JPH10122418A - Solenoid valve operating device and hot water supply device - Google Patents

Solenoid valve operating device and hot water supply device

Info

Publication number
JPH10122418A
JPH10122418A JP8277779A JP27777996A JPH10122418A JP H10122418 A JPH10122418 A JP H10122418A JP 8277779 A JP8277779 A JP 8277779A JP 27777996 A JP27777996 A JP 27777996A JP H10122418 A JPH10122418 A JP H10122418A
Authority
JP
Japan
Prior art keywords
solenoid valve
current
power supply
relay
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8277779A
Other languages
Japanese (ja)
Other versions
JP3841500B2 (en
Inventor
Kensaku Inoue
健策 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harman Co Ltd
Original Assignee
Harman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harman Co Ltd filed Critical Harman Co Ltd
Priority to JP27777996A priority Critical patent/JP3841500B2/en
Publication of JPH10122418A publication Critical patent/JPH10122418A/en
Application granted granted Critical
Publication of JP3841500B2 publication Critical patent/JP3841500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Control For Baths (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solenoid valve operating device for specifying a broken position of a solenoid valve coil. SOLUTION: A solenoid valve operating circuit unit 1 is arranged to independently switch conduction or dis-conduction of current passed from a first power supply unit 11 for operating a solenoid valve to a plurality of solenoid valve coils 13a, 13b in relay contacts 14a, 14b. A solenoid valve control circuit unit 2 is arranged to independently control feed of current from a second power supply unit 21 to relay contacts 24a, 24b in a relay control unit 23. A single current detecting means 12 is arranged to detect current supplied from the first power supply unit 11 to the solenoid valve coils 13a, 13b in the solenoid valve operating circuit unit 1. Each failure of breakage of the solenoid valve coils 13a, 13b is judged by a breakage failure judging means 23e of the relay control unit 23 on the basis of a current detecting signal 15 outputted by a current detecting means 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁弁作動用の第
1電源部と、複数の電磁弁コイルと、前記第1電源部か
ら前記電磁弁コイルに供給される電流の導通または遮断
を各別に切り換える継電器接点とを有する電磁弁作動回
路部を備え、且つ、電磁弁制御用の第2電源部と、前記
第2電源部から電流を供給されて前記継電器接点の開閉
動作を行う継電器駆動部と、前記第2電源部から前記継
電器駆動部への電流供給を各別に制御する継電器制御部
を有する電磁弁制御回路部を備えてなる電磁弁作動装置
に関し、更に、この種の電磁弁作動装置を備えた給湯装
置に関する。
[0001] The present invention relates to a first power supply for operating a solenoid valve, a plurality of solenoid valve coils, and a conduction or interruption of a current supplied to the solenoid valve coil from the first power supply. A second power supply section for controlling the solenoid valve, and a relay drive section which is supplied with a current from the second power supply section and performs an opening / closing operation of the relay contact; And an electromagnetic valve operating device comprising an electromagnetic valve control circuit section having a relay control section for individually controlling the current supply from the second power supply section to the relay drive section. The present invention relates to a hot water supply device provided with:

【0002】[0002]

【従来の技術】この種の電磁弁作動装置としては、例え
ば、図3に示す回路構成が知られている。図3に示すよ
うに、電磁弁作動用の第1電源部11が交流100Vを
全波整流して直流100Vに変換するダイオードブリッ
ジで構成され、電磁弁の開弁または閉弁作動用あるいは
開弁または閉弁状態保持用の電磁弁コイル13a、13
bとその電磁弁コイル13a、13bと継電器接点14
a、14bとが夫々1個づつ直列接続する直列回路が複
数並列に、前記ダイオードブリッジの正負両出力端子1
1a、11b間に接続されて電磁弁作動回路部を形成し
ている。また、電磁弁制御用の第2電源部21が交流1
00Vから直流12Vを発生するスイッチング電源で構
成され、更に、この直流12Vからダウンコンバータで
直流5Vを発生し、継電器制御部であるマイクロコンピ
ュータ23用の電源としている。前記継電器接点14
a、14bの開閉動作を行う継電器駆動部である継電器
コイル24a、24b各々の一方端を前記第2電源部2
1の直流12V出力端子21aに接続し、前記各継電器
コイル24a、24bの他方端をドライバIC25の出
力端子25a、25bに夫々接続して、前記ドライバI
C25の対応する入力端子25c、25dを各別に前記
マイクロコンピュータ23の各制御出力端子23a、2
3bに接続してある。前記マイクロコンピュータ23の
ROM(読み出し専用メモリ)部には予め決められた手
順で電磁弁が作動するように前記各制御出力端子23
a、23bの出力レベルを制御するプログラムが格納さ
れ、前記マイクロコンピュータの中央演算装置部がその
プログラムを実行するように構成されている。前記制御
出力端子23a、23bの出力レベルが低レベルの場
合、前記ドライバIC25の出力端子25a、25bが
低レベルとなり、前記直流12V出力端子21aからそ
の出力端子25a、25bにつながっている前記継電器
コイル24a、24bに所定の電流値の電流が導通し、
それにより対応する継電器接点14a、14bが閉成し
て、その継電器接点14a、14bと直列接続する電磁
弁コイル13a、13bに所定の電流が通電して対応す
る電磁弁が作動する。尚、図3に示すように、前記各継
電器コイル24a、24bには、電流遮断時に発生する
逆起電力からの回路保護や継電器作動特性の改善、さら
にはノイズ等によって継電器コイルに逆方向電流が流れ
て誤動作するのを防止するダイオード26a、26bが
夫々並列に接続されている。
2. Description of the Related Art As a solenoid valve operating device of this type, for example, a circuit configuration shown in FIG. 3 is known. As shown in FIG. 3, the first power supply unit 11 for operating the solenoid valve is constituted by a diode bridge for full-wave rectifying 100 V AC and converting it to 100 V DC, and is used for opening or closing the solenoid valve. Or solenoid valve coils 13a, 13 for maintaining the valve closed state
b and its solenoid valve coils 13a, 13b and relay contacts 14
a and 14b are connected in series one by one.
It is connected between 1a and 11b to form a solenoid valve operating circuit. Further, the second power supply unit 21 for controlling the solenoid valve is connected to the AC 1
It is composed of a switching power supply which generates DC 12V from 00V, and further generates DC 5V from this DC 12V by a down converter, which is used as a power supply for the microcomputer 23 which is a relay control unit. The relay contact 14
a, one end of each of the relay coils 24a, 24b, which is a relay drive unit for performing the opening / closing operation of the second power supply unit 2,
1 and the other ends of the relay coils 24a and 24b are connected to the output terminals 25a and 25b of the driver IC 25, respectively.
The corresponding input terminals 25c and 25d of C25 are individually connected to the control output terminals 23a and 23a of the microcomputer 23, respectively.
3b. Each of the control output terminals 23 is provided in a ROM (read only memory) of the microcomputer 23 so that the solenoid valve operates in a predetermined procedure.
A program for controlling the output levels of the microcomputers a and 23b is stored, and the central processing unit of the microcomputer is configured to execute the program. When the output levels of the control output terminals 23a and 23b are low, the output terminals 25a and 25b of the driver IC 25 are low, and the relay coil connected from the DC 12V output terminal 21a to the output terminals 25a and 25b. A current of a predetermined current value is conducted to 24a and 24b,
As a result, the corresponding relay contacts 14a, 14b are closed, and a predetermined current is supplied to the solenoid valve coils 13a, 13b connected in series with the relay contacts 14a, 14b, so that the corresponding solenoid valves operate. As shown in FIG. 3, the relay coils 24a and 24b have a reverse current flowing through the relay coils due to circuit protection from a back electromotive force generated at the time of current interruption, improvement of the relay operation characteristics, and noise. Diodes 26a and 26b for preventing the current from malfunctioning are connected in parallel.

