JPH05281281A - Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad - Google Patents

Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad

Info

Publication number
JPH05281281A
JPH05281281A JP4074824A JP7482492A JPH05281281A JP H05281281 A JPH05281281 A JP H05281281A JP 4074824 A JP4074824 A JP 4074824A JP 7482492 A JP7482492 A JP 7482492A JP H05281281 A JPH05281281 A JP H05281281A
Authority
JP
Japan
Prior art keywords
coil
acceleration sensor
levitation
ground
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4074824A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kishi
秀敏 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP4074824A priority Critical patent/JPH05281281A/en
Publication of JPH05281281A publication Critical patent/JPH05281281A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To provide a device for detecting abnormality of a ground coil of a superconductive magnetic levitation type railroad which allows an acceleration meter or an angular velocity meter to be mounted near the center of gravity of a body truck and can detect abnormal state of a ground coil readily and accurately. CONSTITUTION:In a device for detecting abnormality of a ground coil of a superconductive magnetic levitation type railroad, both side walls 31 of a U-shaped guide way are laid out opposingly. Levitation/guide coils and a truck are provided. The levitation/guide coils are arranged on both side walls 31 of a U-shaped guide way, and each coil comprises an upper coil 41 (51) and a lower coil 42 (52). The upper coils 41, 51 are null-flux-connected to respective lower coils 42, 52. The upper and lower coils 41, 42 are null-flux-connected to respective opposing upper and lower coils 51, 52. Furthermore, an acceleration/angular velocity sensor 10 which is mounted near the gravity position of the truck and a processing device which processes output signal from the accelerator/angular velocity sensor 10 and then judges the failure mode of the coils are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導磁気浮上式鉄道
の地上コイルの異常検出装置に係り、特に、浮上・案内
用コイルの断線、層短絡などの異常検出装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an abnormality detecting device for a ground coil of a superconducting magnetic levitation railway, and more particularly to an abnormality detecting device for disconnection, layer short-circuiting, etc. of a levitation / guide coil.

【0002】[0002]

【従来の技術】従来、このような分野の技術としては、
例えば、実公昭62−31887号公報に記載されるも
のがあった。図17はかかる従来の磁気浮上式鉄道の異
常検出装置の断面図、図18はその結線図である。
2. Description of the Related Art Conventionally, as a technique in such a field,
For example, there was one described in Japanese Utility Model Publication No. 62-31887. FIG. 17 is a cross-sectional view of such a conventional magnetic levitation railway abnormality detection device, and FIG. 18 is a connection diagram thereof.

【0003】これらの図に示すように、浮上式鉄道の軌
道9に設けた左右1対の推進案内コイル7,8にそれぞ
れ対向させて、軌道検測車6の床下の支持枠5に磁界印
加用コイル1及び検知用センサ2を取付け、接続コード
4で車上に搭載した検出器3とそれぞれ結線する。軌道
上の推進案内コイルは、図18に示すように、左右1対
の推進案内コイル7,8が電気的に並列に結線されてい
るために、一つの閉ループになっている。
As shown in these figures, a magnetic field is applied to a support frame 5 under the floor of a track inspection vehicle 6 by facing a pair of left and right propulsion guide coils 7 and 8 provided on a track 9 of a levitation railway. The coil 1 for detection and the sensor 2 for detection are attached and connected to the detector 3 mounted on the vehicle by the connection cord 4. As shown in FIG. 18, the on-orbit propulsion guide coils are one closed loop because a pair of left and right propulsion guide coils 7 and 8 are electrically connected in parallel.

【0004】したがって、各推進案内コイルの異常を検
出する場合は、検出器3から磁界印加用コイル1に交流
電流が送られてくると、磁界印加用コイル1と対面して
いる推進案内コイル7に電磁誘導による起電力が発生
し、推進案内コイル8を含む閉ループ内に回路のインピ
ーダンスに逆比例した誘起電流が流れる。推進案内コイ
ル8の誘起電流のつくる交流磁界を対向位置にある検知
用センサ2が電圧として検知し、検出器3に入り増幅さ
れてモニターまたは記録用端子により計測することがで
きる。この計測による電圧値とを比較することにより、
推進案内コイルの異常を検出することができる。
Therefore, when detecting an abnormality in each propulsion guide coil, when an alternating current is sent from the detector 3 to the magnetic field application coil 1, the propulsion guide coil 7 facing the magnetic field application coil 1 is detected. Electromotive force is generated by electromagnetic induction, and an induced current that is inversely proportional to the impedance of the circuit flows in the closed loop including the propulsion guide coil 8. The detection sensor 2 located at the opposite position detects the AC magnetic field generated by the induced current of the propulsion guide coil 8 as a voltage, enters the detector 3, is amplified, and can be measured by a monitor or a recording terminal. By comparing with the voltage value by this measurement,
The abnormality of the propulsion guide coil can be detected.

【0005】上記したように、軌道検測車に検出装置を
搭載し、その軌道検測車を走行させながら、相互コンダ
クタンスの変化を検知して、軌道上の推進案内コイルの
異常を検知するようにしている。
As described above, the detection device is mounted on the track inspection vehicle, and while the track inspection vehicle is running, the change in mutual conductance is detected to detect the abnormality of the propulsion guide coil on the track. I have to.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た従来の磁気浮上式鉄道の異常検出装置においては、 (1)相互インダクタンスの変化により生じる起電力を
検知する装置を搭載する必要がある。 (2)車両が運動しているので、正常なコイルの電圧値
が不明確である。
However, in the above-mentioned conventional magnetic levitation railway abnormality detecting device, (1) it is necessary to mount a device for detecting an electromotive force generated by a change in mutual inductance. (2) Since the vehicle is moving, the voltage value of the normal coil is unclear.

