiji Fukumoto
英士 福本
Masayuki Shibata
将之 柴田
Toshio Saito
敏雄 齋藤
Hiroyuki Watanabe
洋之 渡邊
Motoaki Terai
元昭 寺井
Satoru Inetama
哲 稲玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Central Japan Railway Co
Original Assignee
Hitachi Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Central Japan Railway Co filed Critical Hitachi Ltd
Priority to JP28208096A priority Critical patent/JP3704630B2/en
Publication of JPH10125526A publication Critical patent/JPH10125526A/en
Application granted granted Critical
Publication of JP3704630B2 publication Critical patent/JP3704630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a maglev train with a torsional oscillation detecting coil which can detect the torsional oscillation of a superconductive magnet to be measured with high accuracy by reducing magnetic field variation (noise). SOLUTION: A maglev train obtains a buoyancy and a driving force from driving and floating coils on the ground track side and superconducting magnets mounted on the train. A torsional oscillation detecting coil 6 for detecting the torsional oscillation of the superconducting magnets is divided into four coils LU, LD, RU, and RD having the same shape and the coils LU, LD, RU, and RD are positioned to four locations above, below, on the right side, and left side of the center of the coil 1. In addition, the arranging intervals of the coils in the advancing direction of the train are made equal to an integral multiple of the pitch of a fluctuating magnetic field applied from the outside. When the coil 6 is constituted in such a way, the coil 6 can detect signals with high accuracy without compensating the signals for noise, because the four split coils LU, LD, RU, and RD can cancel the fluctuation of the other magnetic fields than that to be measured. Therefore, a highly reliable maglev train which can monitor the oscillating states of superconducting magnets can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、地上コイルを敷設
した軌道を、磁気浮上して走行する超電導磁石を搭載し
た磁気浮上列車に係り、特に、超電導磁石のねじり振動
を検出できるコイルを備えた磁気浮上列車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation train equipped with a superconducting magnet that travels while magnetically levitating on a track on which a ground coil is laid, and more particularly, to a train capable of detecting torsional vibration of the superconducting magnet. Related to maglev trains.

【0002】[0002]

【従来の技術】物体の振動を検出する方法としては、加
速度計を用いるのが従来の最も一般的な方法である。し
かし、構造上の制約で加速度計の取り付けが困難な場
合、加速度計による振動を直接測定することはできな
い。このような場合の振動検出方法として、磁束検出素
子を用い、磁束変動の測定から振動を検出したり推定す
る方法が、特開平7−92016公報で提案されてい
る。これは、磁気浮上システムのように、磁場中での導
体の振動や、あるいは、磁場を発生している超電導コイ
ルそのものの振動を計測しようとするような、特殊な環
境では、振動に磁場の変動が伴う。この磁場変動を計測
して、非接触で間接的に振動を検出しようとする方法で
ある。
2. Description of the Related Art As a method for detecting the vibration of an object, an accelerometer is the most common conventional method. However, when it is difficult to attach the accelerometer due to structural restrictions, it is not possible to directly measure the vibration by the accelerometer. As a method of detecting vibration in such a case, a method of detecting or estimating vibration from measurement of magnetic flux fluctuation using a magnetic flux detecting element has been proposed in Japanese Patent Application Laid-Open No. 7-92016. This is because in a special environment such as a magnetic levitation system where the vibration of a conductor in a magnetic field or the vibration of the superconducting coil itself that generates the magnetic field is to be measured, the fluctuation of the magnetic field is caused by the vibration. Is accompanied. In this method, the fluctuation of the magnetic field is measured, and the vibration is indirectly detected in a non-contact manner.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記提
案されている磁束検出素子による振動の検出方法では、
計測系に外部から磁場が加わるような場合、検出対象の
磁場と外部磁場を識別するには、周波数分析をして振動
成分に相当する周波数の信号のみを取り出したり、ある
いは、振動が生じていない状態で磁束検出素子から出力
される信号を予め測定しておいて、振動計測時の信号を
補正するなどの、補償手段を必要とした。このような補
償を伴う作業は、振動の信号成分が小さい場合は、計測
対象以外の信号(ノイズ)との分離が困難となり、補償
によって精度が悪くなるという問題や、あるいは磁束に
よる電圧信号の検出から、振動量を得るまでに、多段階
の手順が必要なため、オンラインでのデータ計測や、リ
アルタイムでのデータ処理の障害になるなどの問題点が
ある。
However, in the method of detecting vibration by the magnetic flux detecting element proposed above,
When a magnetic field is externally applied to the measurement system, in order to distinguish the magnetic field to be detected from the external magnetic field, frequency analysis is performed to extract only the signal of the frequency corresponding to the vibration component, or no vibration occurs In this state, a signal output from the magnetic flux detection element is measured in advance, and a compensating means such as correcting the signal at the time of vibration measurement is required. In the work involving such compensation, when the signal component of the vibration is small, it becomes difficult to separate the signal (noise) from the signal other than the object to be measured, and the compensation deteriorates the accuracy. Since a multi-step procedure is required until the vibration amount is obtained, there are problems such as an obstacle to online data measurement and real-time data processing.

【0004】磁気浮上車両の健全性の指針として、超電
導磁石の磁気信号をモニターすることが検討されてい
る。信号の変化から振動状態等の変化を知り、超電導磁
石の異常診断に用いようとするものである。磁気浮上列
車の安全走行には、このような信号を常にリアルタイム
でモニターリングし、異常を早期に発見できる手段を備
えておくことが不可欠である。
As a guideline for the soundness of a magnetically levitated vehicle, monitoring of a magnetic signal of a superconducting magnet has been studied. A change in the vibration state or the like is known from a change in the signal, and is intended to be used for abnormality diagnosis of the superconducting magnet. For safe operation of a maglev train, it is essential to always monitor such signals in real time and provide means for detecting abnormalities early.