【0003】従来より、この種の電磁弁作動装置を備え
て、例えば、燃料供給路や給水路に設けられた電磁弁を
集中制御するように構成された給湯装置があった。
[0003] Conventionally, there has been a hot water supply device provided with this type of solenoid valve actuating device and configured to centrally control, for example, an electromagnetic valve provided in a fuel supply path or a water supply path.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
たような従来の電磁弁作動装置では、前記電磁弁コイル
が断線していたり、または、前記継電器接点が常時閉成
状態に短絡していたりして、電磁弁が特定状態に固定さ
れしまう故障が発生しても、故障原因を特定できなかっ
た。
However, in the conventional solenoid valve operating device as described above, the solenoid valve coil is disconnected or the relay contact is short-circuited in a normally closed state. However, even if a failure occurs in which the solenoid valve is fixed in a specific state, the cause of the failure cannot be specified.

【0005】また、従来の電磁弁作動装置を備えた従来
の給湯装置装置では上記のような故障によって、例え
ば、何れかの電磁弁コイルが断線した結果、燃焼バーナ
が点火せず給湯を開始しないというような不具合が発生
しても、故障原因(どの電磁弁コイルが断線している
か)を直ぐに特定できず、故障解析に時間を要し、使用
現場での故障修理ができないという問題があった。
Further, in the conventional hot water supply apparatus provided with the conventional solenoid valve operating device, the combustion burner does not ignite and does not start hot water supply due to, for example, disconnection of one of the solenoid valve coils due to the above-described failure. Even if such a problem occurs, the cause of the failure (which solenoid valve coil is disconnected) could not be immediately identified, and time was required for failure analysis, and the failure could not be repaired at the site of use. .

【0006】本発明は、かかる点に着目してなされたも
のであり、その目的は、従来の電磁弁作動装置に対して
簡単な回路追加を施すだけで、前記電磁弁コイルの断線
故障か前記継電器接点の短絡故障を容易に判別でき、更
に、前記電磁弁コイルの断線故障箇所の特定が容易にで
きるように改良し、改良された電磁弁作動装置を使用す
ることで、故障解析時間の短縮を図り、使用現場での補
修修理を可能とする点にある。
The present invention has been made in view of such a point, and an object of the present invention is to provide a simple circuit addition to a conventional solenoid valve operating device, and to determine whether the solenoid valve coil disconnection failure has occurred. Short-circuit failure of the relay contact can be easily determined, and furthermore, the breakage of the solenoid valve coil can be easily identified and the failure analysis time can be reduced by using the improved solenoid valve operating device. To enable repair and repair at the site of use.

【0007】[0007]

【課題を解決するための手段】[Means for Solving the Problems]

〔構成〕この目的を達成するための本発明に係る電磁弁
作動装置の第一の特徴構成は、特許請求の範囲の欄の請
求項1に記載した通り、電磁弁作動用の第1電源部と、
複数の電磁弁コイルと、前記第1電源部から前記電磁弁
コイルに供給される電流の導通または遮断を各別に切り
換える継電器接点とを有する電磁弁作動回路部を備え、
且つ、電磁弁制御用の第2電源部と、前記第2電源部か
ら電流を供給されて前記継電器接点の開閉動作を行う継
電器駆動部と、前記第2電源部から前記継電器駆動部へ
の電流供給を各別に制御する継電器制御部を有する電磁
弁制御回路部を備えてなる電磁弁作動装置であって、前
記電磁弁作動回路部が前記第1電源部から前記電磁弁コ
イル各々に供給される電流を検知する単一の電流検知手
段を備え、前記継電器制御部が前記電流検知手段の電流
検知結果に応じて出力される電流検知信号に基づいて前
記電磁弁コイル各々の断線故障を判定する断線故障判定
手段を備えている点にある。
[Structure] A first characteristic structure of the solenoid valve actuating device according to the present invention for achieving this object is, as described in claim 1 of the claims, a first power supply unit for actuating the solenoid valve. When,
A plurality of solenoid valve coils, and a solenoid valve operation circuit unit having a relay contact for individually switching conduction or interruption of current supplied to the solenoid valve coil from the first power supply unit,
And a second power supply unit for controlling the solenoid valve, a relay drive unit supplied with current from the second power supply unit to open and close the relay contacts, and a current from the second power supply unit to the relay drive unit. An electromagnetic valve operating device comprising an electromagnetic valve control circuit unit having a relay control unit for individually controlling the supply, wherein the electromagnetic valve operation circuit unit is supplied from the first power supply unit to each of the electromagnetic valve coils. Disconnection for determining a disconnection failure of each of the solenoid valve coils based on a current detection signal output in response to a current detection result of the current detection means, comprising a single current detection means for detecting a current; The point is that a failure determination means is provided.

【0008】同第二の特徴構成は、特許請求の範囲の欄
の請求項2に記載した通り、上述の第一の特徴構成に加
えて、前記断線故障判定手段は、所定の指令信号に応じ
て、前記第2電源部から前記各継電器駆動部への電流供
給を時間を異ならせて逐次許容する故障診断シーケンス
を開始するように構成されており、前記電流供給期間
が、前記電磁弁コイルを有する電磁弁が機能するのに必
要な時間より短い点にある。
[0008] The second feature configuration is, in addition to the first feature configuration described above, as described in claim 2 of the claims section, wherein the disconnection failure determination means responds to a predetermined command signal. The second power supply unit is configured to start a failure diagnosis sequence in which current supply to the relay drive units is sequentially permitted at different times, and the current supply period is such that the solenoid valve coil is activated. In that it is shorter than the time required for the solenoid valve to function.

【0009】同第三の特徴構成は、特許請求の範囲の欄
の請求項3に記載した通り、上述の第一または第二の特
徴構成に加えて、前記断線故障判定手段は、所定の指令
信号に応じて、前記第2電源部から前記継電器駆動部へ
の電流供給を時間を異ならせて逐次許容する故障診断シ
ーケンスを開始するように構成されており、前記電流供
給期間に前記第1電源部から前記電磁弁コイルに供給さ
れる電流値が、前記電磁弁コイルを有する電磁弁が機能
するのに必要な最小電流値より小さい点にある。
The third characteristic configuration is, as described in claim 3 of the claims, in addition to the above-mentioned first or second characteristic configuration, the disconnection failure determination means includes a predetermined command. A failure diagnosis sequence for sequentially allowing current supply from the second power supply unit to the relay drive unit at different times in accordance with a signal, and starting the first power supply during the current supply period. The point that the current value supplied from the unit to the solenoid valve coil is smaller than the minimum current value required for the solenoid valve having the solenoid valve coil to function.

【0010】この目的を達成するための本発明に係る給
湯装置の特徴構成は、特許請求の範囲の欄の請求項4に
記載した通り、複数の電磁弁を具備する給湯器であっ
て、上述の第一、第二または第三の特徴構成の電磁弁作
動装置と、前記電磁弁作動装置の前記断線故障判定手段
の判定結果を出力する出力手段とを備え、前記電磁弁作
動装置の前記電磁弁コイルが前記複数の電磁弁の一部ま
たは全部に各別に作用するように構成されている点にあ
る。
In order to achieve this object, a characteristic configuration of a water heater according to the present invention is a water heater having a plurality of solenoid valves, as described in claim 4 of the claims. An electromagnetic valve operating device having the first, second or third characteristic configuration, and output means for outputting a determination result of the disconnection failure determining means of the electromagnetic valve operating device, The present invention is characterized in that the valve coil is configured to individually act on a part or all of the plurality of solenoid valves.

