JPH1012237A - Beta-cobalt hydroxide layer-coated nickel hydroxide for alkaline storage battery and manufacture thereof - Google Patents

Beta-cobalt hydroxide layer-coated nickel hydroxide for alkaline storage battery and manufacture thereof

Info

Publication number
JPH1012237A
JPH1012237A JP8178523A JP17852396A JPH1012237A JP H1012237 A JPH1012237 A JP H1012237A JP 8178523 A JP8178523 A JP 8178523A JP 17852396 A JP17852396 A JP 17852396A JP H1012237 A JPH1012237 A JP H1012237A
Authority
JP
Japan
Prior art keywords
hydroxide
cobalt
nickel
cobalt hydroxide
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8178523A
Other languages
Japanese (ja)
Other versions
JP3356628B2 (en
Inventor
Junichi Imaizumi
純一 今泉
Yuri Kawasaki
由利 川崎
Tetsuji Makino
哲司 牧野
Tokuyoshi Iida
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA KAGAKU KENKYUSHO KK
TANAKA KAGAKU KENKYUSHO KK
Original Assignee
TANAKA KAGAKU KENKYUSHO KK
TANAKA KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA KAGAKU KENKYUSHO KK, TANAKA KAGAKU KENKYUSHO KK filed Critical TANAKA KAGAKU KENKYUSHO KK
Priority to JP17852396A priority Critical patent/JP3356628B2/en
Priority to US08/858,599 priority patent/US6040007A/en
Publication of JPH1012237A publication Critical patent/JPH1012237A/en
Application granted granted Critical
Publication of JP3356628B2 publication Critical patent/JP3356628B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To increase a utilization factor of a nickel hydroxide by forming a β-cobalt hydroxide layer in a surface and internal fine hole of a nickel hydrox ide. SOLUTION: In nickel hydroxide as a positive electrode active material, its surface and fine hole are coated with a β-cobalt hydroxide layer. The reason is that, when once charging, efficiently coating cobalt hydroxide becomes a cobalt oxyhydroxide of high conductivity, conductive network of a nickel electrode is formed to improve a utilization factor. β-cobalt hydroxide is more stable than α-type in an electrolyte, but by high crystallization, when the β-cobalt hydroxide is directly produced in a reaction tank, a uniform coating layer can not be obtained. Relating to this cobalt, α-type is easily dispersed in the reaction tank, uniformly sticking can be made, so that first under a prescribed pH condition, an α-cobalt hydroxide layer is formed on a surface of the nickel hydrooxide. Thereafter, under a prescribed condition, conversion is made into β-cobalt hydroxide, a uniform coating layer is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カドミウム,亜鉛
等の水素吸蔵合金等を負極とするアルカリ蓄電池用の正
極活物質である高密度水酸化ニッケルの製造法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-density nickel hydroxide, which is a positive electrode active material for an alkaline storage battery using a hydrogen storage alloy such as cadmium or zinc as a negative electrode.

【0002】[0002]

【従来の技術】近年ポ−タブル電子機器の高付加価値化
に伴い、そこに使用される電池に、より高容量化が要求
されている。
2. Description of the Related Art In recent years, with higher added value of portable electronic devices, batteries used therein have been required to have higher capacities.

【0003】アルカリ蓄電池においては、ペ−スト式ニ
ッケル正極の活物質として用いられる水酸化ニッケル粉
末の高利用率化が挙げられる。そのため、水酸化ニッケ
ル粉末間の導電性を確保し、高い利用率を得るため、水
酸化コバルトを添加する方法が知られているが、水酸化
コバルトは、ペ−ストでの偏在が大きく、均一分散のた
めには多量の水酸化コバルトを必要とし、そのために水
酸化ニッケルの充填量が低下し、容量低下が避けられな
い。また、同じ目的で、一酸化コバルトを添加すること
も知られているが、利用率向上に寄与しないCo34
生成し、放電性能が良くないと言われている。
In an alkaline storage battery, an increase in the utilization rate of nickel hydroxide powder used as an active material of a paste-type nickel positive electrode is mentioned. Therefore, in order to secure conductivity between nickel hydroxide powders and obtain a high utilization rate, a method of adding cobalt hydroxide is known. However, cobalt hydroxide has a large uneven distribution in paste and is uniform. For dispersion, a large amount of cobalt hydroxide is required, and therefore, the filling amount of nickel hydroxide is reduced, and a reduction in capacity is inevitable. It is also known to add cobalt monoxide for the same purpose, but it is said that Co 3 O 4, which does not contribute to the improvement of the utilization rate, is generated and the discharge performance is not good.

【0004】そこで、水酸化ニッケル粉末間の導電性を
確保し、高い利用率を得るために、下記に示すような水
酸化コバルトを水酸化ニッケル表面に被覆することが提
案されている。
[0004] Therefore, in order to secure conductivity between nickel hydroxide powders and obtain a high utilization rate, it has been proposed to coat the surface of nickel hydroxide with cobalt hydroxide as shown below.

【0005】1)特開昭63−152866では、電解
液中で均一なオキシ水酸化コバルト層を得るため、水酸
化ニッケルと水酸化コバルトを混合するのではなく、予
め水酸化ニッケル粒子をコバルト塩溶液中に浸漬し、苛
性ソ−ダと反応させ、水酸化ニッケル表面にβ−水酸化
コバルト被覆層を形成している。
[0005] 1) In Japanese Patent Application Laid-Open No. 63-152866, in order to obtain a uniform cobalt oxyhydroxide layer in an electrolytic solution, nickel hydroxide particles are preliminarily mixed with a cobalt salt instead of mixing nickel hydroxide and cobalt hydroxide. It is immersed in a solution and reacted with caustic soda to form a β-cobalt hydroxide coating layer on the nickel hydroxide surface.