【0007】(3)軌道状態により正常なコイルの電圧
値が多種類存在する。 (4)軌道検測車による検知では、営業運転中の故障を
即座に検知できない。 といった問題があった。本発明は、上記問題点を解決す
るために、車体の台車の重心近傍に加速度計又は角加速
度計を取付け、地上コイルの異常状態を迅速、かつ的確
に検出可能な超電導磁気浮上式鉄道の地上コイルの異常
検出装置を提供することを目的とするものである。
(3) There are many kinds of normal coil voltage values depending on the track condition. (4) The detection by the track inspection car cannot immediately detect the failure during the commercial operation. There was such a problem. In order to solve the above problems, the present invention installs an accelerometer or an angular accelerometer in the vicinity of the center of gravity of a bogie of a vehicle body, and allows the ground state of a superconducting magnetic levitation railway to quickly and accurately detect an abnormal state of a ground coil. An object of the present invention is to provide a coil abnormality detection device.

【0008】[0008]

【課題を解決するための手段】本発明は、上記目的を達
成するために、超電導磁気浮上式鉄道の地上コイルの異
常検出装置において、U型ガイドウェイの両側壁に対向
配置されるとともに、上方コイルと下方コイルがヌルフ
ラックス接続され、対向配置される上方コイルと下方コ
イルが、更に、ヌルフラックス接続される浮上・案内用
コイルと、該浮上・案内用コイルにより、浮上・案内さ
れる超電導磁石を有する台車と、該台車の重心位置近傍
に搭載される加速度センサと、該加速度センサからの出
力信号を処理し、前記浮上・案内用コイルの故障モード
を判定する処理装置とを設けるようにしたものである。
In order to achieve the above object, the present invention is directed to an abnormality detecting device for a ground coil of a superconducting magnetically levitated railway, which is arranged opposite to both side walls of a U-shaped guideway, and which is located above the U-shaped guideway. A coil and a lower coil are connected to each other by null flux, and an upper coil and a lower coil, which are arranged opposite to each other, are further connected to each other by a null flux, and a superconducting magnet that is levitated and guided by the coil for levitation and guidance. A trolley having the above, an acceleration sensor mounted near the center of gravity of the trolley, and a processing device for processing an output signal from the acceleration sensor and determining a failure mode of the levitation / guidance coil. It is a thing.

【0009】[0009]

【作用】本発明によれば、上記のように構成したので、
台車の重心近傍に搭載された加速度センサ又は角加速度
センサによって、迅速、かつ的確に浮上・案内用コイル
の異常状態を検出することができる。その際に、加速度
センサ又は角加速度センサからの出力信号を処理するこ
とにより、浮上・案内用コイルの故障モードをも判別す
ることができる。
According to the present invention, since it is configured as described above,
An acceleration sensor or an angular acceleration sensor mounted in the vicinity of the center of gravity of the trolley can detect an abnormal state of the levitation / guide coil quickly and accurately. At that time, by processing the output signal from the acceleration sensor or the angular acceleration sensor, the failure mode of the levitation / guidance coil can also be determined.

【0010】[0010]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。図1は本発明の実施例を示す超
電導磁気浮上式鉄道の断面図、図2はその超電導磁気浮
上式鉄道の台車の模式図、図3〜図8は地上コイルの故
障モードを示す図、図9はその地上コイルの配置状態を
示す図、図10〜図12は地上コイルの故障モードに対
応した台車の受ける加速度の変化を示す図、図13〜図
15は地上コイルの故障モードに対応した台車の受ける
角加速度の変化を示す図、図16は本発明の実施例を示
す超電導磁気浮上式鉄道の浮上・案内用コイルの異常検
出システムの構成図である。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a superconducting magnetic levitation railway showing an embodiment of the present invention, FIG. 2 is a schematic view of a bogie of the superconducting magnetic levitation railway, and FIGS. 3 to 8 are views showing failure modes of ground coils. 9 is a diagram showing the arrangement state of the ground coil, FIGS. 10 to 12 are diagrams showing changes in acceleration received by the trolley corresponding to the ground coil failure mode, and FIGS. 13 to 15 are corresponding to ground coil failure modes. FIG. 16 is a diagram showing a change in angular acceleration received by the bogie, and FIG. 16 is a block diagram of an abnormality detection system for a levitation / guidance coil of a superconducting magnetic levitation railway showing an embodiment of the present invention.

【0011】図1に示すように、車体70の下部には空
気バネ71を介して、台車72が構成されており、台車
枠73には、超電導コイル63、クライオスタット6
4、ヘリウムタンク65等を具備する超電導磁石60が
搭載され、更に、補助案内装置74、補助支持装置7
5、緊急着地装置76などが設けられる。また、軌道3
0の両側壁31の凹所32には、地上コイル(41,4
2、51,52)が配置される。なお、この実施例にお
いては、推進コイルは省略され、図示されていない。
As shown in FIG. 1, a bogie 72 is formed in the lower part of a vehicle body 70 via an air spring 71, and a bogie frame 73 has a superconducting coil 63 and a cryostat 6.
4, a superconducting magnet 60 including a helium tank 65 and the like is mounted, and further, an auxiliary guide device 74, an auxiliary support device 7
5, an emergency landing device 76 and the like are provided. Also, orbit 3
The ground coil (41, 4
2, 51, 52) are arranged. In this embodiment, the propulsion coil is omitted and not shown.