【0011】〔作用効果〕以下に、上記各特徴構成にお
ける作用効果を説明する。上記の本発明に係る電磁弁作
動装置の第一の特徴構成によれば、前記第2電源部を活
性化させ、前記継電器制御部が前記第2電源部から前記
継電器駆動部への電流供給が同時に任意の一つの継電器
駆動部に対してだけ発生するように特別に制御すること
で、その継電器駆動部で駆動される継電器接点だけが閉
成し、その継電器接点に対応する前記電磁弁コイルにだ
け前記第1電源部からの電流経路が形成され、その時の
前記第1電源部からの供給電流の有無を前記電流検知手
段で検知し、その検知結果に応じた出力信号を前記断線
故障判定手段に送信することで、前記断線故障判定手段
はその出力信号に基づいて任意の電磁弁コイルの断線の
有無が判定できるのである。
[Effects] The effects of the above features will be described below. According to the first characteristic configuration of the solenoid valve operating device according to the present invention described above, the second power supply unit is activated, and the relay control unit supplies current from the second power supply unit to the relay drive unit. At the same time, by performing special control so as to be generated only for any one relay drive unit, only the relay contacts driven by the relay drive unit are closed, and the solenoid valve coil corresponding to the relay contact is closed. Only the current path from the first power supply unit is formed, and the current detection means detects the presence or absence of the supply current from the first power supply unit at that time, and outputs an output signal corresponding to the detection result to the disconnection failure determination means The disconnection failure determination means can determine the presence or absence of disconnection of any solenoid valve coil based on the output signal.

【0012】更に、上記の断線検査を全ての電磁弁コイ
ルについて各別に繰り返し、前記継電器制御部がどの継
電器駆動部への電流供給を発生させたかの情報と照合す
ることで、断線箇所の特定が可能となるのである。
Further, the above-described disconnection inspection is repeated for each of the solenoid valve coils individually, and the relay control unit compares the information with which relay drive unit the current supply has been generated to identify the disconnection location. It becomes.

【0013】更に、前記継電器制御部が前記第2電源部
から前記継電器駆動部への電流供給が何れの継電器駆動
部に対しても発生しないように特別に制御し、その時の
前記第1電源部からの供給電流の有無を前記電流検知手
段で検知することで、電流がなければ、上記の断線検査
結果が正常であると判定でき、電流を検知した場合は、
電磁弁コイルの断線の有無の判定はその儘では直接はで
きないが、何れかの継電器接点が短絡不良となっている
ことが判別でき、不良解析の重要な手掛かりとすること
ができる。
Further, the relay control section specially controls the current supply from the second power supply section to the relay drive section so as not to be generated in any of the relay drive sections, and the first power supply section at that time. By detecting the presence or absence of the supply current from the current detection means, if there is no current, it can be determined that the above disconnection inspection result is normal, if the current is detected,
Although it is not possible to directly determine the presence / absence of disconnection of the solenoid valve coil as it is, it is possible to determine that one of the relay contacts has a short-circuit failure, which can be an important clue for failure analysis.

【0014】以上の結果として、電磁弁コイルの断線故
障だけが発生した場合は、その故障箇所を容易に特定で
き、更に、その判定結果の信憑性も評価できるようにな
り、故障解析に要する時間が大幅に短縮できるようにな
った。
As a result, when only a disconnection failure of the solenoid valve coil occurs, the location of the failure can be easily specified, and the credibility of the determination result can be evaluated. Can be greatly reduced.

【0015】また、全ての電磁弁コイルに共通な電流経
路に前記電流検知手段を設けることで、電磁弁コイル毎
に電流検知手段を設ける必要がなく、回路構成の簡単
化、及び、回路追加による製造コスト上昇を最小限に抑
えることができるのである。
Further, by providing the current detecting means in a current path common to all the solenoid valve coils, there is no need to provide a current detecting means for each solenoid valve coil, which simplifies the circuit configuration and improves the circuit. The increase in manufacturing costs can be minimized.

【0016】同第二の特徴構成によれば、前記継電器制
御部が電磁弁コイルの断線故障検査のための特別な制御
である故障診断シーケンスを実行しても、実際の電磁弁
は各電磁弁コイルへの通電時間が短く作動しないため、
電磁弁作動装置外部へ影響を与えることなく、断線故障
検査だけを実行できるのである。
According to the second characteristic configuration, even if the relay control unit executes a failure diagnosis sequence which is a special control for a disconnection failure inspection of the solenoid valve coil, the actual solenoid valve is controlled by each solenoid valve. Because the coil energization time is short and it does not work,
Only the disconnection failure inspection can be performed without affecting the outside of the solenoid valve operating device.

【0017】同第三の特徴構成によれば、前記継電器制
御部が電磁弁コイルの断線故障検査のための特別な制御
である故障診断シーケンスを実行しても、実際の電磁弁
は各電磁弁コイルへの供給電流量が小さく作動しないた
め、電磁弁作動装置外部へ影響を与えることなく、断線
故障検査だけを実行できるのである。
According to the third characteristic configuration, even if the relay control section executes a failure diagnosis sequence which is a special control for inspection for disconnection failure of the solenoid valve coil, the actual solenoid valve is controlled by each solenoid valve. Since the amount of current supplied to the coil is small and does not operate, only the disconnection failure inspection can be performed without affecting the outside of the solenoid valve operating device.

【0018】この結果、第二または第三の特徴構成によ
れば、前記故障診断シーケンスにおいて、電磁弁が不必
要に作動した場合の対策を別途講じる必要がなく、故障
診断シーケンスの設計の簡単化が図れるのである。
As a result, according to the second or third characteristic configuration, it is not necessary to take additional measures when the solenoid valve is operated unnecessarily in the failure diagnosis sequence, and the design of the failure diagnosis sequence can be simplified. Can be achieved.

【0019】上記の本発明に係る給湯装置の特徴構成に
よれば、不具合発生時の故障解析時、または、定期的な
故障点検時において、人為的操作で前記電磁弁作動装置
を、電磁弁コイルの断線故障検査のための故障診断シー
ケンスを実行すべく作動開始させて、前記故障診断シー
ケンスの判定結果を前記出力手段で画面表示あるいは音
声出力等することで、容易に故障原因である電磁弁コイ
ルの断線箇所が確認できるのである。
According to the above-described characteristic configuration of the water heater according to the present invention, at the time of failure analysis at the time of occurrence of a failure or at the time of periodic failure inspection, the solenoid valve operating device is manually operated by the electromagnetic valve coil. By starting operation to execute a failure diagnosis sequence for disconnection failure inspection of the above, and by displaying the determination result of the failure diagnosis sequence on a screen or outputting sound by the output means, the solenoid valve coil which is the cause of the failure can be easily obtained. Can be confirmed.

【0020】この結果、給湯装置の電磁弁コイルの断線
故障における不良解析時間の大幅な短縮ができ、故障修
理が容易で短時間になり、使用現場での故障修理も可能
となる。
As a result, the failure analysis time in the event of a disconnection failure of the solenoid valve coil of the hot water supply device can be greatly reduced, and the repair can be easily and quickly performed, and the repair at the use site can be performed.

【0021】更に、給湯装置の通常運転立ち上げ時等に
自動的に、前記故障診断シーケンスを実行するように前
記電磁弁作動装置を構成することで、同様の故障が早期
に発見でき、単一の故障が別の故障を誘引するような複
合的な故障の発生を未然に防止することも可能となる。
Further, by configuring the solenoid valve operating device to automatically execute the failure diagnosis sequence when the normal operation of the water heater is started, a similar failure can be found at an early stage. It is also possible to prevent the occurrence of a compound failure in which one failure induces another failure.