【0006】2)特開平7−235303では、水酸化
ニッケル粒子をコバルト塩溶液中に浸漬し、pHを一定
に保つように苛性アルカリと反応させ、水酸化ニッケル
表面に水酸化コバルト被覆層を形成させている。極板の
プレス時に水酸化コバルト被覆層にクラックが入り、そ
れを補う為にCoまたはCo化合物を添加して、電解液
中で電導性ネットワ−クを形成させている。
2) In JP-A-7-235303, nickel hydroxide particles are immersed in a cobalt salt solution and reacted with a caustic alkali so as to keep the pH constant to form a cobalt hydroxide coating layer on the surface of the nickel hydroxide. Let me. Cracks are formed in the cobalt hydroxide coating layer when the electrode plate is pressed, and Co or a Co compound is added to compensate for the cracks to form a conductive network in the electrolytic solution.

【0007】3)特開平7−320733では、水酸化
ニッケル粒子を、コバルト塩を水とエチルアルコ−ルに
溶かした混合溶液中に浸漬し、苛性ソ−ダと反応させ、
pH9で混合攪拌し、水酸化ニッケル表面にα−水酸化
コバルトとβ−水酸化コバルトとを所定の割合で被覆し
ている。
3) In JP-A-7-320733, nickel hydroxide particles are immersed in a mixed solution of a cobalt salt dissolved in water and ethyl alcohol, and reacted with caustic soda.
The mixture was stirred at pH 9, and the surface of nickel hydroxide was coated with α-cobalt hydroxide and β-cobalt hydroxide at a predetermined ratio.

【0008】4)特開平7−320736では、特開平
7−320733と同様の製造法で、水酸化ニッケル表
面に水酸化コバルト被覆し、ベ−スに用いた水酸化ニッ
ケルとの嵩密度比0.85以上のものを得ている。
4) In JP-A-7-320736, the surface of nickel hydroxide is coated with cobalt hydroxide by the same production method as in JP-A-7-320733, and the bulk density ratio with the nickel hydroxide used for the base is 0. I got more than .85.

【0009】5)特開平7−320737では、内層に
α−水酸化コバルト、外層にβ−水酸化コバルトを被覆
した水酸化ニッケルを提案している。
5) Japanese Patent Application Laid-Open No. 7-320737 proposes nickel hydroxide in which α-cobalt hydroxide is coated on the inner layer and β-cobalt hydroxide is coated on the outer layer.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、1)の
方法では、単にpHを上昇させるだけなので水酸化コバ
ルトの均一な被覆層が形成されず、十分な利用率が得ら
れていない。
However, in the method 1), a uniform coating layer of cobalt hydroxide is not formed because the pH is simply increased, and a sufficient utilization rate cannot be obtained.

【0011】2)の方法では、pHを保つことで、1)
よりは改善されるが、β型の水酸化コバルトを直接被覆
する方法では、水酸化コバルトの均一な被覆層が形成さ
れない。また、CoまたはCo化合物を添加すること
は、根本的な解決にはならず、かつ工程増とコスト高に
なる。
In the method 2), by maintaining the pH, 1)
However, the method of directly coating β-type cobalt hydroxide does not form a uniform coating layer of cobalt hydroxide. Further, the addition of Co or a Co compound does not provide a fundamental solution, and increases the number of steps and the cost.

【0012】3)の方法では、α−水酸化コバルトとβ
−水酸化コバルトの割合を制御することが困難であり、
また有機溶媒を使用することから、廃液処理費用が嵩
む。
In the method 3), α-cobalt hydroxide and β
It is difficult to control the proportion of cobalt hydroxide,
In addition, the use of an organic solvent increases waste liquid treatment costs.

【0013】4)の方法では、コーティングした水酸化
ニッケル粒子の嵩密度が不十分であり、容量が低下す
る。
In the method 4), the bulk density of the coated nickel hydroxide particles is insufficient, and the capacity is reduced.

【0014】5)の方法では、水酸化コバルトの被覆層
が均一性が不十分なため、十分な利用率が得られていな
い。
In the method 5), a sufficient utilization rate cannot be obtained because the coating layer of cobalt hydroxide has insufficient uniformity.

【0015】よって、上述のような水酸化コバルトをコ
ーティングした水酸化ニッケルの製造法では、アルカリ
蓄電池の正極用としてはまだ不十分であった。
Therefore, the method for producing nickel hydroxide coated with cobalt hydroxide as described above is still insufficient for a positive electrode of an alkaline storage battery.

【0016】本発明は、上述の問題点を解決した、高い
利用率を持つ高密度水酸化ニッケルを提供することにあ
る。
An object of the present invention is to provide a high-density nickel hydroxide having a high utilization rate which has solved the above-mentioned problems.

【0017】[0017]

【課題を解決するための手段】本発明のアルカリ蓄電池
の正極活物質としての水酸化ニッケルは、ベ−スとなる
高密度球状水酸化ニッケルの表面及び細孔がβー水酸化
コバルト層で覆われ、粒子形状が球形かそれに近く、コ
−ティングしたコバルト量が1〜10%、タッピング密
度が1.9g/cc以上、X線回折における(101)
面ピ−クの半値幅が0.8〜1.3゜/2θ、比表面積が
0.5〜30m2/g、平均粒径が3〜25μmであるこ
とを特徴としている。
Means for Solving the Problems Nickel hydroxide as a positive electrode active material of the alkaline storage battery of the present invention is a high-density spherical nickel hydroxide serving as a base, whose surface and pores are covered with a β-cobalt hydroxide layer. The particle shape is spherical or nearly spherical, the amount of coated cobalt is 1 to 10%, the tapping density is 1.9 g / cc or more, and (101) in X-ray diffraction
The half peak width of the surface peak is 0.8 to 1.3 ° / 2θ, the specific surface area is 0.5 to 30 m 2 / g, and the average particle size is 3 to 25 μm.