【0012】まず、図1に示すように、この実施例にお
いては、車体70の台車72の重心位置近傍に加速度・
角加速度センサ10を設ける。この加速度・角加速度セ
ンサ10としては、図16に示すように、x軸方向の加
速度センサ11、y軸方向の加速度センサ12、z軸方
向の加速度センサ13、x軸方向の角加速度センサ1
4、y軸方向の角加速度センサ15、z軸方向の角加速
度センサ16を搭載する。なお、x軸方向の加速度セン
サ11、y軸方向の加速度センサ12、z軸方向の加速
度センサ13のみを搭載するだけでもよいし、または、
x軸方向の角加速度センサ14、y軸方向の角加速度セ
ンサ15、z軸方向の角加速度センサ16を搭載するだ
けでもよい。
First, as shown in FIG. 1, in this embodiment, acceleration / acceleration near the center of gravity of the carriage 72 of the vehicle body 70 is performed.
An angular acceleration sensor 10 is provided. As the acceleration / angular acceleration sensor 10, as shown in FIG. 16, an acceleration sensor 11 in the x-axis direction, an acceleration sensor 12 in the y-axis direction, an acceleration sensor 13 in the z-axis direction, and an angular acceleration sensor 1 in the x-axis direction.
4, the y-axis direction angular acceleration sensor 15 and the z-axis direction angular acceleration sensor 16 are mounted. Note that only the x-axis direction acceleration sensor 11, the y-axis direction acceleration sensor 12, and the z-axis direction acceleration sensor 13 may be mounted, or
The angular acceleration sensor 14 in the x-axis direction, the angular acceleration sensor 15 in the y-axis direction, and the angular acceleration sensor 16 in the z-axis direction may be mounted.

【0013】これらのセンサ10からの出力信号はマル
チプレクサ17で切換られて、A/D変換器18を介し
てCPU20に読み込まれる。一方、CPU20におい
て、メモリ22には予め図3〜図8に示される地上コイ
ルの故障モードに対応した図10〜図15の台車72の
受ける加速度又は角加速度の変化パターンが記憶され
る。また、CPU20はプログラムを内蔵したROM2
1を有し、適宜、ディスプレイ23が接続されている。
Output signals from these sensors 10 are switched by the multiplexer 17 and read by the CPU 20 through the A / D converter 18. On the other hand, in the CPU 20, the memory 22 stores in advance the change pattern of the acceleration or the angular acceleration received by the carriage 72 of FIGS. 10 to 15 corresponding to the ground coil failure mode shown in FIGS. In addition, the CPU 20 is a ROM 2 that stores a program.
1 and a display 23 is connected as appropriate.

【0014】そこで、センサ10からの出力信号とメモ
リ22の参照パターンとが比較されて、照合され、地上
コイルの異常状態の検出が行なわれる。以下、それらの
地上コイルの故障モードと台車の受ける加速度又は角加
速度の変化について説明する。まず、図2に示すよう
に、台車72には8個の超電導磁石60が搭載されてお
り、台車72の長手方向(軌道方向)をx軸、短手方向
(軌道の幅方向)をy軸、上方向をz軸とする。一方、
地上コイル40は上方コイル41と下方コイル42とが
一対となり接続され、山側に所定間隔を隔てて連続的に
配置され、線路を挟んで、海側に地上コイル50が地上
コイル40に対向して連続的に配置される。その地上コ
イル50も上方コイル51と下方コイル52とが一対と
なり接続され、海側に所定間隔を隔てて連続的に配置さ
れる。
Therefore, the output signal from the sensor 10 and the reference pattern of the memory 22 are compared and compared with each other to detect the abnormal state of the ground coil. The failure modes of those ground coils and changes in the acceleration or angular acceleration received by the truck will be described below. First, as shown in FIG. 2, the bogie 72 is equipped with eight superconducting magnets 60. The longitudinal direction (orbital direction) of the bogie 72 is x-axis, and the lateral direction (orbital width direction) is y-axis. , And the upward direction is the z-axis. on the other hand,
In the ground coil 40, an upper coil 41 and a lower coil 42 are connected in a pair and are continuously arranged on the mountain side at a predetermined interval. The ground coil 50 faces the ground coil 40 on the sea side across the line. It is arranged continuously. As for the ground coil 50, the upper coil 51 and the lower coil 52 are connected in a pair, and are continuously arranged on the sea side at a predetermined interval.