【0022】[0022]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図1に本発明に係る電磁弁作動装
置の電気回路構成を示す。図1に示すように、電磁弁作
動装置は電磁弁作動回路部1と電磁弁制御回路部2で構
成されている。更に、前記電磁弁作動回路部1は、交流
100Vを全波整流して直流100Vに変換するダイオ
ードブリッジで構成される電磁弁作動用の第1電源部1
1と、複数の電磁弁3a、3bの夫々の開弁作動用に設
けられた複数の電磁弁コイル13a、13bとを備え、
更に、その電磁弁コイル13a、13bと継電器接点1
4a、14bとが夫々1個づつ直列接続したものが夫々
並列接続し、その並列接続した一方の並列接続点N1が
前記ダイオードブリッジの正極出力端子11aに接続
し、他方の並列接続点N2が電流検知手段12の一方端
に接続し、前記電流検知手段12の他方端が前記ダイオ
ードブリッジの負極出力端子11bに接続して構成され
ている。また、電磁弁制御回路部2は、交流100Vか
ら直流12Vを発生するスイッチング電源で構成される
電磁弁制御用の第2電源部21と、更に、この直流12
Vから直流5Vを発生するダウンコンバータ22と、継
電器制御部であるマイクロコンピュータ23と、前記継
電器接点14a、14bの開閉動作を各々に対応して行
う継電器駆動部である継電器コイル24a、24bとを
備え、更に、その継電器コイル24a、24bの一方側
の端子が夫々前記第2電源部21の直流12V出力端子
21aと接続し、前記各継電器コイル24a、24bの
他方側の端子をドライバIC25の出力端子25a、2
5bに夫々接続し、前記ドライバIC25の対応する入
力端子25c、25dが前記マイクロコンピュータ23
の各制御出力端子23a、23bに夫々接続し、前記ダ
ウンコンバータ22の直流5V出力端子22aと前記マ
イクロコンピュータ23の電源端子23cとが接続して
構成されている。尚、前記電磁弁制御回路部2は、図1
に示すように、ノイズ等によって継電器コイル24a、
24bに逆方向電流が流れて誤動作するのを防止するダ
イオード26a、26bが前記各継電器コイル24a、
24bに夫々並列に接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an electric circuit configuration of the solenoid valve operating device according to the present invention. As shown in FIG. 1, the solenoid valve operating device includes a solenoid valve operating circuit unit 1 and a solenoid valve control circuit unit 2. Further, the solenoid valve operating circuit section 1 is a first power supply section 1 for operating the solenoid valve, which is configured by a diode bridge that rectifies full-wave AC 100V and converts it into DC 100V.
1 and a plurality of solenoid valve coils 13a, 13b provided for opening the respective solenoid valves 3a, 3b,
Further, the solenoid valve coils 13a and 13b and the relay contact 1
4a and 14b are connected in series one by one, respectively, are connected in parallel, one parallel connection point N1 connected in parallel is connected to the positive output terminal 11a of the diode bridge, and the other parallel connection point N2 is The current detecting means 12 is connected to one end of the detecting means 12, and the other end of the current detecting means 12 is connected to a negative output terminal 11b of the diode bridge. The solenoid valve control circuit unit 2 includes a second power supply unit 21 for controlling the solenoid valve, which is configured by a switching power supply that generates DC 12 V from AC 100 V, and further includes a DC 12
A down converter 22 that generates 5 VDC from V, a microcomputer 23 that is a relay control unit, and relay coils 24a and 24b that are relay drive units that respectively perform opening and closing operations of the relay contacts 14a and 14b. Further, one terminal of each of the relay coils 24a and 24b is connected to the DC 12V output terminal 21a of the second power supply unit 21, and the other terminal of each of the relay coils 24a and 24b is output from the driver IC 25. Terminals 25a, 2
5b, and the corresponding input terminals 25c and 25d of the driver IC 25 are connected to the microcomputer 23
Are connected to the control output terminals 23a and 23b, respectively, and the DC 5V output terminal 22a of the down converter 22 and the power supply terminal 23c of the microcomputer 23 are connected. Incidentally, the solenoid valve control circuit section 2 corresponds to FIG.
As shown in FIG.
Diodes 26a and 26b for preventing a reverse current from flowing through the relay coil 24b and malfunctioning are provided in the respective relay coils 24a and 24b.
24b are connected in parallel.

【0023】更に、前記電流検知手段12は前記第1電
源部11から前記電磁弁コイル13a、13bの少なく
とも一つに供給される電流を検知したことを示す電流検
知信号15を前記マイクロコンピュータ23の入力端子
23dに出力する。また、前記マイクロコンピュータ2
3は、前記電流検知信号15に基づいて前記電磁弁コイ
ル13a、13b各々の断線故障を判定する断線故障判
定手段23eを備えている。
Further, the current detection means 12 outputs a current detection signal 15 indicating that a current supplied from the first power supply section 11 to at least one of the solenoid valve coils 13a and 13b has been detected by the microcomputer 23. Output to the input terminal 23d. The microcomputer 2
3 includes a disconnection failure determination unit 23e that determines a disconnection failure of each of the solenoid valve coils 13a and 13b based on the current detection signal 15.

【0024】図1に示す電磁弁作動装置の電気回路構成
と、前掲の図3に示す従来技術による電磁弁作動装置の
電気回路構成との相違点は、前記電磁弁作動回路部1が
前記第1電源部11から前記電磁弁コイル13a、13
b各々に供給される電流を検知する単一の前記電流検知
手段12を備え、前記マイクロコンピュータ23が、前
記電流検知手段12から出力される前記電流検知信号1
5に基づいて前記電磁弁コイル13a、13b各々の断
線故障を判定する断線故障判定手段23eを備えている
点である。尚、図1及び図3中において、共通する回路
構成要素は共通の符号を付している。
The difference between the electric circuit configuration of the solenoid valve operating device shown in FIG. 1 and the electric circuit configuration of the prior art solenoid valve operating device shown in FIG. 1 The power supply unit 11 supplies the electromagnetic valve coils 13a, 13
b. The microcomputer 23 includes a single current detecting means 12 for detecting a current supplied to each of the current detecting signals 12.
5 in that a disconnection failure determination means 23e for determining disconnection failure of each of the solenoid valve coils 13a and 13b is provided. 1 and 3, common circuit components are denoted by common reference numerals.

【0025】前記マイクロコンピュータ23のROM
(読み出し専用メモリ)部には通常動作時において予め
決められた手順で前記電磁弁3a、3bが作動するよう
に前記各制御出力端子23a、23bの出力レベルを制
御する制御プログラムと、前記電磁弁コイル13a、1
3bの断線故障判定用に前記通常動作時とは別に前記各
制御出力端子23a、23bの出力レベルを制御する制
御プログラムとが格納され、前記マイクロコンピュータ
23の中央演算装置部が通常動作時であるのか断線故障
判定時であるのかを判定し、前記両プログラムの内の一
方を選択して実行するように構成されている。尚、前記
ドライバIC25の各出力端子25a、25bの出力レ
ベルは低インピーダンス状態の低レベルと高インピーダ
ンス状態の高レベルの二通りがあり、前記マイクロコン
ピュータ23の各制御出力端子23a、23bの出力レ
ベルに追従して夫々変化する。
ROM of the microcomputer 23
The (read only memory) section includes a control program for controlling the output level of each of the control output terminals 23a and 23b so that the solenoid valves 3a and 3b operate in a predetermined procedure during normal operation; Coils 13a, 1
A control program for controlling the output level of each of the control output terminals 23a and 23b is stored separately from the normal operation for the disconnection failure determination of 3b, and the central processing unit of the microcomputer 23 is in the normal operation. Or a disconnection failure determination, and one of the two programs is selected and executed. The output level of each output terminal 25a, 25b of the driver IC 25 has two types, a low level in a low impedance state and a high level in a high impedance state, and the output level of each control output terminal 23a, 23b of the microcomputer 23. Each changes following.