【0018】本発明のアルカリ蓄電池の正極活物質とし
て水酸化ニッケルの製造方法は、反応槽にニッケル塩水
溶液、アンモニウムイオン供給体、アルカリ金属水酸化
物溶液を連続供給し、連続結晶成長させ、連続または継
続に取り出して得られる高密度球状水酸化ニッケルを用
いて、その高密度球状水酸化ニッケルを反応槽に入れ、
次にアンモニウムイオン供給体及びアルカリ金属水酸化
物溶液を添加し、pHを8〜11に調整し、そのpHを
維持しながらコバルト塩水溶液及びアルカリ金属水酸化
物溶液を添加して、水酸化ニッケルの表面にα−水酸化
コバルト層を形成し、更にアルカリ金属水酸化物溶液を
供給し、pH11〜13.5で攪拌保持することによ
り、α−水酸化コバルトをβー水酸化コバルトに転換し
たコーティング層を形成することを特徴としている。
In the method for producing nickel hydroxide as the positive electrode active material of the alkaline storage battery of the present invention, a nickel salt aqueous solution, an ammonium ion supplier, and an alkali metal hydroxide solution are continuously supplied to a reaction vessel, and continuous crystal growth is performed. Or using high-density spherical nickel hydroxide obtained by taking out continuously, put the high-density spherical nickel hydroxide into the reaction tank,
Next, an ammonium ion donor and an alkali metal hydroxide solution are added to adjust the pH to 8 to 11. While maintaining the pH, a cobalt salt aqueous solution and an alkali metal hydroxide solution are added, and nickel hydroxide is added. An α-cobalt hydroxide layer was formed on the surface of the mixture, an alkali metal hydroxide solution was further supplied, and the mixture was stirred and maintained at pH 11 to 13.5 to convert α-cobalt hydroxide to β-cobalt hydroxide. It is characterized by forming a coating layer.

【0019】また、水酸化コバルトコーティング層を形
成する際は、窒素封入及び/または窒素バブリングを行
いながら、水酸化コバルトコーティングを行うことが好
ましい。
When forming the cobalt hydroxide coating layer, it is preferable to perform the cobalt hydroxide coating while performing nitrogen sealing and / or nitrogen bubbling.

【0020】[0020]

【発明の実施の形態】まず、表面及び細孔内部に水酸化
コバルトコ−ティング層を形成するベ−スとなる高密度
水酸化ニッケルについて記述する。一般に水溶液中より
固体結晶を析出する際、その濃度勾配が大きいと微粒子
の析出が多くなる。つまり、水溶液中より固体結晶を析
出させるメカニズムは、水溶液が準飽和状態→飽和状態
→過飽和状態→結晶析出となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a high-density nickel hydroxide serving as a base for forming a cobalt hydroxide coating layer on the surface and inside the pores will be described. Generally, when solid crystals are precipitated from an aqueous solution, if the concentration gradient is large, the precipitation of fine particles increases. That is, the mechanism for depositing solid crystals from the aqueous solution is as follows: the aqueous solution is in a semi-saturated state → saturated state → supersaturated state → crystal precipitation.

【0021】粒子を成長させるには上記メカニズムをで
きるだけゆっくりスム−ズに行う必要があり、そのため
には、飽和状態付近の濃度勾配を小さく取る必要があ
る。ところが、水酸化ニッケルの溶解度曲線はpHに対
し、非常に大きく変化する。つまり、水溶液中で、pH
に対するニッケルの濃度勾配が非常に大きい。従って、
通常の方法では微粒子の生成しか望めない。
In order to grow the particles, it is necessary to smoothly carry out the above mechanism as slowly as possible. For this purpose, it is necessary to reduce the concentration gradient near the saturation state. However, the solubility curve of nickel hydroxide changes significantly with pH. That is, in aqueous solution, pH
Is very large. Therefore,
Only the production of fine particles can be expected by the usual method.

【0022】本発明においては、ニッケルをアンモニウ
ム錯塩とすることにより、水溶液中でのpHに対するニ
ッケルの濃度勾配を小さくして粒子の成長を行った。原
料3成分(ニッケル塩、アンモニウンムイオン、アルカ
リ金属水酸化物)を一定量にしてpHをコントロ−ルす
るだけでは、アンモニアの分解や蒸発により液中のアン
モニウムイオン濃度が変化し、アンモニウム錯塩から生
じる結晶核の発生が不安定になる。液中のアンモニウム
イオン濃度をコントロ−ルすることによって初めて結晶
核の発生が一定となり、粒子の成長度が揃ったものとな
る。よって、本発明は、高密度の水酸化ニッケルが得ら
れることになる。
In the present invention, nickel is used as an ammonium complex salt to reduce the concentration gradient of nickel with respect to pH in an aqueous solution to grow particles. Simply controlling the pH with a constant amount of the three raw materials (nickel salt, ammonium ion, alkali metal hydroxide) changes the ammonium ion concentration in the solution due to decomposition and evaporation of ammonia, and the ammonium complex salt The generation of the resulting crystal nuclei becomes unstable. Only by controlling the concentration of ammonium ions in the liquid, the generation of crystal nuclei becomes constant and the degree of growth of the particles becomes uniform. Therefore, according to the present invention, high-density nickel hydroxide can be obtained.