【0005】本発明の目的は、上記課題の解決であり、
計測対象を列車に搭載した超電導磁石のねじり振動に限
定し、計測信号の補償手段等を用いずにノイズを低減し
て、より精度の高い振動信号を検出し、オンラインやリ
アルタイムの信号処理に適した超電導磁石のねじり振動
検出手段を備え、異常検出の手段を備えた信頼性の高い
磁気浮上列車を提供することである。
An object of the present invention is to solve the above problems,
Measurement is limited to torsional vibration of the superconducting magnet mounted on the train, reducing noise without using compensation means for measurement signals, detecting vibration signals with higher accuracy, and suitable for online and real-time signal processing Another object of the present invention is to provide a highly reliable magnetic levitation train provided with means for detecting torsional vibration of a superconducting magnet and provided with means for detecting abnormality.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に本発明は、超電導線を巻回した超電導コイルと、前記
超電導コイルを収納する収納容器と、前記収納容器の外
側にあって、輻射熱を遮蔽する輻射熱シールドと、これ
らを収容する真空断熱容器とからなる超電導磁石が、地
上軌道側の推進および浮上コイルと対面して搭載された
磁気浮上列車において、前記超電導磁石のねじり振動に
よって生じる磁場変動成分のみを検出するねじり振動検
出コイルが、外部から加わる変動磁界の進行方向のピッ
チの整数倍に等しい間隔で、前記超電導コイルに対面し
て設置され、前記ねじり振動検出コイルは、前記超電導
コイルの中心から上下左右に、4分割して配置された同
一形状の4個の磁束変動検出コイルからなり、前記磁束
変動検出コイルは、電圧信号の極性が逆向きになるよう
に、隣り合う上下左右が互いに直列に接続されているこ
とを特徴とするものである。また、前記ねじり振動検出
コイルは、左右に分割配置された前記磁束変動検出コイ
ルの設置間隔が、前記浮上コイル電流の作り出す高調波
変動磁場のうち、最大の振幅を持つ空間高調波のピッチ
の整数倍に等しいことを特徴とし、また、前記浮上コイ
ル電流の作り出す空間5次高調波のピッチの整数倍に等
しいことを特徴とする。また、前記4分割して配置され
た4個の磁束変動検出コイルは、前記超電導コイルの上
下および左右の中心線に対して線対称に配置されている
ことを特徴とし、また、前記4個の磁束変動検出コイル
は、それぞれがそれぞれの上下および左右の中心線に対
して、線対称となる形状を有することを特徴とする。ま
た、前記磁束変動検出コイルは、基盤にプリントして構
成されていることを特徴とし、また、前記磁束変動検出
コイルがプリントされる基盤は、絶縁シートであること
を特徴とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a superconducting coil wound with a superconducting wire, a storage container for storing the superconducting coil, and a radiant heat outside the storage container. The magnetic field generated by the torsional vibration of the superconducting magnet in a magnetic levitation train mounted with a superconducting magnet consisting of a radiant heat shield for shielding A torsional vibration detection coil that detects only the fluctuation component is installed facing the superconducting coil at intervals equal to an integral multiple of the pitch in the traveling direction of the externally applied fluctuation magnetic field, and the torsional vibration detection coil is provided with the superconducting coil. Consists of four magnetic flux fluctuation detecting coils of the same shape which are arranged in four parts vertically and horizontally from the center of As the polarity of the voltage signal are opposite, and is characterized in that the upper and lower adjacent right and left are connected in series with each other. Further, the torsional vibration detection coil is arranged such that an interval between the magnetic flux fluctuation detection coils divided and arranged on the left and right is an integer of a pitch of a spatial harmonic having a maximum amplitude among harmonic fluctuation magnetic fields generated by the floating coil current. It is characterized by being equal to an integral multiple of the pitch of the spatial fifth harmonic generated by the flying coil current. Further, the four magnetic flux fluctuation detecting coils arranged in four divisions are arranged symmetrically with respect to the vertical and horizontal center lines of the superconducting coil. The magnetic-flux-fluctuation detecting coils are characterized in that they have a shape that is line-symmetric with respect to the respective vertical and horizontal center lines. Further, the magnetic flux variation detecting coil is characterized by being printed on a substrate, and the substrate on which the magnetic flux variation detecting coil is printed is an insulating sheet.

【0007】以下、本発明の作用原理を説明する。磁気
浮上列車の浮上推進システムでは、先ず、地上軌道側に
設置された推進コイルに通電することで、推進コイルに
流れた電流の作る磁場が車載の超電導磁石と作用し、車
両に推進力が生じて走行する。次いで、走行速度が閾値
を越えると、浮上コイルに生じた誘導電流の作る磁場
と、超電導磁石との作用で車両の浮上走行が始まる。し
たがって、超電導コイルには推進コイル磁場と浮上コイ
ル磁場が同時に印加され、さらにそれぞれの高調波磁場
も加わることになる。それぞれの磁場は、超電導磁石を
構成する真空断熱容器、輻射熱シールド、超電導コイル
収納容器等の導電性の構造物に渦電流を誘起し、渦電流
と超電導コイルの作る磁場とが作用して構造物を振動さ
せる。
Hereinafter, the operation principle of the present invention will be described. In a levitation propulsion system for a magnetic levitation train, first, by energizing a propulsion coil installed on the ground track side, the magnetic field generated by the current flowing through the propulsion coil acts on the superconducting magnet mounted on the vehicle, generating a propulsion force on the vehicle. To run. Next, when the traveling speed exceeds the threshold, the vehicle starts to levitate due to the action of the magnetic field generated by the induced current generated in the levitating coil and the superconducting magnet. Accordingly, the magnetic field of the propulsion coil and the magnetic field of the levitation coil are simultaneously applied to the superconducting coil, and the respective harmonic magnetic fields are also applied. Each magnetic field induces an eddy current in a conductive structure such as a vacuum insulated container, a radiant heat shield, and a superconducting coil storage container that constitute a superconducting magnet, and the eddy current and the magnetic field created by the superconducting coil act on the structure. Vibrates.

【0008】この振動による信号を検出しモニターして
おけば、構造物の劣化等により振動モードが変わった場
合、警告を出すなどの対応ができる。磁場中の導体の振
動は、渦電流をともない磁場を発生させる。したがっ
て、推進コイルや浮上コイルから加わる磁場と、振動に
よって生じる渦電流の磁場とを分離できれば、磁場の変
化の測定は有効な振動モニターの手段となる。
If a signal due to the vibration is detected and monitored, it is possible to take a measure such as issuing a warning when the vibration mode is changed due to deterioration of the structure. Oscillation of the conductor in the magnetic field generates a magnetic field with eddy currents. Therefore, if the magnetic field applied from the propulsion coil or the levitation coil can be separated from the magnetic field of the eddy current generated by the vibration, the measurement of the change in the magnetic field becomes an effective means of vibration monitoring.

【0009】現状の磁気浮上システムの場合、外部磁場
の振幅が最大のものは、浮上コイルによる空間5次高調
波で、約180gaussの振幅を持つ。次いで、空間
7次および空間3次高調波が、それぞれ約40gaus
sの振幅を持つ。推進コイルの高調波は、最大でも空間
5次の18gaussにすぎない。それぞれの高調波は
次数によって波長が異なるので、全てを同時に除くこと
は困難であるが、最大の空間5次高調波を除けば、信号
のノイズである振動起因以外の磁場を1/3以下に低減
できる。この高調波を除くには、4個直列の振動磁場検
出用のコイルを用いて、各コイルに受かる高調波がキャ
ンセルされる仕組みにすればよい。
In the current magnetic levitation system, the one with the largest amplitude of the external magnetic field is the spatial fifth harmonic generated by the levitation coil and has an amplitude of about 180 gauss. Then, the spatial seventh and spatial third harmonics are each approximately 40 gauss.
It has an amplitude of s. The harmonics of the propulsion coil are at most only 18 gauss of the fifth spatial order. Since each harmonic has a different wavelength depending on the order, it is difficult to remove all of them at the same time. However, except for the largest spatial fifth harmonic, the magnetic field other than vibration-induced signal noise is reduced to 1/3 or less. Can be reduced. In order to remove these harmonics, a mechanism may be used in which four series of coils for detecting the oscillating magnetic field are used to cancel the harmonics received by each coil.