【0015】そこで、図3から図8に示すように、地上
コイル40と50は、同一形状及び同一寸法からなり、
上方コイル41と下方コイル42、及び上方コイル51
と下方コイル52がヌルフラックス接続され、かつ地上
コイル40と対向する地上コイル60も接続線45,4
6でヌルフラックス接続されている。したがって、この
地上コイルによって、車台72の磁気浮上を行なうこと
ができるとともに、案内を行なうことができる。なお、
この磁気浮上方式の詳細は本願出願人の提案である米国
特許第4,913,059号明細書に詳細に開示されて
いる。
Therefore, as shown in FIGS. 3 to 8, the ground coils 40 and 50 have the same shape and the same size.
Upper coil 41, lower coil 42, and upper coil 51
And the lower coil 52 are null-flux connected, and the ground coil 60 facing the ground coil 40 is also connected to the connection lines 45, 4
Null flux connection is made at 6. Therefore, the ground coil can magnetically levitate the chassis 72 and guide the vehicle. In addition,
Details of this magnetic levitation system are disclosed in detail in U.S. Pat. No. 4,913,059 proposed by the present applicant.

【0016】次に、かかる地上コイルの故障モードを挙
げると、 (1)図3に示すように、上方コイル41と下方コイル
42とがともに断線している場合 (2)図4に示すように、上方コイル41のみが断線し
ている場合 (3)図5に示すように、下方コイル42のみが断線し
ている場合 (4)図6に示すように、地上コイル40と50とをヌ
ルフラックス接続している接続線45,46が短絡して
いる場合 (5)図7に示すように、上方コイル41の内部で層短
絡している場合 (6)図8に示すように、下方コイル42の内部で層短
絡している場合が挙げられる。
The failure modes of the above ground coil are as follows: (1) When the upper coil 41 and the lower coil 42 are both disconnected as shown in FIG. 3 (2) As shown in FIG. , When only the upper coil 41 is broken (3) When only the lower coil 42 is broken as shown in FIG. 5 (4) As shown in FIG. 6, the ground coils 40 and 50 are null fluxed. When the connecting wires 45 and 46 which are connected are short-circuited (5) As shown in FIG. 7, when the layers are short-circuited inside the upper coil 41 (6) As shown in FIG. There is a case where layers are short-circuited inside.

【0017】これらの各地上コイルの故障が生じると、
下記に示すように台車72は加速度又は角加速度を受け
る。 (A)まず、台車72の受ける加速度について、図10
〜図12に基づいて、説明する。ここで、図10におい
て、x軸方向の一目盛りは、約1.35mを示し、超電
導磁石60の寸法と対応している。図9に示すように、
地上コイル41aが異常であるとして、図10の点Pに
異常な地上コイルが位置しているとすると、上記(4)
に示すように、地上コイル40と50とをヌルフラック
ス接続している接続線45,46が短絡している場合に
は、グラフに示すように、負方向と正方向に交互にx
軸方向の加速度の変化が現れる。
When a failure occurs in each of these ground coils,
As shown below, the carriage 72 receives acceleration or angular acceleration. (A) First, FIG. 10 shows the acceleration received by the carriage 72.
~ It demonstrates based on FIG. Here, in FIG. 10, one scale in the x-axis direction indicates about 1.35 m, which corresponds to the size of the superconducting magnet 60. As shown in FIG.
Assuming that the ground coil 41a is abnormal and the abnormal ground coil is located at the point P in FIG. 10, the above (4)
As shown in the graph, when the connection lines 45 and 46 which make the null flux connection between the ground coils 40 and 50 are short-circuited, as shown in the graph, x is alternately applied in the negative direction and the positive direction.
A change in the axial acceleration appears.

【0018】次に、前記と同じ条件で、図11に示すよ
うに、上記(3)に示すように、下方コイル42のみが
断線している場合には、グラフに示すように、正方向
に絶対値が大きい脈動状のy軸方向の加速度の変化が現
れる。また、上記(1)に示すように、上方コイル41
と下方コイル42とがともに断線している場合には、グ
ラフに示すように、正方向に脈動状のy軸方向の加速
度の変化が現れる。
Next, under the same conditions as described above, as shown in FIG. 11, when only the lower coil 42 is disconnected as shown in (3) above, as shown in the graph, it is moved in the positive direction. A pulsating change in the y-axis direction with a large absolute value appears. Further, as shown in (1) above, the upper coil 41
When both the lower coil 42 and the lower coil 42 are disconnected, a pulsating change in acceleration in the y-axis direction appears in the positive direction, as shown in the graph.

【0019】更に、上記(2)に示すように、上方コイ
ル41のみが断線している場合には、グラフに示すよ
うに、負方向に脈動状のy軸方向の加速度の変化が現れ
る。次に、前記と同じ条件で、図12に示すように、上
記(5)に示すように、上方コイル41の内部で層短絡
している場合や、上記(6)に示すように、下方コイル
42の内部で層短絡している場合には、グラフ,に
示すように、負方向に絶対値が大きい波動状のz軸方向
の加速度の変化が現れる。
Further, as shown in (2) above, when only the upper coil 41 is broken, as shown in the graph, a negative pulsating change in acceleration in the y-axis direction appears. Next, under the same conditions as described above, as shown in FIG. 12, when the layers are short-circuited inside the upper coil 41 as shown in (5) above, or when the lower coil is shown as above (6). When layers are short-circuited inside 42, a wave-like change in acceleration in the z-axis direction having a large absolute value appears in the negative direction, as shown in the graph.