【0026】図2に、前記電流検知手段12の具体的な
回路構成としてホトカプラ12aを使用した場合の回路
構成を示す。前記ホトカプラ12aは発光ダイオード1
2bとホトトランジスタ12cからなり、前記並列接続
点N2と電流制限抵抗12dの一方側の端子、その電流
制限抵抗12dの他方側の端子と前記発光ダイオード1
2bの陽極端子、前記発光ダイオード12bの陰極端子
と前記ダイオードブリッジの負極出力端子11b、前記
ホトトランジスタ12cのコレクタ端子と負荷抵抗12
eと保護抵抗12fの夫々の一方側の端子、前記負荷抵
抗12eの他方側の端子と前記ダウンコンバータ22の
直流5V出力端子22a、前記保護抵抗12fの他方側
の端子と前記マイクロコンピュータ23の前記入力端子
23dが夫々接続し、前記ホトトランジスタ12cのエ
ミッタ端子が接地されて構成されている。
FIG. 2 shows a circuit configuration when a photocoupler 12a is used as a specific circuit configuration of the current detecting means 12. The photocoupler 12a is a light emitting diode 1
2b, a phototransistor 12c, the parallel connection point N2, one terminal of a current limiting resistor 12d, the other terminal of the current limiting resistor 12d, and the light emitting diode 1c.
2b, a cathode terminal of the light emitting diode 12b and a negative output terminal 11b of the diode bridge, a collector terminal of the phototransistor 12c and a load resistor 12b.
e and one terminal of the protection resistor 12f, the other terminal of the load resistor 12e and the DC 5V output terminal 22a of the down converter 22, the other terminal of the protection resistor 12f and the The input terminals 23d are connected to each other, and the emitter terminal of the phototransistor 12c is grounded.

【0027】以下に、図2に示す実施形態に基づいて各
部の動作を説明する。先ず、前記電磁弁3a、3bを開
弁または閉弁作動させる場合において、例えば、前記電
磁弁3aを開弁作動させる場合、前記制御出力端子23
aの出力レベルを低レベルにすることで、前記ドライバ
IC25の出力端子25aを低レベルにし、前記電磁弁
3aを開弁作動させるに十分な一定時間以上、前記電磁
弁3aを閉弁するまで同レベルを保持する。これによ
り、前記直流12V出力端子21aからその出力端子2
5aにつながっている前記継電器コイル24aに所定の
電流値の電流が導通し、それにより対応する継電器接点
14aが閉成して、その継電器接点14aと直列接続す
る電磁弁コイル13aに所定の電流が通電して対応する
前記電磁弁3aが開弁作動する。また、前記制御出力端
子23aを高レベルに戻すと、各部の動作は上記の動作
とは逆の動作を実行し、前記電磁弁3aは閉弁する。他
の電磁弁3bを作動させる場合も前記制御出力端子23
bの出力レベルを同様に、変化させればよい。
The operation of each section will be described below based on the embodiment shown in FIG. First, when opening or closing the solenoid valves 3a and 3b, for example, when opening the solenoid valve 3a, the control output terminal 23 is used.
a, the output terminal 25a of the driver IC 25 is set to a low level, and the output terminal 25a is kept at a low level for a certain period of time sufficient to open the solenoid valve 3a until the solenoid valve 3a is closed. Hold the level. Thereby, the DC 12V output terminal 21a is connected to the output terminal 2a.
A current having a predetermined current value is conducted to the relay coil 24a connected to the relay contact 5a, whereby the corresponding relay contact 14a is closed, and a predetermined current flows to the solenoid valve coil 13a connected in series with the relay contact 14a. Upon energization, the corresponding solenoid valve 3a opens. When the control output terminal 23a is returned to a high level, the operation of each part performs the reverse of the above operation, and the solenoid valve 3a closes. When the other solenoid valve 3b is operated, the control output terminal 23 is also used.
The output level of b may be similarly changed.

【0028】通常作動時は前記マイクロコンピュータ2
3が通常作動時用の前記制御プログラムを実行すること
で、上記のように各制御出力端子23a、23bの出力
レベルを前記制御プログラムが決定するタイミングで制
御することで、前記電磁弁3a、3bを開弁または閉弁
作動すればよい。
During normal operation, the microcomputer 2
3 executes the control program for normal operation, thereby controlling the output level of each control output terminal 23a, 23b at the timing determined by the control program, as described above, thereby controlling the electromagnetic valves 3a, 3b May be opened or closed.

【0029】続いて、断線故障判定時の各部の動作を説
明する。前記マイクロコンピュータ23が外部より断線
故障判定の開始指令23fを受け取り、断線故障判定用
の前記制御プログラムを実行することで、各制御出力端
子23a、23bの出力レベルを制御する。この場合、
前記電磁弁3a、3bは開弁または閉弁作動させる必要
がなく、寧ろ、開弁または閉弁作動させない方が好まし
いので、前記電磁弁コイル13a、13bの通電時間は
前記電磁弁3a、3bを各々開弁作動するのに必要な最
小通電時間より短ければよい。
Next, the operation of each unit when the disconnection failure is determined will be described. The microcomputer 23 receives a start command 23f for disconnection failure determination from the outside and executes the control program for disconnection failure determination, thereby controlling the output levels of the control output terminals 23a and 23b. in this case,
It is not necessary to open or close the solenoid valves 3a and 3b, but rather, it is preferable not to open or close the solenoid valves. Therefore, the energization time of the solenoid valve coils 13a and 13b is determined by setting the solenoid valves 3a and 3b It suffices if the time is shorter than the minimum energization time required for each valve opening operation.

【0030】図4に、前記制御出力端子23a、23b
の出力レベル波形、前記継電器接点14a、14bの導
通状態、前記発光ダイオード12bの電流波形、及び、
前記電流検知信号15の出力レベル波形の断線故障判定
時におけるタイミング図を示す。図4に示すように、前
記制御出力端子23a、23bの出力レベルは最初は全
て高レベル、即ち、前記ドライバIC25の前記出力端
子25a、25bは高インピーダンス状態であり、前記
継電器コイル24a、24bは全て非通電状態で、前記
継電器接点14a、14bの非導通状態(OFF)であ
る。この場合、前記電磁弁コイル13a、13bは断線
の有無にかかわらず非通電状態で、前記発光ダイオード
12bも同様に非通電状態で発光せず、よって前記ホト
トランジスタ12cは遮断状態で前記電流検知信号15
の出力レベルは高レベルである。引き続き、前記制御出
力端子23aの出力レベルが低レベルに遷移し、前記電
磁弁3aを開弁作動するのに必要な最小通電時間より短
い時間t1経過後、高レベルに復帰し、その後、前記制
御出力端子23bの出力レベルが低レベルに遷移し、前
記電磁弁3bを開弁作動するのに必要な最小通電時間よ
り短い時間t2経過後、高レベルに復帰する。図4に示
すように、前記制御出力端子23a、23bの出力レベ
ルが夫々低レベルに遷移するのに追従して、前記継電器
接点14a、14bが夫々順番に導通状態(ON)に遷
移する。例えば、前記電磁弁コイル13a、13bの
内、前記電磁弁コイル13bに断線故障がある場合、前
記継電器接点14aの導通状態に応じて前記電磁弁コイ
ル13aを介して前記発光ダイオード12bが通電し
て、その結果、前記ホトトランジスタ12cが導通し、
前記電流検知信号15の出力レベルが低レベルに遷移
し、前記断線故障判定手段23eがそれを検出して、前
記電磁弁コイル13aが通電状態であること、つまり断
線故障が無いことを判定する。他方、前記継電器接点1
4bの導通状態に応じて前記発光ダイオード12bが通
電せず、その結果、前記ホトトランジスタ12cが導通
せず、前記電流検知信号15の出力レベルが高レベルを
維持し、前記断線故障判定手段23eがそれを検出し
て、前記電磁弁コイル13bが非通電状態であること、
つまり前記電磁弁コイル13bが断線故障か、或いは、
前記継電器接点14bに接点不良があることを判定す
る。前記マイクロコンピュータ23の前記断線故障判定
手段23eが前記電磁弁コイル13bが断線故障か、或
いは、前記継電器接点14bに接点不良があることを判
定した結果は、前記断線故障判定用の制御プログラムの
手順に従って、外部の液晶表示装置等の出力装置に出力
される。
FIG. 4 shows the control output terminals 23a and 23b.
Output level waveform, conduction state of the relay contacts 14a, 14b, current waveform of the light emitting diode 12b,
FIG. 4 is a timing chart at the time of determining a disconnection failure of the output level waveform of the current detection signal 15. As shown in FIG. 4, the output levels of the control output terminals 23a and 23b are all initially high, that is, the output terminals 25a and 25b of the driver IC 25 are in a high impedance state, and the relay coils 24a and 24b are In the non-energized state, the relay contacts 14a and 14b are in the non-conductive state (OFF). In this case, the solenoid valve coils 13a and 13b are in a non-energized state irrespective of the presence or absence of a disconnection, and the light emitting diode 12b is also in a non-energized state and does not emit light. Fifteen
Is at a high level. Subsequently, the output level of the control output terminal 23a transitions to a low level, and after a lapse of a time t1 shorter than the minimum energization time required to open the solenoid valve 3a, the output level returns to a high level. The output level of the output terminal 23b transitions to a low level, and returns to a high level after a lapse of a time t2 shorter than the minimum energization time required to open the solenoid valve 3b. As shown in FIG. 4, the relay contacts 14a, 14b sequentially transition to the conducting state (ON), respectively, following the transition of the output levels of the control output terminals 23a, 23b to the low level. For example, when there is a disconnection failure in the solenoid valve coil 13b among the solenoid valve coils 13a and 13b, the light emitting diode 12b is energized via the solenoid valve coil 13a according to the conduction state of the relay contact 14a. As a result, the phototransistor 12c conducts,
The output level of the current detection signal 15 transitions to a low level, and the disconnection failure determination means 23e detects the transition, and determines that the solenoid valve coil 13a is in an energized state, that is, there is no disconnection failure. On the other hand, the relay contact 1
The light emitting diode 12b does not conduct according to the conduction state of 4b, as a result, the phototransistor 12c does not conduct, the output level of the current detection signal 15 is maintained at a high level, and the disconnection failure determination means 23e Detecting that the solenoid valve coil 13b is in a non-energized state;
That is, the solenoid valve coil 13b has a disconnection failure, or
It is determined that the relay contact 14b has a contact failure. The result of the disconnection failure determination means 23e of the microcomputer 23 determining that the solenoid valve coil 13b has a disconnection failure or the relay contact 14b has a contact failure is determined by the procedure of the control program for determining the disconnection failure. Is output to an external output device such as a liquid crystal display device.