【0023】上記メカニズムの状態を保持するには、必
要とするニッケル量に見合うアンモニウムイオン供給
体、アルカリ金属水酸化物溶液を常に必要とするため、
反応工程は連続とする。ここで、攪拌により、粒子同士
の研磨作用が合わさり、研磨・成長を繰り返しながら、
流動性の伴う球状の水酸化ニッケルが得られる。よっ
て、撹拌速度も重要な因子となる。
In order to maintain the state of the above mechanism, an ammonium ion supplier and an alkali metal hydroxide solution which always correspond to the required amount of nickel are always required.
The reaction process is continuous. Here, by agitation, the polishing action of the particles is combined, while repeating polishing and growth,
A spherical nickel hydroxide with fluidity is obtained. Therefore, the stirring speed is also an important factor.

【0024】なお、本発明における反応で使用されたア
ンモニウムイオン供給体は、下記の反応式(1)、
(2)で表されるごとく、反応触媒として使用されるも
のである。ニッケル塩,アンモニウムイオン供給体、ア
ルカリ金属水酸化物溶液をそれぞれ硫酸ニッケル,アン
モニア、水酸化ナトリウムの場合を示す。
The ammonium ion donor used in the reaction of the present invention is represented by the following reaction formula (1):
As represented by (2), it is used as a reaction catalyst. The case where the nickel salt, the ammonium ion supplier, and the alkali metal hydroxide solution are nickel sulfate, ammonia, and sodium hydroxide, respectively, are shown.

【0025】式から明かなように、4当量以上のアンモ
ニアは必要なく、せいぜい0.5当量程度の少量で済
む。また、アンモニウムイオン供給体として、硫酸アン
モニウムを用いると塩効果が期待でき、より高密度化が
達成できる。なお、アンモニウムイオン供給体としては
硫酸アンモニウムの他、塩化アンモニウム、炭酸アンモ
ニウム、フッ化アンモニウム等が用いられる。
As is clear from the formula, no more than 4 equivalents of ammonia are required, and only a small amount of about 0.5 equivalent is required. When ammonium sulfate is used as the ammonium ion supplier, a salt effect can be expected, and higher density can be achieved. In addition, ammonium chloride, ammonium carbonate, ammonium fluoride, etc. are used as an ammonium ion supplier in addition to ammonium sulfate.

【0026】(1) NiSO4+4NH3+2NaOH
→ Ni(NH3)4(OH)2+Na2SO4 (2) Ni(NH3)4(OH)2 → Ni(OH)2
4NH3 次に、水酸化コバルトコ−ティングについて説明する。
水酸化ニッケルの表面を水酸化コバルト層で覆う理由
は、一度充電すると、効率良く被覆していた水酸化コバ
ルトが導電性の高いオキシ水酸化コバルトになり、ニッ
ケル極の導電ネットワ−クが形成され、利用率が向上す
るためである。
(1) NiSO 4 + 4NH 3 + 2NaOH
→ Ni (NH 3 ) 4 (OH) 2 + Na 2 SO 4 (2) Ni (NH 3 ) 4 (OH) 2 → Ni (OH) 2 +
4NH 3 Next, the cobalt hydroxide coating will be described.
The reason for covering the surface of nickel hydroxide with a cobalt hydroxide layer is that once charged, the coated cobalt hydroxide becomes highly conductive cobalt oxyhydroxide, forming a conductive network of nickel electrodes. This is because the utilization rate is improved.

【0027】この時、α−水酸化コバルトの方が緻密な
導線性ネットワ−クを形成するが不安定であり、電解液
中で容易にβ−水酸化コバルトに変化してしまうので、
β−水酸化コバルトを形成しておいた方が良い。
At this time, α-cobalt hydroxide forms a dense conductive network but is unstable, and easily changes to β-cobalt hydroxide in the electrolyte.
It is better to form β-cobalt hydroxide.

【0028】しかし、β−水酸化コバルトは結晶性が高
いため、反応槽内で直接生成させると均一なコーティン
グ層を得ることができない。これに対しα−水酸化コバ
ルトは結晶性が低いため反応槽内で容易に分散され、水
酸化ニッケル表面に付着することが可能となる。
However, since β-cobalt hydroxide has high crystallinity, a uniform coating layer cannot be obtained if it is produced directly in a reaction tank. On the other hand, since α-cobalt hydroxide has low crystallinity, it can be easily dispersed in the reaction tank and can adhere to the nickel hydroxide surface.

【0029】さらにアンモニウムイオン等の錯化剤を添
加することにより、従来、α−水酸化コバルトが生成す
るpHが5〜8であったのを、pH8〜11に高めるこ
とができる。これにより、アルカリ金属水酸化物溶液を
添加する際の反応槽内のpH不均衡を改善することがで
き、安定してα−水酸化コバルトを生成させることが可
能となる。
Further, by adding a complexing agent such as ammonium ion or the like, the pH at which α-cobalt hydroxide is conventionally generated from 5 to 8 can be increased to 8 to 11. Thereby, the pH imbalance in the reaction tank when adding the alkali metal hydroxide solution can be improved, and α-cobalt hydroxide can be stably generated.

【0030】α−水酸化コバルト層を形成する際、高密
度球状水酸化ニッケルを反応槽に入れ、次にアンモニウ
ムイオン供給体及びアルカリ金属水酸化物を添加し、p
Hを8〜11に調整し、そのpHを維持しながらコバル
ト塩水溶液及びアルカリ金属水酸化物を添加して、水酸
化ニッケルの表面に均一なα−水酸化コバルト層を形成
させる。なお、所定pHにおいて、10分〜2時間保持
することが望ましい。
When forming the α-cobalt hydroxide layer, high-density spherical nickel hydroxide is put into a reaction vessel, and then an ammonium ion donor and an alkali metal hydroxide are added.
H is adjusted to 8 to 11, and an aqueous solution of a cobalt salt and an alkali metal hydroxide are added while maintaining the pH to form a uniform α-cobalt hydroxide layer on the surface of the nickel hydroxide. In addition, it is desirable to hold at predetermined pH for 10 minutes to 2 hours.