【0020】また、上記(1)に示すように、上方コイ
ル41と下方コイル42とがともに断線している場合に
は、グラフに示すように、中程度の波動状のz軸方向
の加速度の変化が現れる。更に、上記(2)に示すよう
に、上方コイル41のみが断線している場合には、又は
上記(3)に示すように、下方コイル42のみが断線し
ている場合には、グラフ,に示すように、より小さ
い波動状のz軸方向の加速度の変化が現れる。
Further, as shown in (1) above, when both the upper coil 41 and the lower coil 42 are disconnected, as shown in the graph, a medium-wave-like acceleration in the z-axis direction Change appears. Further, when only the upper coil 41 is disconnected as shown in (2) above, or when only the lower coil 42 is disconnected as shown in (3) above, a graph is displayed. As shown, smaller wavy changes in z-axis acceleration appear.

【0021】また、上記(4)に示すように、地上コイ
ル40と50とをヌルフラックス接続している接続線4
5,46が短絡している場合には、グラフに示すよう
に、更に小さい波動状のz軸方向の加速度の変化が現れ
る。このように、それぞれの地上コイルの故障モードに
応じて台車72は異なった加速度の変化を受ける。
Further, as shown in (4) above, the connecting wire 4 in which the ground coils 40 and 50 are null-flux connected.
When 5, 46 are short-circuited, a smaller wave-like change in acceleration in the z-axis direction appears as shown in the graph. Thus, the dolly 72 undergoes different acceleration changes depending on the failure mode of each ground coil.

【0022】(B)次に、台車72の受ける角加速度に
ついて、図13〜図15に基づいて説明する。ここで、
図13において、x軸方向の一目盛りは、約1.35m
を示し、超電導磁石60の寸法と対応している。図9に
示すように、地上コイル41aが異常であるとして、図
13の点Pに異常な地上コイルが位置しているとする
と、上記(1)に示すように、上方コイル41と下方コ
イル42とがともに断線している場合には、グラフに
示すように、負方向に振れの大きいx軸方向の角加速度
の変化が現れる。
(B) Next, the angular acceleration received by the carriage 72 will be described with reference to FIGS. here,
In FIG. 13, one scale in the x-axis direction is about 1.35 m.
And corresponds to the dimensions of the superconducting magnet 60. As shown in FIG. 9, assuming that the ground coil 41a is abnormal and the abnormal ground coil is located at the point P in FIG. 13, as shown in (1) above, the upper coil 41 and the lower coil 42 are arranged. When and are both disconnected, as shown in the graph, a change in the angular acceleration in the x-axis direction in which the shake is large in the negative direction appears.

【0023】また、上記(2)に示すように、上方コイ
ル41のみが断線している場合には、グラフに示すよ
うに、負方向に振れるx軸方向の角加速度の変化が現れ
る。更に、上記(3)に示すように、下方コイル42の
みが断線している場合には、グラフに示すように、負
方向に振れるx軸方向の角加速度の変化が現れる。次
に、図14に示すように、上記(5)に示すように、上
方コイル41の内部で層短絡している場合や、上記
(6)に示すように、下方コイル42の内部で層短絡し
ている場合には、グラフ,に示すように、正方向と
負方向に故障点Pを中心にして対称な絶対値を有する波
動状のy軸方向の角加速度の変化が現れる。
Further, as shown in (2) above, when only the upper coil 41 is broken, a change in the angular acceleration in the negative x-axis direction appears in the negative direction, as shown in the graph. Furthermore, as shown in (3) above, when only the lower coil 42 is broken, a change in the angular acceleration in the x-axis direction that swings in the negative direction appears as shown in the graph. Next, as shown in FIG. 14, when the layers are short-circuited inside the upper coil 41 as shown in (5) above, or when the layers are short-circuited inside the lower coil 42 as shown in (6) above. In this case, as shown in the graph, a wave-like change in the angular acceleration in the y-axis direction having absolute values symmetrical about the failure point P in the positive direction and the negative direction appears.

【0024】また、同様に、上記(1)に示すように、
上方コイル41と下方コイル42とがともに断線してい
る場合には、グラフに示すように、中程度の振れをも
つ前記と同様の波動状のy軸方向の角加速度の変化が現
れる。更に、上記(2)に示すように、上方コイル41
のみが断線している場合には、又は上記(3)に示すよ
うに、下方コイル42のみが断線している場合には、グ
ラフ,に示すように、前記と同様のより小さい波動
状のy軸方向の角加速度の変化が現れる。
Similarly, as shown in (1) above,
When the upper coil 41 and the lower coil 42 are both disconnected, as shown in the graph, a wavy change in the angular acceleration in the y-axis direction similar to that described above having a moderate vibration appears. Further, as shown in (2) above, the upper coil 41
In the case where only the lower coil 42 is disconnected, or when only the lower coil 42 is disconnected, as shown in (3) above, as shown in the graph, the smaller wavy y as described above is obtained. A change in the angular acceleration in the axial direction appears.

【0025】また、上記(4)に示すように、地上コイ
ル40と50とをヌルフラックス接続している接続線4
5,46が短絡している場合には、グラフに示すよう
に、更に小さい波動状のy軸方向の角加速度の変化が現
れる。最後に、図15に示すように、上記(3)に示す
ように、下方コイル42のみが断線している場合には、
グラフに示すように、正方向と負方向に故障点Pを中
心にして位相がずれた対称な絶対値を有する波動状のz
軸方向の角加速度の変化が現れる。
Further, as shown in (4) above, the connecting wire 4 in which the ground coils 40 and 50 are null-flux connected.
When 5 and 46 are short-circuited, as shown in the graph, a smaller wavelike change in the angular acceleration in the y-axis direction appears. Finally, as shown in FIG. 15, when only the lower coil 42 is disconnected, as shown in (3) above,
As shown in the graph, a wave-like z having a symmetric absolute value in which the phase is shifted in the positive direction and the negative direction around the failure point P
A change in the angular acceleration in the axial direction appears.