【0031】本発明に係る電磁弁作動装置を給湯装置3
0に応用した場合について説明する。前記給湯装置30
は、図5に示すように、給水路31から給水される水が
熱交換器32で加熱され給湯路33を介して出湯するよ
うに構成され、前記熱交換器32はバーナ33の燃焼に
より加熱されるように設けられ、前記バーナ33は点火
手段33aと火炎検知器33bを備え、前記バーナ33
の燃焼は、ガス供給路34からの燃料供給と燃焼ファン
35からの燃焼用空気の供給を受けて、燃焼制御部36
が前記燃料供給並びに燃焼用空気の供給を適切に制御す
ることで実行される。更に、前記給水路31には水量セ
ンサ37と給水サーミスタ38が設けられ、前記給湯路
33には給湯サーミスタ39と水量調整弁40、及び、
その出口に給湯栓41が設けられ、前記ガス供給路34
には給湯ガス電磁弁42、ガス流量調整弁43、元ガス
電磁弁44が設けられてある。
The solenoid valve operating device according to the present invention is
The case where the present invention is applied to 0 will be described. The water heater 30
As shown in FIG. 5, water supplied from a water supply passage 31 is heated by a heat exchanger 32 and discharged through a hot water supply passage 33. The heat exchanger 32 is heated by combustion of a burner 33. The burner 33 is provided with an ignition means 33a and a flame detector 33b.
The combustion control unit 36 receives the fuel supply from the gas supply passage 34 and the supply of the combustion air from the combustion fan 35 to perform combustion.
Is executed by appropriately controlling the fuel supply and the supply of combustion air. Further, the water supply path 31 is provided with a water amount sensor 37 and a water supply thermistor 38, and the water supply path 33 is provided with a water supply thermistor 39, a water amount adjustment valve 40, and
A hot water tap 41 is provided at the outlet, and the gas supply path 34 is provided.
Is provided with a hot water supply gas solenoid valve 42, a gas flow control valve 43, and a source gas solenoid valve 44.

【0032】前記給湯装置30に応用される電磁弁作動
装置Sは前記給湯ガス電磁弁42、前記元ガス電磁弁4
4の作動制御用であり、且つ、夫々の開弁作動用に設け
られた電磁弁コイル42a、44aの断線故障診断用の
装置である。前記電磁弁作動装置Sの内、前記電磁弁作
動装置Sが作動制御の対象とする電磁弁に係わる電磁弁
コイル(前記電磁弁コイル42a、44aを含む)を除
く部分は前記燃焼制御部36に含まれている。
The electromagnetic valve operating device S applied to the hot water supply device 30 includes the hot water supply gas electromagnetic valve 42 and the original gas electromagnetic valve 4.
4 is a device for diagnosing disconnection failure of the solenoid valve coils 42a and 44a provided for the operation control and for the respective valve opening operations. A portion of the solenoid valve operating device S other than the solenoid valve coils (including the solenoid valve coils 42a and 44a) related to the solenoid valve to be controlled by the solenoid valve operating device S is provided to the combustion control unit 36. include.

【0033】更に、前記給湯装置30は前記給湯装置3
0の作動状態、設定温度値等を表示する液晶表示部45
を備え、前記電磁弁作動装置Sが作動制御の対象とする
電磁弁に係わる電磁弁コイルの断線故障を判定した場
合、その結果を出力表示するのに使用される。
Further, the hot water supply device 30 is provided with the hot water supply device 3.
Liquid crystal display unit 45 for displaying the operating state of 0, set temperature value, etc.
When the solenoid valve actuating device S determines a disconnection failure of the solenoid valve coil related to the solenoid valve to be controlled for operation, it is used to output and display the result.

【0034】以下、前記給湯装置30を給湯作動させる
場合の各部の動作について説明する。前記給湯栓41を
開くと、水は前記給水路31、前記熱交換器32、前記
給湯路33を経て湯出口へと流れる。この時、前記水量
センサ37が水の流れを検知して、前記燃焼制御部36
はその検知出力を受けて、前記燃焼ファン35を回転さ
せ、前記点火手段33aを始動させ、スパークが始まる
と同時に、前記電磁弁作動装置Sは前記給湯ガス電磁弁
42、前記元ガス電磁弁44を開弁する。
The operation of each unit when the water heater 30 is operated will be described below. When the hot water tap 41 is opened, water flows to the hot water outlet via the water supply channel 31, the heat exchanger 32, and the hot water supply channel 33. At this time, the water amount sensor 37 detects the flow of water, and the combustion control unit 36
In response to the detection output, the combustion fan 35 is rotated, the ignition means 33a is started, and at the same time as the spark starts, the solenoid valve operating device S sets the hot water supply gas solenoid valve 42 and the original gas solenoid valve 44 Is opened.