【0031】また、その後の工程において、アルカリ金
属水酸化物を供給し、pH11〜13.5で撹拌保持す
ることにより、水酸化ニッケル表面でα−水酸化コバル
トをβー水酸化コバルトに転換させ、均一なβー水酸化
コバルトコーティング層を形成させる。その時間として
は、5分〜3時間が望ましい。
In the subsequent step, α-cobalt hydroxide is converted to β-cobalt hydroxide on the nickel hydroxide surface by supplying an alkali metal hydroxide and maintaining the pH at 11 to 13.5 with stirring. To form a uniform β-cobalt hydroxide coating layer. The time is preferably 5 minutes to 3 hours.

【0032】なお、上記の方法で得られるβー水酸化コ
バルトコーティング層を電気伝導性の高いオキシ水酸化
コバルトに酸化することにより正極活物質として効率的
に機能させることができる。その方法としては、電気化
学的酸化、次亜塩素酸塩、過硫酸塩等による化学的酸
化、アルカリ液と混合しての加熱処理による酸化などが
挙げられる。
Incidentally, by oxidizing the β-cobalt hydroxide coating layer obtained by the above method to cobalt oxyhydroxide having high electric conductivity, it can be made to function efficiently as a positive electrode active material. Examples of the method include electrochemical oxidation, chemical oxidation with hypochlorite, persulfate, etc., and oxidation by mixing with an alkali solution and heating.

【0033】本発明のアルカリ蓄電池用の水酸化ニッケ
ルにおいて、各物性の数値限定は、次の理由に基づいて
いる。
In the nickel hydroxide for an alkaline storage battery according to the present invention, the numerical values of each property are limited based on the following reasons.

【0034】(1)コ−ティングするコバルト量に関し
て ・1%より少ないと、添加効果がなく、利用率が高くな
らない。
(1) Regarding the amount of cobalt to be coated: If less than 1%, there is no effect of addition and the utilization rate does not increase.

【0035】・10%より多いと、均一コ−ティングが
できず、遊離した水酸化コバルトが多くなる。
If it is more than 10%, uniform coating cannot be performed, and the amount of liberated cobalt hydroxide increases.

【0036】(2)タッピング密度に関して ・1.9g/ccより小さいと、充填量が少なくなり、
容量低下につながる。
(2) Regarding tapping density: If it is smaller than 1.9 g / cc, the filling amount is reduced,
It leads to capacity reduction.

【0037】(3)X線回折における(101)面ピ−
クの半値幅に関して ・0.8゜/2θより小さいと、電解液中でのプロトン
の移動が円滑に行われない。
(3) The (101) plane peak in X-ray diffraction
Regarding the half-value width of the mark: If it is smaller than 0.8 ° / 2θ, the movement of protons in the electrolytic solution is not performed smoothly.

【0038】・1.3゜/2θより大きいと、結晶性が
悪くなり、球状が保てなくなり、充填性が低下する。
If the ratio is larger than 1.3 ° / 2θ, the crystallinity is deteriorated, the sphere cannot be maintained, and the filling property is reduced.

【0039】(4)比表面積に関して ・0.5m2/gより小さいと、巨大粒子が増え、流動性
が悪くなって充填性が悪くなる。
(4) Specific surface area: If it is smaller than 0.5 m 2 / g, the number of giant particles increases, the fluidity deteriorates, and the filling property deteriorates.

【0040】・30m2/gより大きいと、空孔容積が
増大し、粒子の密度が減少する。
If it is larger than 30 m 2 / g, the pore volume increases and the particle density decreases.

【0041】(5)平均粒径に関して ・3μmより小さいと、微粒子が増え、流動性が悪くな
って充填性が悪くなる。
(5) Regarding the average particle diameter: If the average particle diameter is smaller than 3 μm, the number of fine particles increases, the fluidity deteriorates, and the filling property deteriorates.

【0042】・25μmより大きいと、巨大粒子が増
え、流動性が悪くなって充填性が悪くなる。
If it is larger than 25 μm, the number of giant particles increases, the fluidity becomes poor, and the filling property becomes poor.

【0043】ベ−スに用いる高密度水酸化ニッケルは、
異種元素を含んでいても良い。即ち、Co、Zn、C
a、Mg、Al、Mn、Cu、Tiを少なくとも1種以
上を固溶しているものでもよい。
The high-density nickel hydroxide used for the base is:
It may contain a different element. That is, Co, Zn, C
a, Mg, Al, Mn, Cu, and Ti may be at least one of them in solid solution.

【0044】[0044]

【実施例】 以下、本発明の実施例を用いて説明する。Hereinafter, an embodiment of the present invention will be described.