【0010】以下に、高調波をキャンセルする仕組みを
具体的に述べる。説明を簡明にするために、浮上コイル
の空間5次高調波のみを生じる模擬地上コイル(以下、
加振コイルと記す)と、導体およびねじり振動検出コイ
ルとのみからなる体系を考慮し、それらが静磁場中に置
かれた場合と、静磁場を受けない場合とについて考察す
る。図2に、加振コイル9と、平板の導体10にねじり
振動検出コイル6を設置する体系を示す。ねじり振動検
出コイル6は、図示するように、上下左右に4分割され
た4個の磁束変動検出コイルから構成されている。以
下、便宜的に図中左上のコイルまたはその発生電圧をL
U、同様に左下をLD、右上をRU、右下をRDと称す
ることにする。
Hereinafter, a mechanism for canceling harmonics will be specifically described. For the sake of simplicity, a simulated ground coil that generates only the fifth harmonic of the space of the levitation coil (hereinafter referred to as a simulated ground coil)
Considering a system consisting only of an excitation coil) and a conductor and a torsional vibration detection coil, a case where they are placed in a static magnetic field and a case where they are not subjected to a static magnetic field are considered. FIG. 2 shows a system in which the torsion vibration detection coil 6 is installed on the excitation coil 9 and the flat conductor 10. As shown in the figure, the torsional vibration detecting coil 6 is composed of four magnetic flux fluctuation detecting coils divided into four parts in the vertical and horizontal directions. Hereinafter, for convenience, the upper left coil in FIG.
U, similarly, the lower left is called LD, the upper right is called RU, and the lower right is called RD.

【0011】まず、図2の体系が静磁場中に置かれた場
合を考える。加振コイル9(u),9(v),9(w)
には、それぞれ、U,V,Wの3相の交流電流を通電す
る。その結果、導体10には、加振コイル9の磁場変動
による渦電流が誘導され、静磁場と作用して、導体10
に電磁力が生じて振動が誘引される。このとき、ねじり
振動検出コイル6は、加振コイル9の作る磁場変動と、
振動によって自らが静磁場を横切ることによる磁場変
動、および振動によって導体10に流れる渦電流の作る
磁場変動の3種類の磁場変動を同時に検出する。ここ
で、振動起因でない磁場変動は加振コイル9の作る磁場
であり、これが空間5次の高調波であり、ノイズとして
除去したい信号である。
First, consider the case where the system of FIG. 2 is placed in a static magnetic field. Exciting coils 9 (u), 9 (v), 9 (w)
, Three-phase alternating currents of U, V, and W are supplied. As a result, an eddy current is induced in the conductor 10 due to the magnetic field fluctuation of the exciting coil 9, and acts on the static magnetic field to form the conductor 10.
, An electromagnetic force is generated and vibration is induced. At this time, the torsional vibration detecting coil 6 changes the magnetic field generated by the exciting coil 9,
At the same time, three types of magnetic field fluctuations are detected simultaneously: a magnetic field fluctuation caused by the vibration itself crossing a static magnetic field, and a magnetic field fluctuation generated by an eddy current flowing through the conductor 10 due to the vibration. Here, the magnetic field fluctuation not caused by vibration is a magnetic field generated by the excitation coil 9, which is a fifth harmonic in space, and is a signal to be removed as noise.

【0012】図3に、空間5次高調波が導体10の上に
生じる渦電流分布を示す。渦電流分布の下には、ある時
刻における進行方向(x方向)の磁場分布である。ノイ
ズを除去するには、この渦電流のピッチ、言い換える
と、加振コイル9が導体10の上に作る空間5次の磁場
分布のピッチ分、分割したねじり振動検出コイル6の中
心間距離を離して設置する。
FIG. 3 shows an eddy current distribution in which a spatial fifth harmonic is generated on the conductor 10. Below the eddy current distribution is a magnetic field distribution in the traveling direction (x direction) at a certain time. In order to remove noise, the center distance of the divided torsional vibration detection coil 6 is set apart by the pitch of the eddy current, in other words, the pitch of the fifth-order magnetic field distribution created by the excitation coil 9 on the conductor 10. And install it.

【0013】ここで、図2の体系が静磁場を受けない場
合を考える。静磁場を除くと、加振コイル9に通電して
も電磁力が働かず、したがって、導体10は振動しな
い。この場合、ねじり振動検出コイル6が検出する信号
は、加振コイル9の作る空間5次の磁場変動のみであ
り、言い換えるとノイズだけである。そこで、この場合
に、ねじり振動検出コイルを適当な間隔に設置した場合
と、空間5次のピッチで設置した場合とを、図4〜図6
を用いて比較する。
Here, consider the case where the system of FIG. 2 does not receive a static magnetic field. When the static magnetic field is removed, the electromagnetic force does not work even when the exciting coil 9 is energized, and the conductor 10 does not vibrate. In this case, the signal detected by the torsional vibration detecting coil 6 is only the fifth-order magnetic field fluctuation generated by the exciting coil 9, in other words, only noise. Therefore, in this case, the case where the torsional vibration detection coils are installed at appropriate intervals and the case where the torsional vibration detection coils are installed at a pitch of the fifth space are shown in FIGS.
Are compared using.

【0014】図4は、左右方向の設置間隔が適当な場合
の出力信号で、ここでは、図中のLU,LD,RU,R
Dは、それぞれ4分割した4個の磁束変動検出コイルで
生じる電圧を示す。TOTALは、4コイルを上下左右
で、それぞれ極性が逆転するように、直列に接続した結
果の電圧であり、ねじり振動検出コイルとしての出力に
なる。currentは通電コイル(加振コイル)に通
電する電流の位相で、この電流との位相差で4分割コイ
ルの位相差を比較できる。4個の磁束変動検出コイルの
うち、左右が同じ側の上下のコイルLU・LD、および
RU・RDのそれぞれの位相は、丁度180度逆転して
いるが、極性を逆転して接続するため、キャンセルはさ
れない。4個のコイルを直列に足しあわせた結果、LU
・LDと、RU・RDとの左右の位相差によって、加振
コイル9の磁場変動による電圧信号が残るのがわかる。
FIG. 4 shows output signals when the installation interval in the horizontal direction is appropriate. In this case, LU, LD, RU, and R in FIG.
D indicates a voltage generated in each of the four magnetic flux fluctuation detecting coils divided into four. TOTAL is a voltage obtained as a result of connecting four coils in series such that the polarities are inverted in the upper, lower, left, and right directions, and is an output as a torsional vibration detection coil. current is the phase of the current flowing through the current-carrying coil (exciting coil), and the phase difference between the current and the quadrant coil can be compared with the phase difference with this current. Of the four magnetic flux fluctuation detection coils, the phases of the upper and lower coils LU and LD and RU and RD on the same side on the left and right are exactly 180 degrees reversed, but because the polarities are reversed, they are connected. No cancellations are made. As a result of adding four coils in series, LU
It can be seen that the voltage signal due to the magnetic field fluctuation of the excitation coil 9 remains due to the left and right phase difference between the LD and the RU / RD.