【0026】また、同様に、上記(1)に示すように、
上方コイル41と下方コイル42とがともに断線してい
る場合には、グラフに示すように、正方向と負方向に
故障点Pを中心にして対称な絶対値を有する波動状のz
軸方向の角加速度の変化が現れる。更に、上記(2)に
示すように、上方コイル41のみが断線している場合に
は、グラフに示すように、正方向と負方向に故障点P
を中心にして対称な絶対値を有する波動状のz軸方向の
角加速度の変化が現れる。
Similarly, as shown in (1) above,
When the upper coil 41 and the lower coil 42 are both disconnected, as shown in the graph, a wave-like z having an absolute value symmetrical about the failure point P in the positive direction and the negative direction.
A change in the angular acceleration in the axial direction appears. Further, as shown in (2) above, when only the upper coil 41 is broken, as shown in the graph, the failure point P is detected in the positive direction and the negative direction.
A wave-like change in the angular acceleration in the z-axis direction having an absolute value symmetrical with respect to appears.

【0027】上記したように、台車72の受ける加速度
又は角加速度を、図1に示すように、台車72の重心近
傍に搭載されるセンサ10、つまり、図16に示す加速
度センサ11〜13、及び又は角加速度センサ14〜1
6により、検出して、その検出信号をマルチプレクサ1
7で切り換えて、A/D変換器18により、ディジタル
信号に変換して、CPU20に読み込む。その情報と、
予め記憶された上記した地上コイルの故障モードに対応
した台車の受ける加速度及び又は角加速度パターンとを
比較して、地上コイルの故障モードの判定を行ない、地
上コイルの異常検出を行なう。
As described above, the acceleration or angular acceleration received by the carriage 72 is, as shown in FIG. 1, the sensor 10 mounted near the center of gravity of the carriage 72, that is, the acceleration sensors 11 to 13 shown in FIG. Or angular acceleration sensors 14-1
6, and the detection signal is detected by the multiplexer 1
7, the digital signal is converted by the A / D converter 18 and read into the CPU 20. With that information,
The ground coil failure mode is determined by comparing the acceleration and / or angular acceleration pattern received by the vehicle corresponding to the ground coil failure mode stored in advance, and the ground coil abnormality is detected.

【0028】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
The present invention is not limited to the above embodiments, and various modifications can be made based on the spirit of the present invention, and these modifications are not excluded from the scope of the present invention.

【0029】[0029]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、台車の重心近傍に搭載された加速度センサ又は
角加速度センサによって、迅速、かつ的確に浮上・案内
用コイルの異常状態を検出することができる。その際
に、速度センサ又は角加速度センサからの出力信号を処
理することにより、浮上・案内用コイルの故障モードを
も判別することができる。
As described above in detail, according to the present invention, the acceleration sensor or the angular acceleration sensor mounted in the vicinity of the center of gravity of the truck can be used to quickly and accurately detect the abnormal state of the levitation / guide coil. Can be detected. At that time, by processing the output signal from the velocity sensor or the angular acceleration sensor, the failure mode of the levitation / guidance coil can also be determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す超電導磁気浮上式鉄道の
断面図である。
FIG. 1 is a cross-sectional view of a superconducting magnetic levitation railway showing an embodiment of the present invention.

【図2】本発明の実施例を示す超電導磁気浮上式鉄道の
台車の模式図である。
FIG. 2 is a schematic view of a bogie of a superconducting magnetic levitation railway showing an embodiment of the present invention.

【図3】上方コイル及び下方コイルがともに断線した故
障モードを示す図である。
FIG. 3 is a diagram showing a failure mode in which both the upper coil and the lower coil are disconnected.

【図4】上方コイルのみが断線した故障モードを示す図
である。
FIG. 4 is a diagram showing a failure mode in which only the upper coil is disconnected.

【図5】下方コイルのみが断線した故障モードを示す図
である。
FIG. 5 is a diagram showing a failure mode in which only the lower coil is disconnected.

【図6】対向する地上コイル間をヌルフラックス接続す
る接続線が短絡した故障モードを示す図である。
FIG. 6 is a diagram showing a failure mode in which a connection line that makes a null flux connection between opposing ground coils is short-circuited.

【図7】上方コイルが内部層間短絡した故障モードを示
す図である。
FIG. 7 is a diagram showing a failure mode in which an upper coil is short-circuited between internal layers.

【図8】下方コイルが内部層間短絡した故障モードを示
す図である。
FIG. 8 is a diagram showing a failure mode in which a lower coil has an internal interlayer short circuit.

【図9】地上コイルの配置状態を示す図である。FIG. 9 is a diagram showing an arrangement state of ground coils.

【図10】台車のx軸方向(前後方向)の加速度の変化
を示す図である。
FIG. 10 is a diagram showing a change in acceleration in the x-axis direction (front-back direction) of the carriage.