【0045】[0045]

【実施例1】攪拌機付きの反応層に、2mol/Lの硫
酸ニッケル水溶液と、5mol/Lの硫酸アンモニウム
水溶液を連続投入しながら、10mol/Lの水酸化ナ
トリウム水溶液を反応層内のpHが自動的に12.0に
維持されるように投入した。反応層内の温度は40℃に
維持し、攪拌機により常に攪拌した。生成した水酸化物
はオーバーフロー管よりオーバーフローさせて取り出
し、水洗、脱水、乾燥処理した。こうして、高密度水酸
化ニッケルを得た。
Example 1 While continuously adding a 2 mol / L aqueous solution of nickel sulfate and a 5 mol / L aqueous solution of ammonium sulfate to a reaction layer equipped with a stirrer, the pH in the reaction layer was automatically adjusted to 10 mol / L aqueous sodium hydroxide. To maintain the temperature at 12.0. The temperature in the reaction layer was maintained at 40 ° C., and was constantly stirred by a stirrer. The generated hydroxide was taken out of the overflow tube by overflowing, and was washed with water, dehydrated, and dried. Thus, high-density nickel hydroxide was obtained.

【0046】次に、その高密度球状水酸化ニッケル10
0gを攪拌機付きの2L反応槽に入れ、次に5mol/
Lの硫酸アンモニウム水溶液及び10mol/L水酸化
ナトリウム水溶液を添加し、pH9に調整し、pH9を
維持するように、2mol/Lの硫酸コバルト水溶液4
0ml及び10mol/L水酸化ナトリウム水溶液を添
加し、30分保持した。その後、10mol/L水酸化
ナトリウム水溶液を添加してpHを12.5に調整し、
そのpHで1時間保持した。濾過、脱水、乾燥を経て、
βー水酸化コバルトコーティング水酸化ニッケルを得
た。この時、コーティングしたコバルト量は、4.4%
であった。
Next, the high-density spherical nickel hydroxide 10
0 g was placed in a 2 L reaction vessel equipped with a stirrer, and then 5 mol /
L of an aqueous solution of ammonium sulfate and an aqueous solution of 10 mol / L sodium hydroxide were added to adjust the pH to 9.
0 ml and a 10 mol / L aqueous sodium hydroxide solution were added, and the mixture was kept for 30 minutes. Then, the pH was adjusted to 12.5 by adding a 10 mol / L aqueous sodium hydroxide solution,
It was kept at that pH for one hour. After filtration, dehydration and drying,
β-cobalt hydroxide coated nickel hydroxide was obtained. At this time, the amount of cobalt coated was 4.4%.
Met.

【0047】[0047]

【実施例2】実施例1において、ベースとなる水酸化ニ
ッケルにZn5%及びCo1%を固溶解させたものを用
いて作製した。
Embodiment 2 The same procedure as in Embodiment 1 was carried out except that 5% of Zn and 1% of Co were dissolved in nickel hydroxide as a base.

【0048】[0048]

【実施例3】実施例1において、コーティングをpH1
0で行い、βーの転換する際のpHを13で行った。
Example 3 In Example 1, the coating was adjusted to pH 1
0, and pH at the time of β-conversion was 13.

【0049】[0049]

【比較例1】実施例1のコ−ティングにおいて、pHを
12で行い、直接βー水酸化コバルトを生成させ、コー
ティングした。
Comparative Example 1 In the coating of Example 1, the pH was adjusted to 12 and β-cobalt hydroxide was directly formed and coated.

【0050】[0050]

【比較例2】実施例1において、2mol/Lの硫酸コ
バルト水溶液を15mLを使用した。コ−ティングコバ
ルト量は1.5%であった。
Comparative Example 2 In Example 1, 15 mL of a 2 mol / L cobalt sulfate aqueous solution was used. The coating cobalt content was 1.5%.

【0051】[0051]

【比較例3】実施例1において、2mol/Lの硫酸コ
バルト水溶液を9mLとした。コ−ティングコバルト量
は0.8%であった。
Comparative Example 3 In Example 1, 9 mL of a 2 mol / L aqueous solution of cobalt sulfate was used. The coating cobalt content was 0.8%.

【0052】(物性の測定方法)(Method of measuring physical properties)

【表1】 [Table 1]

【表2】 (電池としての評価方法)まず、実施例1〜3及び比較
例1〜3で得た各水酸化ニッケルを用いて、それぞれ正
極を作製した。即ち、水酸化ニッケルに、少量の一酸化
コバルト粉末を混合し、この混合物をCMC(カルボキ
シメチルセルロース)水溶液を加えてペ−スト状とし、
支持体である発泡ニッケル基体に充填し、乾燥加圧して
正極とした。
[Table 2] (Evaluation Method as Battery) First, positive electrodes were prepared using the respective nickel hydroxides obtained in Examples 1 to 3 and Comparative Examples 1 to 3. That is, a small amount of cobalt monoxide powder is mixed with nickel hydroxide, and this mixture is added with a CMC (carboxymethylcellulose) aqueous solution to form a paste.
The foamed nickel substrate as a support was filled and dried and pressed to obtain a positive electrode.

【0053】この正極を、カドミウム負極を相手極とし
て、水酸化カリウム水溶液中で充放電して、活物質利用
率及び充放電サイクル寿命を測定した。活物質利用率は
次のようにして求めた。即ち、正極の理論容量に対して
の0.1Cの充電電流で理論容量の150%まで充電を
行い、その後、1/5Cの放電電流で1.0Vまで放電
を行い、理論容量に対する実測放電容量を百分率で表し
た。
The positive electrode was charged and discharged in an aqueous potassium hydroxide solution with the cadmium negative electrode as a counter electrode, and the active material utilization rate and the charge / discharge cycle life were measured. The active material utilization was determined as follows. That is, the battery is charged to a capacity of 150% of the theoretical capacity with a charging current of 0.1 C with respect to the theoretical capacity of the positive electrode, and then discharged to 1.0 V with a discharging current of 1/5 C. Was expressed as a percentage.

【0054】活物質利用率(%)=(1.0Vまでに放
電容量/水酸化ニッケル理論容量)×100
Active material utilization rate (%) = (discharge capacity by 1.0 V / nickel hydroxide theoretical capacity) × 100

【表3】 [Table 3]

【発明の効果】以上の説明で明かなように、本発明は、
アルカリ蓄電池のペ−スト式ニッケル正極用として、利
用率の高い高密度水酸化ニッケルを提供するものであ
り、極めて工業的価値は大である。
As is apparent from the above description, the present invention provides:
The present invention provides high-density nickel hydroxide having a high utilization factor for use as a paste-type nickel positive electrode of an alkaline storage battery, and has an extremely large industrial value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1におけるコーティングベースとなる
水酸化ニッケルの表面構造写真を示す図である。
FIG. 1 is a view showing a photograph of a surface structure of nickel hydroxide serving as a coating base in Example 1.

【図2】 実施例1におけるコーティング層を有する水
酸化ニッケルの表面構造写真示す図である。
FIG. 2 is a photograph showing a surface structure photograph of nickel hydroxide having a coating layer in Example 1.

【手続補正書】[Procedure amendment]

【提出日】平成9年1月7日[Submission date] January 7, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】5)特開平7−320737では、内層に
α−水酸化コバルト、外層にβ−水酸化コバルトを被覆
した水酸化ニッケルを提案している。更に、6)特開昭
56−59460では、低密度な、不定形の水酸化ニッ
ケル粒子をコバルト塩水溶液中に浸漬し、過剰のコバル
ト塩を濾別後、炭酸ナトリウムと反応させ、水酸化ニッ
ケル上にコバルト含有化合物を沈殿させている。
5) Japanese Patent Application Laid-Open No. 7-320737 proposes nickel hydroxide in which α-cobalt hydroxide is coated on the inner layer and β-cobalt hydroxide is coated on the outer layer. 6) JP-A-56-59460 discloses that low-density, amorphous nickel hydroxide particles are immersed in an aqueous solution of a cobalt salt, excess cobalt salt is filtered off, and then reacted with sodium carbonate to obtain nickel hydroxide. A cobalt-containing compound is precipitated on top.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】5)の方法では、水酸化コバルトの被覆層
の均一性が不十分なため、十分な利用率が得られていな
い。更に、6)の方法では、アルカリと瞬時に反応する
ため、水酸化コバルトの被覆層が不定形の、不均一性な
ものになるため、十分な利用率が得られていない。
In the method 5), a sufficient utilization rate cannot be obtained because the uniformity of the coating layer of cobalt hydroxide is insufficient. Furthermore, in the method 6), since the reaction with the alkali is instantaneous, the coating layer of cobalt hydroxide becomes irregular and non-uniform, so that a sufficient utilization rate cannot be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 得代志 福井県福井市白方町45字砂浜割5番10 株 式会社田中化学研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tokuyoshi Iida 45-10, Shirahama-cho, Shirakata-cho, Fukui-shi, Fukui 5-10 Inside Tanaka Chemical Laboratory Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ蓄電池の正極活物質において、
ベ−スとなる高密度水酸化ニッケルの表面及び細孔がβ
ー水酸化コバルト層で覆われ、粒子形状が球形かそれに
近く、コ−ティングしたコバルト量が1〜10%、タッ
ピング密度が1.9g/cc以上、X線回折における
(101)面ピ−クの半値幅が0.8〜1.3゜/2θ、
比表面積が0.5〜30m2/g、平均粒径が3〜25μ
mである高密度水酸化ニッケル。
1. A positive electrode active material for an alkaline storage battery,
The surface and pores of high-density nickel hydroxide serving as a base are β
-Coated with cobalt hydroxide layer, particle shape is close to spherical, coated cobalt amount is 1-10%, tapping density is 1.9 g / cc or more, (101) plane peak in X-ray diffraction Has a half width of 0.8 to 1.3 ° / 2θ,
Specific surface area is 0.5 to 30 m 2 / g, average particle size is 3 to 25 μ
m high density nickel hydroxide.
【請求項2】 反応槽にニッケル塩水溶液、アンモニウ
ムイオン供給体、アルカリ金属水酸化物溶液を連続的に
供給して連続的に結晶成長させ、得られた高密度球状水
酸化ニッケルを連続的または継続的に取り出し、その高
密度球状水酸化ニッケルを他の反応槽に入れ、次にアン
モニウムイオン供給体及びアルカリ金属水酸化物溶液を
添加し、pHを8〜11に調整し、そのpHを維持しな
がらコバルト塩水溶液及びアルカリ金属水酸化物溶液を
添加して、水酸化ニッケルの表面にα−水酸化コバルト
層を形成し、更にアルカリ金属水酸化物溶液を供給して
pH11〜13.5で保持することにより、α−水酸化
コバルトをβー水酸化コバルトに転換したコーティング
層を形成することからなる、βー水酸化コバルト層で覆
われた高密度水酸化ニッケルを製造する方法。
2. A high-density spherical nickel hydroxide obtained by continuously supplying an aqueous solution of a nickel salt, an ammonium ion supplier, and a solution of an alkali metal hydroxide to a reaction vessel to continuously grow crystals. Continuously take out, put the high-density spherical nickel hydroxide in another reactor, then add ammonium ion donor and alkali metal hydroxide solution, adjust the pH to 8-11, maintain the pH While adding an aqueous solution of a cobalt salt and an alkali metal hydroxide solution, an α-cobalt hydroxide layer is formed on the surface of the nickel hydroxide, and an alkali metal hydroxide solution is further supplied to adjust the pH to 11 to 13.5. By holding, a coating layer is formed by converting α-cobalt hydroxide to β-cobalt hydroxide. How to make Kel.
JP17852396A 1996-06-19 1996-06-19 Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same Expired - Lifetime JP3356628B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17852396A JP3356628B2 (en) 1996-06-19 1996-06-19 Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
US08/858,599 US6040007A (en) 1996-06-19 1997-05-19 Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17852396A JP3356628B2 (en) 1996-06-19 1996-06-19 Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1012237A true JPH1012237A (en) 1998-01-16
JP3356628B2 JP3356628B2 (en) 2002-12-16