【0015】図5は、ねじり振動検出コイル6を構成す
る4分割した磁束変動検出コイルのうち、コイルLU・
LDと、コイルRU・RDとの設置間隔を、加振コイル
9が作る磁場の空間分布のピッチと一致させた場合の電
圧である。左右に並んだ分割コイルLUとRU、LDと
RDの、それぞれの位相が揃うため、電圧がキャンセル
され、出力信号のTOTALはほぼ零となる。
FIG. 5 shows one of the four divided magnetic flux fluctuation detecting coils constituting the torsional vibration detecting coil 6, the coil LU ·
This is a voltage when the installation interval between the LD and the coils RU and RD is matched with the pitch of the spatial distribution of the magnetic field created by the excitation coil 9. Since the phases of the split coils LU and RU and LD and RD arranged on the left and right are aligned, the voltage is canceled and the TOTAL of the output signal becomes almost zero.

【0016】図6は、静磁場を受けない図2の体系で、
ねじり振動検出コイル6の左右方向(進行方向)の設置
間隔を変化させていった場合の出力信号の変化である。
横軸に空間5次のピッチをとり、縦軸に検出信号を示
す。ねじり振動検出コイルの左右の設置間隔を磁場分布
のピッチの整数倍とすれば、計測対象外の電圧信号をキ
ャンセルすることができ、磁場分布のピッチの1/2の
間隔を開けて設置すると、計測対象外の電圧が最大とな
ることがわかる。
FIG. 6 shows the system of FIG. 2 without a static magnetic field.
This is a change in the output signal when the installation interval of the torsional vibration detection coil 6 in the left-right direction (traveling direction) is changed.
The horizontal axis shows the fifth pitch in the space, and the vertical axis shows the detection signal. By setting the left and right installation intervals of the torsional vibration detection coil to be an integral multiple of the pitch of the magnetic field distribution, voltage signals outside the measurement target can be canceled. It can be seen that the voltage outside the measurement target becomes the maximum.

【0017】ねじり振動による磁束の変化は、隣合う磁
束変動検出コイル、上下の磁束変動検出コイルで、それ
ぞれ逆相で検出されるため、隣合うコイル、上下のコイ
ルで逆相に結線されるねじり振動検出コイル6では加算
されて出力される。したがって、加振コイル9の作る空
間5次の磁場のピッチの整数倍の間隔を持たせて、4分
割のねじり振動検出コイル6を設置することにより、純
粋なねじり振動分のみの電圧信号を検出することができ
る。
The change in magnetic flux due to torsional vibration is detected by the adjacent magnetic flux fluctuation detecting coil and the upper and lower magnetic flux fluctuation detecting coils in opposite phases, respectively. The vibration detection coil 6 adds and outputs the result. Therefore, the voltage signal of only the pure torsional vibration is detected by installing the four-divided torsional vibration detecting coil 6 with an interval of an integral multiple of the pitch of the fifth magnetic field in the space created by the exciting coil 9. can do.

【0018】一般に、磁気浮上列車用超電導磁石の性能
試験は、図2に示したような空間5次の浮上磁場を模擬
する体系の中で行われる。したがって、本発明によるね
じり振動検出コイルを用いれば、試験体系においては、
空間5次の高調波ノイズをほぼ零にして信号をモニター
できるし、実走行体系でも、ノイズを従来の1/3以下
にした信号のモニターが可能である。このような振動検
出手段を備えることにより、超電導磁石および磁気浮上
列車としての安全性、信頼性を高めることができる。
Generally, a performance test of a superconducting magnet for a magnetic levitation train is performed in a system that simulates a levitation magnetic field of a fifth order space as shown in FIG. Therefore, if the torsional vibration detection coil according to the present invention is used, in the test system,
The signal can be monitored by setting the fifth harmonic noise in the space to almost zero, and even in an actual traveling system, it is possible to monitor a signal in which the noise is reduced to 1/3 or less of the conventional level. By providing such a vibration detecting means, the safety and reliability of the superconducting magnet and the magnetic levitation train can be improved.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施形態を、図面
を参照して説明する。図1に示すように、超電導コイル
1はコイル収納容器2に収納されている。コイル収納容
器2は、超電導コイル1を保持し、内部に液体ヘリウム
の流路を設け、超電導コイル1を冷却している。さら
に、コイル収納容器2は輻射熱シールド3で覆われ、輻
射熱を低減するため、液体窒素温度に冷却されている。
真空断熱容器は、これら輻射熱シールド3、コイル収納
容器2、超電導コイル1等を収納して超電導磁石を構成
している。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 1, the superconducting coil 1 is housed in a coil housing 2. The coil storage container 2 holds the superconducting coil 1, provides a liquid helium flow path therein, and cools the superconducting coil 1. Further, the coil housing 2 is covered with a radiant heat shield 3 and cooled to liquid nitrogen temperature in order to reduce radiant heat.
The vacuum heat insulating container houses the radiant heat shield 3, the coil housing 2, the superconducting coil 1, and the like to form a superconducting magnet.

【0020】磁気浮上列車の車体7は台車8で連結さ
れ、台車8の両側には上記超電導磁石が搭載されてい
る。超電導磁石と対面して地上コイル5が配置され、地
上軌道側のガイドウェイに設置されている。列車が走行
すると導電性の真空断熱容器4には、地上コイル5の磁
場変動による渦電流が誘導し、超電導コイル1の有する
静磁場と作用して、真空断熱容器4に電磁力が生じて振
動が誘引される。
The body 7 of the magnetic levitation train is connected with a bogie 8, and the superconducting magnet is mounted on both sides of the bogie 8. A ground coil 5 is arranged facing the superconducting magnet, and is installed on a guideway on the ground orbit side. When the train runs, an eddy current is induced in the conductive vacuum insulated container 4 due to the magnetic field fluctuation of the ground coil 5, and acts on the static magnetic field of the superconducting coil 1 to generate an electromagnetic force in the vacuum insulated container 4 and vibrate. Is attracted.