【図11】台車のy軸方向(左右方向)の加速度の変化
を示す図である。
FIG. 11 is a diagram showing a change in acceleration in the y-axis direction (horizontal direction) of the carriage.

【図12】台車のz軸方向(上下方向)の加速度の変化
を示す図である。
FIG. 12 is a diagram showing changes in the acceleration of the carriage in the z-axis direction (vertical direction).

【図13】台車のx軸方向の角加速度の変化を示す図で
ある。
FIG. 13 is a diagram showing changes in the angular acceleration of the carriage in the x-axis direction.

【図14】台車のy軸方向の角加速度の変化を示す図で
ある。
FIG. 14 is a diagram showing changes in the angular acceleration of the carriage in the y-axis direction.

【図15】台車のz軸方向の角加速度の変化を示す図で
ある。
FIG. 15 is a diagram showing changes in the angular acceleration of the carriage in the z-axis direction.

【図16】本発明の実施例を示す超電導磁気浮上式鉄道
の浮上・案内用コイルの異常検出システムの構成図であ
る。
FIG. 16 is a configuration diagram of an abnormality detection system for a levitation / guidance coil of a superconducting magnetic levitation railway according to an embodiment of the present invention.

【図17】従来の磁気浮上式鉄道の異常検出装置の断面
図である。
FIG. 17 is a sectional view of a conventional magnetic levitation railway abnormality detection device.

【図18】従来の磁気浮上式鉄道の異常検出装置の結線
図である。
FIG. 18 is a connection diagram of a conventional magnetic levitation railway abnormality detection device.

【符号の説明】[Explanation of symbols]

10 センサ 11 x軸方向の加速度センサ 12 y軸方向の加速度センサ 13 z軸方向の加速度センサ 14 x軸方向の角加速度センサ 15 y軸方向の角加速度センサ 16 z軸方向の角加速度センサ 17 マルチプレクサ 18 A/D変換器 20 CPU 21 ROM 22 メモリ 23 ディスプレイ 30 軌道 31 両側壁 32 凹所 40,50 地上コイル 41,51 上方コイル 42,52 下方コイル 45,46 接続線 60 超電導磁石 63 超電導コイル 64 クライオスタット 65 ヘリウムタンク 70 車体 71 空気バネ 72 台車 73 台車枠 74 補助案内装置 75 補助支持装置 76 緊急着地装置 Reference Signs List 10 sensor 11 acceleration sensor for x-axis direction 12 acceleration sensor for y-axis direction 13 acceleration sensor for z-axis direction 14 angular acceleration sensor for x-axis direction 15 angular acceleration sensor for y-axis direction 16 angular acceleration sensor for z-axis direction 17 multiplexer 18 A / D converter 20 CPU 21 ROM 22 Memory 23 Display 30 Orbit 31 Both sidewalls 32 Recesses 40, 50 Ground coil 41, 51 Upper coil 42, 52 Lower coil 45, 46 Connection wire 60 Superconducting magnet 63 Superconducting coil 64 Cryostat 65 Helium tank 70 Body 71 Air spring 72 Bogie 73 Bogie frame 74 Auxiliary guide device 75 Auxiliary support device 76 Emergency landing device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】(a)U型ガイドウェイの両側壁に対向配
置されるとともに、上方コイルと下方コイルがヌルフラ
ックス接続され、対向配置される上方コイルと下方コイ
ルが、更に、ヌルフラックス接続される浮上・案内用コ
イルと、(b)該浮上・案内用コイルにより、浮上・案
内される超電導磁石を有する台車と、(c)該台車の重
心位置近傍に搭載される加速度センサと、(d)該加速
度センサからの出力信号を処理し、前記浮上・案内用コ
イルの故障モードを判定する処理装置とを具備する超電
導磁気浮上式鉄道の地上コイルの異常検出装置。
1. (a) The upper coil and the lower coil are arranged so as to face each other on both side walls of the U-shaped guideway, and the upper coil and the lower coil which are arranged so as to face each other are further connected to the null flux. A levitation / guidance coil, (b) a dolly having a superconducting magnet that is levitation / guided by the levitation / guidance coil, (c) an acceleration sensor mounted near the center of gravity of the dolly, and (d) ) An abnormality detecting device for a ground coil of a superconducting magnetic levitation railway, which comprises a processing device for processing an output signal from the acceleration sensor and determining a failure mode of the levitation / guidance coil.
【請求項2】 請求項1記載の超電導磁気浮上式鉄道の
地上コイルの異常検出装置において、前記加速度センサ
はx軸方向の加速度センサ、y軸方向の加速度センサ、
z軸方向の加速度センサである超電導磁気浮上式鉄道の
地上コイルの異常検出装置。
2. The superconducting magnetic levitation railway ground coil abnormality detection device according to claim 1, wherein the acceleration sensor is an x-axis direction acceleration sensor, and a y-axis direction acceleration sensor.
An abnormality detection device for a ground coil of a superconducting magnetic levitation railway which is an acceleration sensor in the z-axis direction.
【請求項3】(a)U型ガイドウェイの両側壁に対向配
置されるとともに、上方コイルと下方コイルがヌルフラ
ックス接続され、対向配置される上方コイルと下方コイ
ルが、更に、ヌルフラックス接続される浮上・案内用コ
イルと、(b)該浮上・案内用コイルにより、浮上・案
内される超電導磁石を有する台車と、(c)該台車の重
心位置近傍に搭載される角加速度センサと、(d)該角
加速度センサからの出力信号を処理し、前記浮上・案内
用コイルの故障モードを判定する処理装置とを具備する
超電導磁気浮上式鉄道の地上コイルの異常検出装置。
3. (a) The upper coil and the lower coil are arranged so as to oppose each other on both side walls of the U-shaped guideway, and the upper coil and the lower coil, which are opposed to each other, are further connected for null flux. A levitation / guidance coil, (b) a dolly having a superconducting magnet that is levitation / guided by the levitation / guidance coil, and (c) an angular acceleration sensor mounted near the center of gravity of the dolly ( d) An abnormality detecting device for a ground coil of a superconducting magnetic levitation railway, which comprises a processing device that processes an output signal from the angular acceleration sensor and determines a failure mode of the levitation / guidance coil.
【請求項4】 請求項3記載の超電導磁気浮上式鉄道の
地上コイルの異常検出装置において、前記角加速度セン
サはx軸方向の角加速度センサ、y軸方向の角加速度セ
ンサ、z軸方向の角加速度センサである超電導磁気浮上
式鉄道の地上コイルの異常検出装置。
4. The superconducting magnetic levitation railway ground coil abnormality detection device according to claim 3, wherein the angular acceleration sensor is an x-axis angular acceleration sensor, a y-axis angular acceleration sensor, and a z-axis angular sensor. An abnormality detection device for the ground coil of a superconducting magnetic levitation railway, which is an acceleration sensor.
JP4074824A 1992-03-31 1992-03-31 Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad Withdrawn JPH05281281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074824A JPH05281281A (en) 1992-03-31 1992-03-31 Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074824A JPH05281281A (en) 1992-03-31 1992-03-31 Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad

Publications (1)

Publication Number Publication Date
JPH05281281A true JPH05281281A (en) 1993-10-29

Family

ID=13558455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074824A Withdrawn JPH05281281A (en) 1992-03-31 1992-03-31 Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad

Country Status (1)

Country Link
JP (1) JPH05281281A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256019A (en) * 2006-03-22 2007-10-04 Railway Technical Res Inst Vibration model system for articulated vehicles of magnetic levitation railroad
JP2008070329A (en) * 2006-09-15 2008-03-27 Railway Technical Res Inst Trouble-detecting sensor of ground coil for magnetic levitation transportation system and system thereof
JP2020020595A (en) * 2018-07-30 2020-02-06 日置電機株式会社 Measurement device
CN116930832A (en) * 2023-07-24 2023-10-24 西南交通大学 Superconducting electric magnetic levitation track fault detection device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256019A (en) * 2006-03-22 2007-10-04 Railway Technical Res Inst Vibration model system for articulated vehicles of magnetic levitation railroad
JP4647527B2 (en) * 2006-03-22 2011-03-09 財団法人鉄道総合技術研究所 Vibration model device for articulated vehicle of magnetic levitation railway
JP2008070329A (en) * 2006-09-15 2008-03-27 Railway Technical Res Inst Trouble-detecting sensor of ground coil for magnetic levitation transportation system and system thereof
JP2020020595A (en) * 2018-07-30 2020-02-06 日置電機株式会社 Measurement device
CN116930832A (en) * 2023-07-24 2023-10-24 西南交通大学 Superconducting electric magnetic levitation track fault detection device and method
CN116930832B (en) * 2023-07-24 2024-05-10 西南交通大学 Superconducting electric magnetic levitation track fault detection device and method

Similar Documents

Publication Publication Date Title
JP4112610B2 (en) Speed measuring device for rail mounted vehicle
US5557216A (en) System and method for testing electrical generators
JP4431061B2 (en) Derailment prevention device
JP6232684B2 (en) Magnetic levitation railway ground coil position measurement system and magnetic levitation railway ground coil position measurement method
JPH05281281A (en) Device for detecting abnormality of ground coil of superconductive magnetic levitation type railroad
CN109987116B (en) High-temperature superconductive magnetic levitation track inspection vehicle
CN103552581B (en) Wheel sensor
JP3205062B2 (en) Superconducting magnet abnormality detection protection device
US4658658A (en) Coil system for inductive measurement of the velocity of movement of a magnetized body
JPH09120913A (en) Superconducting magnet
JP3335787B2 (en) Induction current collector for magnetic levitation train
JPS6038179Y2 (en) Model moving device for ship magnetic processing experimental equipment
JP2000088571A (en) Detecting method for position of moving body at inside of pipe
JPH10125526A (en) Maglev train with torsional oscillation detecting coil for superconducting magnet
JPH0789681B2 (en) Levitation coil displacement detector
JPS6231887Y2 (en)
JP3787751B2 (en) Damage evaluation method for load support for magnetic levitation train
JP3310124B2 (en) Abnormal ground coil detector for magnetic levitation train equipment
JPH07222307A (en) Failure detector for linear motor
JPH02219406A (en) Charger for magnetic levitation carrier
JPH0686410A (en) Magnetic levitation train equipment
Murai et al. Test run of combined propulsion, levitation and guidance system at Miyazaki test track
JPH026281B2 (en)
JPH04208010A (en) Levitation amount detector for magnetic levitation vehicle
JPS6019691A (en) Method of automatically operating crane and detector for deviation of hung load

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608