Family

ID=16049969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17852396A Expired - Lifetime JP3356628B2 (en) 1996-06-19 1996-06-19 Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3356628B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164212A (en) * 1998-11-30 2000-06-16 Yuasa Corp Positive electrode active material for alkaline storage battery and positive electrode for alkaline storage battery
CN1075470C (en) * 1999-03-19 2001-11-28 清华大学 Process for coating cobalt oxide cobalt hydroxide on surface of spherical nickel hydroxide
FR2830688A1 (en) * 2001-10-08 2003-04-11 Cit Alcatel ELECTROCHEMICALLY ACTIVE MATERIAL FOR ELECTRODE
EP1424741A1 (en) * 2001-09-03 2004-06-02 Yuasa Corporation NICKEL ELECTRODE MATERIAL AND PRODUCTION METHOD THEREFOR, AND NICKEL ELECTRODE AND ALKALINE BATTERY
US6958200B2 (en) 2000-04-05 2005-10-25 Matsushita Electric Industrial Co., Ltd. Nickel-metal hydride storage battery and assembly of the same
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
JP2014169201A (en) * 2013-03-04 2014-09-18 Tanaka Chemical Corp Assembly of particle and production method of the same
US10680239B2 (en) 2012-11-20 2020-06-09 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
US10797316B2 (en) 2012-11-20 2020-10-06 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
CN113620354A (en) * 2021-08-06 2021-11-09 湖南杉杉能源科技有限公司 Surface-coated lithium ion battery anode material precursor and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164212A (en) * 1998-11-30 2000-06-16 Yuasa Corp Positive electrode active material for alkaline storage battery and positive electrode for alkaline storage battery
CN1075470C (en) * 1999-03-19 2001-11-28 清华大学 Process for coating cobalt oxide cobalt hydroxide on surface of spherical nickel hydroxide
US6958200B2 (en) 2000-04-05 2005-10-25 Matsushita Electric Industrial Co., Ltd. Nickel-metal hydride storage battery and assembly of the same
EP1424741A1 (en) * 2001-09-03 2004-06-02 Yuasa Corporation NICKEL ELECTRODE MATERIAL AND PRODUCTION METHOD THEREFOR, AND NICKEL ELECTRODE AND ALKALINE BATTERY
EP1424741A4 (en) * 2001-09-03 2006-10-04 Yuasa Battery Co Ltd Nickel electrode material and production method therefor, and nickel electrode and alkaline battery
US7635512B2 (en) 2001-09-03 2009-12-22 Yuasa Corporation Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
FR2830688A1 (en) * 2001-10-08 2003-04-11 Cit Alcatel ELECTROCHEMICALLY ACTIVE MATERIAL FOR ELECTRODE
JP2007335154A (en) * 2006-06-13 2007-12-27 Tanaka Chemical Corp Alkaline battery cathode active material
US10680239B2 (en) 2012-11-20 2020-06-09 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
US10797316B2 (en) 2012-11-20 2020-10-06 Sumitomo Metal Mining Co., Ltd. Coated nickel hydroxide powder for alkali secondary battery positive electrode active material and method of producing same
JP2014169201A (en) * 2013-03-04 2014-09-18 Tanaka Chemical Corp Assembly of particle and production method of the same
CN113620354A (en) * 2021-08-06 2021-11-09 湖南杉杉能源科技有限公司 Surface-coated lithium ion battery anode material precursor and preparation method thereof

Also Published As

Publication number Publication date
JP3356628B2 (en) 2002-12-16

Similar Documents

Publication Publication Date Title
US6040007A (en) Nickel hydroxide particles having an α- or β-cobalt hydroxide coating layer for use in alkali batteries and a process for producing the nickel hydroxide
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JP3356628B2 (en) Nickel hydroxide covered with β-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JPH10125318A (en) Positive active material and positive electrode for alkaline storage battery
CN1187853C (en) Positive electrode active material for alkaline storage battery
JP2001322817A (en) Manganese solid solution nickel hydroxide particle and its manufacturing method
JP2000077070A (en) Nickel hydroxide powder and its manufacture
JP3656353B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP3579545B2 (en) Nickel hydroxide for alkaline storage batteries and method for producing the same
JP3415364B2 (en) Nickel hydroxide coated with α-cobalt hydroxide layer for alkaline storage battery and method for producing the same
JP7431914B2 (en) Positive electrode active material for alkaline storage batteries and method for producing positive electrode active materials for alkaline storage batteries
JP2006108084A (en) Manganese oxide powder for anode active substance
JPH1167200A (en) Manufacture of high-density nickel hydroxide active material
JP5312958B2 (en) Method for producing crystal agglomerated particles useful as active material for nickel positive electrode
JP3324781B2 (en) Alkaline secondary battery
JP3594322B2 (en) Non-sintered nickel positive electrode for alkaline storage battery and method for producing the same
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JP2000082463A (en) Nickel positive electrode active material for alkaline battery and its manufacture
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JPH11260364A (en) Manganese-containing composite nickel hydroxide active material and manufacture thereof
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JP4467504B2 (en) Positive electrode active material for alkaline storage battery, method for producing the same, and positive electrode for alkaline storage battery
JPH11130441A (en) Production of nickel-containing hydroxide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071004

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101004

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111004

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121004

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131004

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term