【0021】この振動のうち、ねじり成分を検出するた
めに、真空断熱容器4にねじり振動検出コイル6を設置
する。ねじり振動検出コイル6は、上下左右に4分割し
た4個の磁束変動検出コイルLU、LD、RU、RDか
ら構成され、地上コイル5の作る磁場変動、ねじり振動
によって各構造物に流れる渦電流の作る磁場変動、真空
断熱容器が磁場中で振動することによって感じる磁場変
動の3種類の磁場変動を同時に検出する。
In order to detect a torsional component of the vibration, a torsional vibration detecting coil 6 is installed in the vacuum heat insulating container 4. The torsional vibration detecting coil 6 is composed of four magnetic flux fluctuation detecting coils LU, LD, RU, and RD divided into four parts in the vertical and horizontal directions. The magnetic field fluctuation generated by the ground coil 5 and the eddy current flowing through each structure due to the torsional vibration. Simultaneously detects three types of magnetic field fluctuations: magnetic field fluctuations to be created and magnetic field fluctuations felt by the vacuum insulated container vibrating in the magnetic field.

【0022】ここで、ねじり振動起因でない磁場変動
は、地上コイル5の作る磁場であり、ねじり振動検出コ
イル6のノイズとなる。上下づつ左右に分割したねじり
プローブを、この磁場変動のピッチ分だけ中心間距離を
離して設置することにより、地上コイル5の作る磁場変
動が、分割したねじり振動検出コイル6の各部に生じる
電圧の位相は、隣り合う左右のコイル間、あるいは上下
のコイル間で、それぞれ位相差0となる。
Here, the magnetic field fluctuation not caused by the torsional vibration is a magnetic field generated by the ground coil 5 and causes noise of the torsional vibration detecting coil 6. By disposing the torsion probe, which is divided into left and right parts vertically, at a center-to-center distance corresponding to the pitch of the magnetic field fluctuation, the magnetic field fluctuation generated by the ground coil 5 causes the voltage of the voltage generated in each part of the divided torsional vibration detection coil 6 to change. The phase is 0 between adjacent left and right coils or between upper and lower coils.

【0023】一方、ねじり振動による磁束の変化は、隣
合う上下および左右のコイルで、それぞれ逆相となり、
ねじり振動検出コイルはこの信号を拾うため、隣合う上
下左右のコイルで逆相に結線される。したがって、この
ねじり振動検出コイルで拾う地上コイル5の作る磁場
は、左右間、上下間でそれぞれ位相差180度となり、
キャンセルされる。このように地上コイル5の作る磁場
の空間分布のピッチ分の間隔を持たせて、4分割した4
個の磁束変動検出コイルLU、LD、RU、RDから構
成された、ねじり振動検出コイル6を設置することによ
り、純粋なねじり振動分のみの電圧信号を検出すること
ができる。したがって、より高精度に超電導磁石の振動
成分をモニターでき、信頼性の高い超電導磁石および磁
気浮上列車を提供できる。
On the other hand, the change in the magnetic flux due to the torsional vibration is opposite in phase between the adjacent upper and lower and left and right coils.
In order to pick up this signal, the torsional vibration detecting coil is connected in opposite phases by adjacent upper, lower, left and right coils. Therefore, the magnetic field generated by the ground coil 5 picked up by the torsional vibration detection coil has a phase difference of 180 degrees between the left and right and the upper and lower sides, respectively.
Canceled. In this way, the space is divided into four parts with an interval corresponding to the pitch of the spatial distribution of the magnetic field generated by the ground coil 5.
By installing the torsional vibration detecting coil 6 including the magnetic flux fluctuation detecting coils LU, LD, RU, and RD, it is possible to detect a voltage signal corresponding to only pure torsional vibration. Therefore, the vibration component of the superconducting magnet can be monitored with higher precision, and a highly reliable superconducting magnet and magnetic levitation train can be provided.

【0024】次に、図7により、本発明の他の実施形態
を説明する。超電導コイル1はコイル収納容器2に収納
されている。コイル収納容器2は超電導コイル1を保持
し、内部に液体ヘリウムの流路を設け、超電導コイル1
を冷却している。輻射熱シールド3はコイル収納容器2
を覆い、輻射熱を低減するため、液体窒素温度に冷却さ
れている。真空断熱容器4は、輻射熱シールド3、コイ
ル収納容器2、超電導コイル1等を収納し、超電導磁石
を構成している。
Next, another embodiment of the present invention will be described with reference to FIG. The superconducting coil 1 is housed in a coil housing 2. The coil storage container 2 holds the superconducting coil 1 and provides a liquid helium flow path therein.
Has cooled. The radiation heat shield 3 is the coil housing 2
Is cooled to the temperature of liquid nitrogen in order to cover and reduce radiant heat. The vacuum heat insulating container 4 houses the radiant heat shield 3, the coil housing 2, the superconducting coil 1, and the like, and forms a superconducting magnet.

【0025】この超電導磁石のねじり振動成分を検出す
るために、真空断熱容器4にねじり振動検出コイル6を
設置する。このねじり振動検出コイル6は、上下左右に
4分割した4個の磁束変動検出コイルLU、LD、R
U、RDから構成され、磁気浮上システムにおける、地
上軌道側の浮上コイルから発生する空間5次の高調波成
分を検出しないように、図示するように、左右のコイル
中心線間の設置間隔が、空間5次高調波の1ピッチであ
る0.54mとなるように設置する。空間5次高調波の
1ピッチ分、分割したコイルの中心間距離を離して設置
することにより、空間5次高調波が分割したねじり振動
検出コイル6の各部に生じる電圧の位相は、隣り合うコ
イル間、上下のコイル間でそれぞれ位相差0となる。
In order to detect the torsional vibration component of the superconducting magnet, a torsional vibration detecting coil 6 is installed in the vacuum heat insulating container 4. The torsional vibration detecting coil 6 is composed of four magnetic flux fluctuation detecting coils LU, LD, R
U, RD, in the magnetic levitation system, as shown in the drawing, the installation interval between the left and right coil center lines is set so as not to detect the fifth harmonic component in the space generated from the levitation coil on the ground orbit. The pitch is set to 0.54 m, which is one pitch of the fifth harmonic in space. By installing the separated coil at the center distance of one pitch of the fifth harmonic of the space, the phase of the voltage generated in each part of the torsional vibration detection coil 6 divided by the fifth harmonic of the space is equal to that of the adjacent coil. And a phase difference of 0 between the upper and lower coils.

【0026】一方、ねじり振動による磁束の変化は、隣
合うコイル、上下のコイルでそれぞれ逆相となり、ねじ
り振動検出コイルはこの信号を拾うため、隣合うコイ
ル、上下のコイルで逆相に結線される。したがって、こ
のねじり振動検出コイルで拾う地上コイル5の作る磁場
は、左右間、上下間でそれぞれ位相差180度となり、
キャンセルされる。このように空間5次高調波の1ピッ
チ分の間隔を持たせて、4分割のねじり振動検出コイル
6を設置することにより、純粋なねじり振動分のみの電
圧信号を検出することができる。したがって、より高精
度に超電導磁石の振動成分をモニターでき、信頼性の高
い超電導磁石および磁気浮上列車を提供できる。
On the other hand, the change in magnetic flux due to torsional vibration is opposite in phase between the adjacent coil and the upper and lower coils, and the torsional vibration detecting coil is connected in opposite phase by the adjacent coil and upper and lower coils to pick up this signal. You. Therefore, the magnetic field generated by the ground coil 5 picked up by the torsional vibration detection coil has a phase difference of 180 degrees between the left and right and the upper and lower sides, respectively.
Canceled. By providing the four-segmented torsional vibration detecting coil 6 with an interval of one pitch of the fifth harmonic in the space as described above, a voltage signal corresponding to only pure torsional vibration can be detected. Therefore, the vibration component of the superconducting magnet can be monitored with higher precision, and a highly reliable superconducting magnet and magnetic levitation train can be provided.

【0027】図8に、本発明の他の実施形態を示す。ね
じり振動検出コイル6aは、絶縁シート11にプリント
されている。導線を巻回してコイルを制作する場合、感
度をあげる為に、ターン数を増やそうとすると厚みを持
ち、また細かい形状の加工が困難で、このためねじり振
動検出コイルの設置箇所が制限されるという問題があ
る。しかし、絶縁シートに導体をプリントしてねじり振
動検出コイルを構成することにより、設置箇所を選ば
ず、どこにでも高感度のねじり振動検出コイルを設置す
ることができる。もちろん、ねじり振動検出コイルのプ
リント基盤は、構造的に適用できるものであれば、シー
トである必要はない。
FIG. 8 shows another embodiment of the present invention. The torsional vibration detection coil 6a is printed on the insulating sheet 11. When making a coil by winding a conductor, it is said that if you try to increase the number of turns to increase the sensitivity, it is thick and it is difficult to process a fine shape, which limits the installation location of the torsional vibration detection coil There's a problem. However, by forming a torsional vibration detection coil by printing a conductor on an insulating sheet, a highly sensitive torsional vibration detection coil can be installed anywhere, regardless of the installation location. Of course, the printed board of the torsional vibration detection coil need not be a sheet as long as it is structurally applicable.

【0028】図9に、本発明の他の実施形態を示す。ね
じり振動検出コイル6bの形状が異なり、本実施形態で
は、個々の磁束変動検出コイルが菱形に形成されている
だけで、図8に示した実施形態と同じ効果を持つ。図1
0に、本発明の他の実施形態を示す。ねじり振動検出コ
イル6cの形状が異なり、本実施形態では、個々の磁束
変動検出コイルがT字形に形成されているだけで、図8
に示した実施形態と同じ効果を持つ。図11に、本発明
の他の実施形態を示す。ねじり振動検出コイル6dの形
状が異なり、本実施形態では、個々の磁束変動検出コイ
ルが、角に凹Rをもつ十字形に形成されているだけで、
図8に示した実施形態と同じ効果を持つ。図12に、本
発明の他の実施形態を示す。ねじり振動検出コイル6e
の形状が異なり、本実施形態では、個々の磁束変動検出
コイルが、対辺に凹Rをもつ長方形に形成されているだ
けで、図8に示した実施形態と同じ効果を持つ。
FIG. 9 shows another embodiment of the present invention. The shape of the torsional vibration detecting coil 6b is different, and in the present embodiment, the same effect as the embodiment shown in FIG. FIG.
0 shows another embodiment of the present invention. The shape of the torsional vibration detecting coil 6c is different, and in the present embodiment, each magnetic flux fluctuation detecting coil is formed in a T-shape.
Has the same effect as the embodiment shown in FIG. FIG. 11 shows another embodiment of the present invention. The shape of the torsional vibration detection coil 6d is different. In the present embodiment, each magnetic flux fluctuation detection coil is formed in a cross shape having a concave R at the corner.
It has the same effect as the embodiment shown in FIG. FIG. 12 shows another embodiment of the present invention. Torsion vibration detection coil 6e
This embodiment has the same effect as the embodiment shown in FIG. 8, except that each magnetic flux fluctuation detection coil is formed in a rectangle having a concave R on the opposite side.

【0029】上述のとおり、本発明の実施形態によれ
ば、ねじり振動検出コイルを用いて、磁場を測定して振
動状態をモニターする場合に、検出対象以外の磁場、ノ
イズを除去するため、周波数分析をして振動成分に相当
する周波数の信号のみを取り出したり、あるいは振動が
生じていない状態で、磁束検出素子から出力される信号
を予め測定しておいて、振動計測時の信号を補正するな
どの、補償手段を取る必要がなく、精度の高い信号を得
ることができる。したがって、信号の補償によってさら
に精度が悪くなるという問題や、あるいは磁束による電
圧信号の検出から、振動量を得るまでに、多段階の手順
が必要なため、オンラインでのデータ計測や、リアルタ
イムでのデータ処理の障害となるなどの問題点を解決
し、信号の変化から振動状態等の変化を知り、超電導磁
石の異常診断に用いるのに役立つ。その結果、オンライ
ンやリアルタイムの信号処理に適した超電導磁石のねじ
り振動検出手段を備え、異常検出の手段を備えた信頼性
の高い磁気浮上列車を提供することができる。
As described above, according to the embodiment of the present invention, when monitoring the vibration state by measuring the magnetic field using the torsional vibration detection coil, the frequency and the noise other than the detection target are removed. Analyze and extract only the signal of the frequency corresponding to the vibration component, or measure the signal output from the magnetic flux detection element in advance in a state where vibration does not occur, and correct the signal at the time of vibration measurement Therefore, it is not necessary to take any compensation means, and a highly accurate signal can be obtained. Therefore, there is a problem that the accuracy is further deteriorated by signal compensation, or a multi-step procedure is required from the detection of the voltage signal by the magnetic flux to the acquisition of the vibration amount, so that online data measurement and real-time It is useful for solving problems such as obstruction of data processing, knowing changes in vibration state and the like from changes in signals, and using it for abnormality diagnosis of superconducting magnets. As a result, it is possible to provide a highly reliable magnetic levitation train equipped with superconducting magnet torsional vibration detection means suitable for online or real-time signal processing and equipped with abnormality detection means.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
計測対象を列車に搭載した超電導磁石のねじり振動に限
定し、計測信号の補償手段等を用いずにノイズを低減し
て、より精度の高い振動信号を検出し、オンラインやリ
アルタイムの信号処理に適した超電導磁石のねじり振動
検出手段を備え、異常検出の手段を備えた信頼性の高い
磁気浮上列車を提供することができる。
As described above, according to the present invention,
Measurement is limited to torsional vibration of the superconducting magnet mounted on the train, reducing noise without using compensation means for measurement signals, detecting vibration signals with higher accuracy, and suitable for online and real-time signal processing A highly reliable magnetic levitation train equipped with a superconducting magnet torsion vibration detecting means and equipped with an abnormality detecting means can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の一実施形態を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention.