【0035】前記電磁弁コイル42a、44aに断線故
障が無ければ、燃料ガスは前記ガス流量調整弁43で設
定される点火時の所定ガス量が前記バーナ33に供給さ
れ、前記バーナ33への点火が完了すると、前記火炎検
知器33bが火炎を検知して、スパークが停止する。前
記燃焼制御部36は前記水量センサ37と前記給水サー
ミスタ38により給水量と給水温を検出して設定湯温か
ら必要ガス量を演算し、前記ガス流量調整弁43の開度
と前記燃焼ファン35の回転数を設定する。その後、前
記給湯サーミスタ39により設定湯温になるように前記
ガス流量調整弁43の開度と前記燃焼ファン35の回転
数を制御しながら連続燃焼に入る。
If there is no disconnection failure in the solenoid valve coils 42a and 44a, a predetermined amount of fuel gas at the time of ignition set by the gas flow regulating valve 43 is supplied to the burner 33, and ignition of the burner 33 is performed. Is completed, the flame detector 33b detects the flame, and the spark stops. The combustion control unit 36 detects a water supply amount and a water supply temperature by the water amount sensor 37 and the water supply thermistor 38, calculates a required gas amount from a set hot water temperature, and calculates an opening degree of the gas flow rate regulating valve 43 and the combustion fan 35. Set the rotation speed of. Thereafter, continuous combustion is started while the opening degree of the gas flow control valve 43 and the rotation speed of the combustion fan 35 are controlled by the hot water supply thermistor 39 so as to reach the set hot water temperature.

【0036】一方、前記電磁弁コイル42a、44aの
何れかに断線故障がある場合、前記給湯ガス電磁弁4
2、前記元ガス電磁弁44の一方が開弁せず、前記バー
ナ33に所定ガス量が供給されず、結果として給湯が開
始されない不具合が顕在化する。このように不具合が顕
在化した場合に、前記電磁弁作動装置Sに断線故障判定
の開始指令23fを入力手段(図示せず)より送出し、
断線故障判定用の前記制御プログラムを実行させ、その
結果を前記液晶表示部45出力表示する。尚、前記電磁
弁作動装置Sの動作説明は上記したものと同じであるの
で割愛する。
On the other hand, if there is a disconnection failure in any of the solenoid valve coils 42a and 44a, the hot water supply gas solenoid valve 4
2. One of the source gas solenoid valves 44 does not open, a predetermined amount of gas is not supplied to the burner 33, and as a result, a problem that hot water supply is not started becomes apparent. When the malfunction becomes apparent in this way, a disconnection failure determination start command 23f is sent from the input means (not shown) to the solenoid valve operating device S,
The control program for disconnection failure determination is executed, and the result is displayed on the liquid crystal display unit 45. The operation of the solenoid valve actuating device S is the same as that described above, and will not be described.

【0037】(別実施形態)以下に他の実施形態を説明
する。
(Another Embodiment) Another embodiment will be described below.

【0038】(1)上記の電磁弁作動装置の実施形態に
おいて、前記電流検知手段12と並列に、前記並列接続
点N2と前記ダイオードブリッジの負極出力端子11b
間に別途継電器接点を設けて電流迂回路を形成し、電磁
弁の通常作動時は、前記電流迂回路を形成して、前記電
磁弁コイル13a、13bに電磁弁作動に必要な電流量
を確保し、断線故障判定時は前記電流迂回路を非導通状
態にして、前記電磁弁コイル13a、13bに流れる電
流は全て前記電流検知手段12を経ることとして、前記
電流検知手段12でその電流を電磁弁作動に必要な電流
量を越えないように制限することで、前記電磁弁3a、
3bを開弁または閉弁作動させないようにしても構わな
い。
(1) In the above embodiment of the solenoid valve operating device, in parallel with the current detecting means 12, the parallel connection point N2 and the negative electrode output terminal 11b of the diode bridge
A current relay circuit is formed by separately providing a relay contact therebetween, and the current bypass circuit is formed during normal operation of the solenoid valve, so that the solenoid valve coils 13a and 13b secure a current amount necessary for the operation of the solenoid valve. When the disconnection failure is determined, the current bypass circuit is turned off, and all the currents flowing through the solenoid valve coils 13a and 13b pass through the current detecting means 12. By limiting the amount of current required for valve operation so as not to exceed, the solenoid valve 3a,
The valve 3b may not be opened or closed.

【0039】(2)上記の電磁弁作動装置の各部の実施
形態は上記のものに限定されない。前記電磁弁コイル1
3a、13bの個数は任意であり、上記実施形態に限定
されない。前記継電器制御部はマイクロコンピュータ以
外に論理回路で構成されても構わない。前記第1電源部
11及び前記第2電源部21の入出力電圧値、回路構成
は上記実施形態に限定されない。また、単一の電源装置
が前記第1電源部11及び前記第2電源部21を両方具
備しても構わない。前記電流検知手段12の具体的回路
構成は前記ホトカプラ12aを使用したもの以外の構成
でも構わない。例えば、前記発光ダイオード12bの代
わりに継電器コイルを用いて、前記ホトトランジスタ1
2cの代わりに継電器接点を用いても構わない。
(2) Embodiments of each part of the above-described solenoid valve operating device are not limited to those described above. The solenoid valve coil 1
The number of 3a and 13b is arbitrary and is not limited to the above embodiment. The relay control unit may be constituted by a logic circuit other than the microcomputer. The input / output voltage values and the circuit configuration of the first power supply unit 11 and the second power supply unit 21 are not limited to the above embodiment. In addition, a single power supply device may include both the first power supply unit 11 and the second power supply unit 21. The specific circuit configuration of the current detecting means 12 may be a configuration other than the configuration using the photocoupler 12a. For example, using a relay coil instead of the light emitting diode 12b, the phototransistor 1
A relay contact may be used instead of 2c.

【0040】(3)前記電磁弁コイル13a、13bは
相互に独立して閉弁作動用、開弁保持用、閉弁保持用
等、開弁作動用以外のものであっても構わない。また、
前記電磁弁コイル13a、13bは個々に単一のコイル
でなくとも、複数の電磁弁コイルが直列接続したもの
や、抵抗素子等が直列接続されたものでも構わない。
(3) The solenoid valve coils 13a and 13b may be independent of each other for opening the valve, such as for closing the valve, holding the valve open, and holding the valve closed. Also,
Each of the solenoid valve coils 13a and 13b is not limited to a single coil, but may be a coil in which a plurality of solenoid valve coils are connected in series or a coil in which a resistance element and the like are connected in series.

【0041】(4)前記給湯装置30の構成は上記実施
形態に限定されない。前記電磁弁作動装置が制御の対象
とする電磁弁は前記給湯ガス電磁弁42、前記元ガス電
磁弁44以外であっても構わない。また、本発明に係る
電磁弁作動装置は給湯装置以外の電磁弁を備えた装置に
応用するのも好ましい。
(4) The configuration of the water heater 30 is not limited to the above embodiment. The electromagnetic valve to be controlled by the electromagnetic valve operating device may be other than the hot water supply gas electromagnetic valve 42 and the original gas electromagnetic valve 44. Further, it is preferable that the solenoid valve operating device according to the present invention is applied to a device having a solenoid valve other than the hot water supply device.

【0042】[0042]

【発明の効果】以上説明したように、本発明によれば、
従来の電磁弁作動装置に対して簡単な回路追加を施すだ
けで、前記電磁弁コイルの断線故障或いは前記継電器接
点の短絡故障を容易に判別でき、更に、前記電磁弁コイ
ルの断線故障箇所の特定が容易にできるようになり、ま
た、本発明による電磁弁作動装置を給湯装置に応用する
ことで、故障解析時間の短縮を図り、使用現場での補修
修理が可能となった。
As described above, according to the present invention,
The disconnection failure of the solenoid valve coil or the short-circuit failure of the relay contact can be easily determined by simply adding a simple circuit to the conventional solenoid valve operating device, and further, the location of the disconnection failure of the solenoid valve coil is specified. In addition, by applying the solenoid valve operating device according to the present invention to a hot water supply device, a failure analysis time can be shortened, and repair and repair at a use site can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電磁弁作動装置の一実施形態にお
ける回路構成図
FIG. 1 is a circuit diagram of an embodiment of a solenoid valve operating device according to the present invention.