【図2】図2は、本発明の作用の説明図である。FIG. 2 is an explanatory diagram of the operation of the present invention.

【図3】図3は、真空断熱容器上に生じる渦電流分布を
示す図である。
FIG. 3 is a diagram showing an eddy current distribution generated on a vacuum heat insulating container.

【図4】図4は、従来のねじり振動検出コイルと本発明
によるねじり振動検出コイルの検出信号の比較を示す図
である。
FIG. 4 is a diagram showing a comparison of detection signals of a conventional torsional vibration detection coil and a torsional vibration detection coil according to the present invention.

【図5】図5は、従来のねじり振動検出コイルと本発明
によるねじり振動検出コイルの検出信号の比較を示す図
である。
FIG. 5 is a diagram showing a comparison of detection signals of a conventional torsional vibration detection coil and a torsional vibration detection coil according to the present invention.

【図6】図6は、従来のねじり振動検出コイルと本発明
によるねじり振動検出コイルの検出信号の比較を示す図
である。
FIG. 6 is a diagram showing a comparison between detection signals of a conventional torsional vibration detection coil and a torsional vibration detection coil according to the present invention.

【図7】図7は、本発明の他の実施形態を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing another embodiment of the present invention.

【図8】図8は、本発明の他の実施形態を示す説明図で
ある。
FIG. 8 is an explanatory diagram showing another embodiment of the present invention.

【図9】図9は、本発明の他の実施形態を示す説明図で
ある。
FIG. 9 is an explanatory diagram showing another embodiment of the present invention.

【図10】図10は、本発明の他の実施形態を示す説明
図である。
FIG. 10 is an explanatory diagram showing another embodiment of the present invention.

【図11】図11は、本発明の他の実施形態を示す説明
図である。
FIG. 11 is an explanatory diagram showing another embodiment of the present invention.

【図12】図12は、本発明の他の実施形態を示す説明
図である。
FIG. 12 is an explanatory diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 コイル収納容器 3 輻射熱シールド 4 真空断熱容器 5 地上コイル 6、6a、6b、6c、6d、6e ねじり振動検出コ
イル LU、LD、RU、RD 磁束変動検出コイル 7 磁気浮上列車の車体 8 磁気浮上列車の台車 9 加振コイル 9(u) 加振コイルU相 9(v) 加振コイルV相 9(w) 加振コイルW相 10 平板導体 11 絶縁シート
Reference Signs List 1 superconducting coil 2 coil housing 3 radiant heat shield 4 vacuum heat insulating container 5 ground coil 6, 6a, 6b, 6c, 6d, 6e torsional vibration detection coil LU, LD, RU, RD magnetic flux fluctuation detection coil 7 body of magnetic levitation train 8 Truck of magnetic levitation train 9 Exciting coil 9 (u) Exciting coil U phase 9 (v) Exciting coil V phase 9 (w) Exciting coil W phase 10 Flat conductor 11 Insulating sheet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 将之 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 齋藤 敏雄 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 渡邊 洋之 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 寺井 元昭 愛知県名古屋市中村区名駅一丁目1番4号 東海旅客鉄道株式会社内 (72)発明者 稲玉 哲 愛知県名古屋市中村区名駅一丁目1番4号 東海旅客鉄道株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masayuki Shibata 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Toshio Saito 3-chome, Sachimachi, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd.Hitachi Plant (72) Inventor Hiroyuki Watanabe 3-1-1 Sakaimachi, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Plant (72) Inventor Motoaki Terai Nagoya, Aichi Prefecture Tokai Passenger Railroad Co., Ltd. (72) Inventor Tetsu Inatama 1-chome, Nakamura-ku Nagoya City, Aichi Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 超電導線を巻回した超電導コイルと、前
記超電導コイルを収納する収納容器と、前記収納容器の
外側にあって、輻射熱を遮蔽する輻射熱シールドと、こ
れらを収容する真空断熱容器とからなる超電導磁石が、
地上軌道側の推進および浮上コイルと対面して搭載され
た磁気浮上列車において、前記超電導磁石のねじり振動
によって生じる磁場変動成分のみを検出するねじり振動
検出コイルが、外部から加わる変動磁界の進行方向のピ
ッチの整数倍に等しい間隔で、前記超電導コイルに対面
して設置され、前記ねじり振動検出コイルは、前記超電
導コイルの中心から上下左右に、4分割して配置された
同一形状の4個の磁束変動検出コイルからなり、前記磁
束変動検出コイルは、電圧信号の極性が逆向きになるよ
うに、隣り合う上下左右が互いに直列に接続されている
ことを特徴とする超電導磁石のねじり振動検出コイルを
備えた磁気浮上列車。
1. A superconducting coil wound with a superconducting wire, a storage container for storing the superconducting coil, a radiant heat shield outside the storage container for shielding radiant heat, and a vacuum insulated container for storing these. A superconducting magnet consisting of
In the magnetic levitation train mounted facing the propulsion and levitation coil on the ground track side, the torsional vibration detection coil that detects only the magnetic field fluctuation component generated by the torsional vibration of the superconducting magnet has a moving direction of the fluctuating magnetic field applied from the outside. The torsion vibration detecting coil is installed at a distance equal to an integral multiple of the pitch, facing the superconducting coil, and the torsion vibration detecting coil is divided into four magnetic fluxes of the same shape arranged vertically, horizontally, and vertically from the center of the superconducting coil. The magnetic flux fluctuation detection coil comprises a torsion vibration detection coil of a superconducting magnet, wherein adjacent upper, lower, left and right coils are connected in series so that the polarity of the voltage signal is reversed. Magnetic levitation train equipped.
【請求項2】 請求項1に記載の磁気浮上列車におい
て、前記ねじり振動検出コイルは、左右に分割配置され
た前記磁束変動検出コイルの設置間隔が、前記浮上コイ
ル電流の作り出す高調波変動磁場のうち、最大の振幅を
持つ空間高調波のピッチの整数倍に等しいことを特徴と
する超電導磁石のねじり振動検出コイルを備えた磁気浮
上列車。
2. The magnetic levitation train according to claim 1, wherein the torsional vibration detection coil is arranged such that an interval between the magnetic flux fluctuation detection coils divided and arranged on the left and right is equal to a harmonic fluctuation magnetic field generated by the levitation coil current. A maglev train equipped with a superconducting magnet torsion vibration detection coil, wherein the pitch is equal to an integral multiple of the pitch of the spatial harmonic having the largest amplitude.
【請求項3】 請求項1に記載の磁気浮上列車におい
て、前記ねじり振動検出コイルは、左右に分割配置され
た前記磁束変動検出コイルの設置間隔が、前記浮上コイ
ル電流の作り出す空間5次高調波のピッチの整数倍に等
しいことを特徴とする超電導磁石のねじり振動検出コイ
ルを備えた磁気浮上列車。
3. The magnetic levitation train according to claim 1, wherein the torsional vibration detection coil is arranged such that a space between the magnetic flux fluctuation detection coils divided and arranged on the left and right is a spatial fifth harmonic generated by the levitation coil current. A magnetic levitation train equipped with a superconducting magnet torsion vibration detection coil, wherein the train is equal to an integral multiple of the pitch of the train.
【請求項4】 請求項1、2または3に記載の磁気浮上
列車において、前記4分割して配置された4個の磁束変
動検出コイルは、前記超電導コイルの上下および左右の
中心線に対して線対称に配置されていることを特徴とす
る磁石のねじり振動検出コイルを備えた磁気浮上列車。
4. The magnetic levitation train according to claim 1, 2 or 3, wherein the four magnetic flux fluctuation detecting coils divided into four parts are arranged with respect to the vertical and horizontal center lines of the superconducting coil. A magnetic levitation train provided with a torsional vibration detection coil of a magnet, which is arranged in line symmetry.
【請求項5】 請求項4に記載の磁気浮上列車におい
て、前記4個の磁束変動検出コイルは、それぞれがそれ
ぞれの上下および左右の中心線に対して、線対称となる
形状を有することを特徴とする磁石のねじり振動検出コ
イルを備えた磁気浮上列車。
5. The magnetic levitation train according to claim 4, wherein each of the four magnetic flux fluctuation detecting coils has a shape which is line-symmetric with respect to respective vertical and horizontal center lines. A magnetic levitation train equipped with a magnet torsion vibration detection coil.
【請求項6】 請求項1ないし5のうちいずれかに記載
の磁気浮上列車において、前記磁束変動検出コイルは、
基盤にプリントして構成されていることを特徴とする磁
石のねじり振動検出コイルを備えた磁気浮上列車。
6. The magnetic levitation train according to claim 1, wherein the magnetic flux fluctuation detecting coil comprises:
A magnetic levitation train equipped with a magnet torsion vibration detection coil, which is printed on a base.
【請求項7】 請求項6に記載の磁気浮上列車におい
て、前記磁束変動検出コイルがプリントされる基盤は、
絶縁シートであることを特徴とする磁石のねじり振動検
出コイルを備えた磁気浮上列車。
7. The magnetic levitation train according to claim 6, wherein the base on which the magnetic flux fluctuation detection coil is printed is:
A magnetic levitation train provided with a magnet torsion vibration detection coil, which is an insulating sheet.
JP28208096A 1996-10-24 1996-10-24 Magnetically levitated train with torsional vibration detection coil of superconducting magnet Expired - Lifetime JP3704630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28208096A JP3704630B2 (en) 1996-10-24 1996-10-24 Magnetically levitated train with torsional vibration detection coil of superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28208096A JP3704630B2 (en) 1996-10-24 1996-10-24 Magnetically levitated train with torsional vibration detection coil of superconducting magnet

Publications (2)

Publication Number Publication Date
JPH10125526A true JPH10125526A (en) 1998-05-15
JP3704630B2 JP3704630B2 (en) 2005-10-12

Family

ID=17647872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28208096A Expired - Lifetime JP3704630B2 (en) 1996-10-24 1996-10-24 Magnetically levitated train with torsional vibration detection coil of superconducting magnet

Country Status (1)

Country Link
JP (1) JP3704630B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165384A (en) * 2005-12-09 2007-06-28 Hitachi Ltd Malfunction detector for superconducting coil
CN110779743A (en) * 2019-11-12 2020-02-11 中国人民解放军国防科技大学 Magnetic-levitation train track panel monitoring method based on vehicle-mounted levitation controller
CN114683866A (en) * 2020-12-30 2022-07-01 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Magnetic suspension train vibration adjusting device and method and magnetic suspension train

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007165384A (en) * 2005-12-09 2007-06-28 Hitachi Ltd Malfunction detector for superconducting coil
JP4705844B2 (en) * 2005-12-09 2011-06-22 株式会社日立製作所 Superconducting coil abnormality detection device
CN110779743A (en) * 2019-11-12 2020-02-11 中国人民解放军国防科技大学 Magnetic-levitation train track panel monitoring method based on vehicle-mounted levitation controller
CN114683866A (en) * 2020-12-30 2022-07-01 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Magnetic suspension train vibration adjusting device and method and magnetic suspension train

Also Published As

Publication number Publication date
JP3704630B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
JPH10506182A (en) Speed measuring device for rail mounted vehicles
CN109270475A (en) High-speed magnetic suspension long stator traction traveling wave magnetic field detection system
CN110220627A (en) Test device, test macro and the test method of wheel rail force
US4362992A (en) System and method of detecting the proximity of an alternating magnetic field
CN114413798B (en) Device and method for detecting irregularity of superconducting electric magnetic suspension track
US4611169A (en) Sensor for measuring relative movement between a vehicle and a track by sensing magnetic field distortions
JP2015186385A (en) System and method for measuring ground coil position of magnetic levitation type railway
JP3704630B2 (en) Magnetically levitated train with torsional vibration detection coil of superconducting magnet
EP3918280B1 (en) Position sensor for long stroke linear permanent magnet motor
JPWO2017154141A1 (en) Floor slab flaw detector
CN111315628B (en) Sensor device
US4658658A (en) Coil system for inductive measurement of the velocity of movement of a magnetized body
JP6625489B2 (en) Rail inspection system
JPH0636926A (en) Superconducting magnet abnormality detecting protective device
Aknin et al. Eddy current sensor for the measurement of a lateral displacement. Applications in the railway domain
JP3310124B2 (en) Abnormal ground coil detector for magnetic levitation train equipment
CN112763112A (en) Rail stress measuring device and method
EP3330719B1 (en) System and method for measuring the speed of a guided vehicle
JP3959361B2 (en) Magnetically supported electromagnetic vibration device and vibration method
JPH05281281A (en) Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad
JP2653671B2 (en) Vehicle speed detection device
JPH11234811A (en) Electromagnetic levitation vehicle
JPH09120913A (en) Superconducting magnet
JPS5882103A (en) Device for measuring misaligned rail
JPS5821504A (en) Device for measuring misalignment of rail

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

EXPY Cancellation because of completion of term