【図2】本発明に係る電磁弁作動装置の一実施形態にお
ける回路構成図
FIG. 2 is a circuit diagram of an embodiment of the solenoid valve operating device according to the present invention.

【図3】従来技術による電磁弁作動装置の回路構成図FIG. 3 is a circuit configuration diagram of a conventional solenoid valve operating device.

【図4】断線故障判定時におけるタイミング図FIG. 4 is a timing chart when a disconnection failure is determined.

【図5】本発明に係る給湯装置の概略構成図FIG. 5 is a schematic configuration diagram of a hot water supply apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 電磁弁作動回路部 2 電磁弁制御回路部 11 第1電源部 12 電流検知手段 13a、13b 電磁弁コイル 14a、14b 継電器接点 15 電流検知信号 21 第2電源部 23 継電器制御部 23e 断線故障判定手段 24a、24b 継電器駆動部 REFERENCE SIGNS LIST 1 solenoid valve operating circuit section 2 solenoid valve control circuit section 11 first power supply section 12 current detection means 13 a, 13 b solenoid valve coil 14 a, 14 b relay contact 15 current detection signal 21 second power supply section 23 relay control section 23 e disconnection failure determination means 24a, 24b relay drive unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電磁弁作動用の第1電源部と、複数の電
磁弁コイルと、前記第1電源部から前記電磁弁コイルに
供給される電流の導通または遮断を各別に切り換える継
電器接点とを有する電磁弁作動回路部を備え、且つ、電
磁弁制御用の第2電源部と、前記第2電源部から電流を
供給されて前記継電器接点の開閉動作を行う継電器駆動
部と、前記第2電源部から前記継電器駆動部への電流供
給を各別に制御する継電器制御部を有する電磁弁制御回
路部を備えてなる電磁弁作動装置であって、 前記電磁弁作動回路部が前記第1電源部から前記電磁弁
コイル各々に供給される電流を検知する単一の電流検知
手段を備え、前記継電器制御部が前記電流検知手段の電
流検知結果に応じて出力される電流検知信号に基づいて
前記電磁弁コイル各々の断線故障を判定する断線故障判
定手段を備えている電磁弁作動装置。
A first power supply unit for operating a solenoid valve, a plurality of solenoid valve coils, and a relay contact for separately switching conduction or interruption of a current supplied from the first power supply unit to the solenoid valve coil. A second power supply unit for controlling the electromagnetic valve, a relay drive unit that is supplied with current from the second power supply unit to open and close the relay contact, and a second power supply. A solenoid valve actuating device comprising a solenoid valve control circuit section having a relay control section for individually controlling the current supply from the section to the relay drive section, wherein the solenoid valve actuation circuit section is provided from the first power supply section. A single current detection unit for detecting a current supplied to each of the solenoid valve coils, wherein the relay control unit controls the solenoid valve based on a current detection signal output according to a current detection result of the current detection unit. Disconnection of each coil Electromagnetic valve actuating device and a disconnection failure determination means for determining disabilities.
【請求項2】 前記断線故障判定手段は、所定の指令信
号に応じて、前記第2電源部から前記各継電器駆動部へ
の電流供給を時間を異ならせて逐次許容する故障診断シ
ーケンスを開始するように構成されており、前記電流供
給期間が、前記電磁弁コイルを有する電磁弁が機能する
のに必要な時間より短い請求項1に記載の電磁弁作動装
置。
2. The disconnection failure determination unit starts a failure diagnosis sequence in which current supply from the second power supply unit to each of the relay drive units is sequentially permitted at different times according to a predetermined command signal. 2. The electromagnetic valve operating device according to claim 1, wherein the current supply period is shorter than a time required for the electromagnetic valve having the electromagnetic valve coil to function. 3.
【請求項3】 前記断線故障判定手段は、所定の指令信
号に応じて、前記第2電源部から前記継電器駆動部への
電流供給を時間を異ならせて逐次許容する故障診断シー
ケンスを開始するように構成されており、前記電流供給
期間に前記第1電源部から前記電磁弁コイルに供給され
る電流値が、前記電磁弁コイルを有する電磁弁が機能す
るのに必要な最小電流値より小さい請求項1または2に
記載の電磁弁作動装置。
3. The disconnection failure determination means starts a failure diagnosis sequence in which current supply from the second power supply unit to the relay drive unit is successively permitted at different times in accordance with a predetermined command signal. A current value supplied to the solenoid valve coil from the first power supply unit during the current supply period is smaller than a minimum current value required for the solenoid valve having the solenoid valve coil to function. Item 3. The electromagnetic valve operating device according to Item 1 or 2.
【請求項4】 複数の電磁弁を具備する給湯器であっ
て、 請求項1、2、または、3に記載の電磁弁作動装置と、
前記電磁弁作動装置の前記断線故障判定手段の判定結果
を出力する出力手段とを備え、前記電磁弁作動装置の前
記電磁弁コイルが前記複数の電磁弁の一部または全部に
各別に作用するように構成されている給湯装置。
4. A water heater comprising a plurality of solenoid valves, wherein the solenoid valve operating device according to claim 1, 2, or 3,
Output means for outputting a determination result of the disconnection failure determination means of the solenoid valve actuation device, wherein the solenoid valve coil of the solenoid valve actuation device acts individually or partially on all of the plurality of solenoid valves. Hot water supply device that is configured in.
JP27777996A 1996-10-21 1996-10-21 Solenoid valve operating device and hot water supply device Expired - Fee Related JP3841500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27777996A JP3841500B2 (en) 1996-10-21 1996-10-21 Solenoid valve operating device and hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27777996A JP3841500B2 (en) 1996-10-21 1996-10-21 Solenoid valve operating device and hot water supply device

Publications (2)

Publication Number Publication Date
JPH10122418A true JPH10122418A (en) 1998-05-15
JP3841500B2 JP3841500B2 (en) 2006-11-01

Family

ID=17588202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27777996A Expired - Fee Related JP3841500B2 (en) 1996-10-21 1996-10-21 Solenoid valve operating device and hot water supply device

Country Status (1)

Country Link
JP (1) JP3841500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677119A (en) * 2017-11-28 2018-02-09 河南昱千鑫金属科技有限公司 A kind of rotary kiln automatic feeding system and its control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677119A (en) * 2017-11-28 2018-02-09 河南昱千鑫金属科技有限公司 A kind of rotary kiln automatic feeding system and its control method
CN107677119B (en) * 2017-11-28 2023-09-29 河南昱千鑫金属科技有限公司 Automatic feeding system of rotary kiln and control method thereof

Also Published As

Publication number Publication date
JP3841500B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
US8882492B2 (en) Control systems for the ignition of a gas burner
US6089310A (en) Thermostat with load activation detection feature
US5917691A (en) Fail-safe valve relay driver circuit for gas burners
AU3310384A (en) Controller for combustible fuel burner
US6803544B1 (en) Ignitor distinguishing control system and method therefor
JPH11166784A (en) Electric refrigerator
JPH10122418A (en) Solenoid valve operating device and hot water supply device
JP7017075B2 (en) Combustion device
JP6307999B2 (en) Combustion device
JP2002359055A (en) Heater and driving circuit abnormality detecting method
JPH11108232A (en) Solenoid valve drive device
JP3993723B2 (en) Display device using battery as power source
JP3349430B2 (en) Display device powered by battery
JPH0617963A (en) Maintenance system of solenoid safety valve
JPH0921527A (en) Heating apparatus
JPH01244215A (en) Combustion device
JP3263587B2 (en) Electric iron
JPH11102767A (en) Abnormality detecting method in temperature control
JP2001116268A (en) Hot water supply apparatus
JP2751031B2 (en) Ignition device for combustion equipment
JPH10220755A (en) Heater
JPH0619366A (en) Image forming device
JP3539020B2 (en) Gas combustion equipment
JP2022046883A (en) Heating cooker
JPH0393396A (en) Remote control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees