JPH10118491A - Preparation of catalyst for producing acrylic acid - Google Patents

Preparation of catalyst for producing acrylic acid

Info

Publication number
JPH10118491A
JPH10118491A JP8299309A JP29930996A JPH10118491A JP H10118491 A JPH10118491 A JP H10118491A JP 8299309 A JP8299309 A JP 8299309A JP 29930996 A JP29930996 A JP 29930996A JP H10118491 A JPH10118491 A JP H10118491A
Authority
JP
Japan
Prior art keywords
acrylic acid
propane
catalyst
metal
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8299309A
Other languages
Japanese (ja)
Other versions
JP3750229B2 (en
Inventor
Mamoru Takahashi
衛 高橋
Shinrin To
新林 屠
Shunryo Hirose
俊良 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP29930996A priority Critical patent/JP3750229B2/en
Publication of JPH10118491A publication Critical patent/JPH10118491A/en
Application granted granted Critical
Publication of JP3750229B2 publication Critical patent/JP3750229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing a catalyst which is used in the gas phase catalytic oxidation of propane, and enables a high yield production of acrylic acid. SOLUTION: A method consists of a process 1 in which antimony is oxidized to be pentavalent by reacting a monoperoxovanadium ion aqueous solution with a compound containing trivalent antimony by heating in an aqueous medium and a process 2 in which the product of the process 1 is added with a Mo compound and an A (defined separately) compound and the mixture is mixed uniformly and burned to convert the metal into oxide. A catalyst for producing acrylic acid by the gas phase catalytic oxidation of propane can be prepared from metal oxide the metal ratio of which is expressed by a composition formula of Mo Vi SBj Ak in which A is Nb or Ta; i, j, k are each 0.001-3.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プロパンの気相接
触酸化によるアクリル酸の製法に適用される触媒の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst applied to a method for producing acrylic acid by gas phase catalytic oxidation of propane.

【0002】[0002]

【従来技術】プロパンを気相接触酸化してアクリル酸を
製造する触媒は、従来数多く提案されている。このよう
な触媒の具体例としては、V−P−Te〔キャタリシス
ツディー(Catal.Today),13,679
(1992)〕、(VO)2 2 7 〔日本化学誌、
(4),354(1992)〕、AgBiVMoO(特
開平2−83348号公報)、BiMo125 Nb0.5
SbKOn (USP第5198580号)、Sb−P−
Mo(USP第4260822号)、(VO)2 2
7 +TeO2 (特開平6−135922号公報)および
MoTeVNb(特開平6−279351号公報)等が
挙げられる。
2. Description of the Related Art A large number of catalysts for producing acrylic acid by gas phase catalytic oxidation of propane have been proposed. Specific examples of such a catalyst include VP-Te [Catalysis Today (13,679).
(1992)], (VO) 2 P 2 O 7 [Japanese Chemical Journal,
(4), 354 (1992)], AgBiVMoO (JP-A-2-83348), BiMo 12 V 5 Nb 0.5
SbKO n (USP No. 5,198,580), Sb-P-
Mo (USP No. 4,260,822), (VO) 2 P 2 O
7 + TeO 2 (JP-A-6-135922) and MoTeVNb (JP-A-6-279351).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記触
媒では、目的生成物であるアクリル酸の収率が低かった
り、または反応方式が複雑で、気相ラジカル反応が並行
して起こり実用化が困難であった。上記特開平6−27
9351号公報に記載のMoTeVNb系触媒では、ア
クリル酸の収率は相当に高いが、酢酸、一酸化炭素およ
び二酸化炭素等を生成する副反応が起こり易く、プロパ
ンのアクリル酸への選択率において、なお改良の余地が
あった。また、USP第5198580号に開示のB
i,Mo,V,Nb,SbおよびKからなる金属酸化物
の場合も、上記MoTeVNb系触媒と同様に、選択率
が今一歩であった。
However, in the above-mentioned catalyst, the yield of acrylic acid, which is the target product, is low, or the reaction system is complicated, and gas-phase radical reactions occur in parallel, which makes practical use difficult. there were. JP-A-6-27
In the MoTeVNb-based catalyst described in US Pat. No. 9351, the yield of acrylic acid is considerably high, but acetic acid, carbon monoxide, carbon dioxide and the like are liable to occur, and the selectivity of propane to acrylic acid is high. There was room for improvement. Further, B disclosed in US Pat. No. 5,198,580.
Also in the case of the metal oxide composed of i, Mo, V, Nb, Sb and K, the selectivity was just one step like the MoTeVNb-based catalyst.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意検討した結果、プロパンのアンモ
酸化反応の触媒として知られていた、特定な製造法によ
って得られるバナジウムおよびアンチモンからなる金属
酸化物(特開平2−2877号公報)に、モリブデンお
よびニオブ、またはモリブデンおよびタンタルを添加し
かつ焼成して得られる金属酸化物によれば、プロパンか
ら一段でアクリル酸を極めて高収率で製造できることを
見出し、本発明を完成するに至った。すなわち、本発明
は、モノペルオキソバナジウムイオン水溶液と、原子価
3のアンチモンを含む化合物を水性媒体中で加熱下に反
応させることにより、前記アンチモンの原子価を5価に
酸化させる工程(1)と、上記工程(1)で得られた反
応生成物に、Moからなる化合物および以下に定義する
Aからなる化合物を加えて均一に混合し、得られる混合
物を焼成することにより、上記金属を酸化物に転換する
工程(2)からなることを特徴とする、構成金属の割合
が下記組成式(I)で表される金属酸化物からなるプロ
パンの気相接触酸化によるアクリル酸製造用触媒の製造
方法である。 MoVi Sbj Ak (I) (式中、Aは、NbまたはTaであり、また i、j およ
びk は、いずれも0.001〜3.0である) 以下、本発明についてさらに詳しく説明する。
DISCLOSURE OF THE INVENTION The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, vanadium and antimony obtained by a specific production method, which are known as catalysts for ammoxidation reaction of propane. According to the metal oxide obtained by adding molybdenum and niobium, or molybdenum and tantalum to a metal oxide consisting of The present inventors have found that they can be manufactured at a high rate, and have completed the present invention. That is, the present invention comprises a step (1) of oxidizing the valence of antimony to pentavalent by reacting a monoperoxovanadium ion aqueous solution with a compound containing antimony having a valence of 3 in an aqueous medium under heating. The compound of Mo and the compound of A defined below are added to the reaction product obtained in the above step (1), and the mixture is uniformly mixed, and the resulting mixture is calcined to convert the metal to an oxide. A method for producing a catalyst for acrylic acid production by gas phase catalytic oxidation of propane comprising a metal oxide having a composition metal ratio represented by the following composition formula (I): It is. MoVi Sbj Ak (I) (where A is Nb or Ta, and i, j and k are all 0.001 to 3.0). Hereinafter, the present invention will be described in more detail.

【0005】[0005]

【発明の実施の形態】モノペルオキソバナジウムイオン
は、化学式VO(O2 + で表されるイオンであり、酸
化バナジウム等のバナジウム化合物を過酸化水素水溶液
中で酸化することにより得られる。その合成法は公知で
あり、例えば前記の特開平2−2877号公報に記載さ
れている。上記反応に使用する過酸化水素水溶液の過酸
化水素濃度は、数%〜35%程度が適当である。反応に
際しては、バナジウムに対して過酸化水素を理論量より
多めに使用することが好ましい。反応は室温下で速やか
に進行し、反応の終了時には、反応液は赤色を呈する。
かくして、モノペルオキソバナジウムイオンの水溶液を
得ることができる。バナジウム化合物としては、VO、
2 5 、V2 3 等のバナジウム酸化物;VOC
3 、VOCl2 、VOCl等のオキシハロゲン化バナ
ジウム;VF3、VCl3 、VBr3 等のハロゲン化バ
ナジウム;およびメタバナジウム酸等が挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Monoperoxovanadium ion is an ion represented by the chemical formula VO (O 2 ) + and is obtained by oxidizing a vanadium compound such as vanadium oxide in an aqueous hydrogen peroxide solution. The synthesis method is known, and is described, for example, in the above-mentioned JP-A-2-2877. The concentration of hydrogen peroxide in the aqueous solution of hydrogen peroxide used for the above reaction is suitably about several% to 35%. In the reaction, it is preferable to use hydrogen peroxide in a larger amount than the theoretical amount with respect to vanadium. The reaction proceeds rapidly at room temperature, and at the end of the reaction, the reaction solution turns red.
Thus, an aqueous solution of monoperoxovanadium ions can be obtained. As the vanadium compound, VO,
Vanadium oxides such as V 2 O 5 and V 2 O 3 ; VOC
l 3, VOCl 2, oxyhalides of vanadium such as VOCl; VF 3, VCl 3, VBr 3 halides, such as vanadium; and metavanadate, and the like.

【0006】つぎに、上記モノペルオキソバナジウムイ
オン水溶液と、原子価3のアンチモンを含む化合物を水
性媒体中で加熱下に反応させる。3価のアンチモン化合
物としては、三酸化アンチモンおよび酢酸アンチモンが
好ましく、また好ましい反応温度は、80℃以上であ
り、反応時間としては4〜60時間が適当である。反応
の進行に従い反応液は、まず深青色に変色し、最終的に
黒緑色となる。この反応において、該ペルオキソバナジ
ウムイオンにより3価のアンチモンが5価のアンチモン
に酸化され、一方バナジウムの原子価は、原子種により
異なるが、平均で5未満になる。添加するアンチモンの
量は、Sb:Vの原子比で0.3〜0.9の範囲が好ま
しい。Sb:Vの原子比が、0.3未満であるとアクリ
ル酸製造反応においてアクリル酸の選択率が低く、一方
0.9を越えるとプロパンの転化率が低下し易い。
Next, the aqueous solution of monoperoxovanadium ion and a compound containing antimony having a valence of 3 are reacted under heating in an aqueous medium. As the trivalent antimony compound, antimony trioxide and antimony acetate are preferable, and a preferable reaction temperature is 80 ° C. or higher, and a suitable reaction time is 4 to 60 hours. As the reaction proceeds, the reaction solution first changes color to deep blue, and finally turns black-green. In this reaction, trivalent antimony is oxidized to pentavalent antimony by the peroxovanadium ion, while the valence of vanadium is less than 5, on average, depending on the atomic species. The amount of antimony to be added is preferably in the range of 0.3 to 0.9 in the atomic ratio of Sb: V. If the atomic ratio of Sb: V is less than 0.3, the selectivity of acrylic acid in the acrylic acid production reaction is low, while if it exceeds 0.9, the conversion of propane tends to decrease.

【0007】本発明においては、上記反応によって得ら
れる黒緑色の分散液または該分散液から水性媒体を除去
して得られる固形分に、金属MoおよびA(但しAは、
NbまたはTaである)からなる化合物を加えて均一に
混合する。ここで添加する金属化合物の具体例として
は、モリブデン酸、モリブデン酸アンモニウム、酸化モ
リブデン等のモリブデン化合物;ニオブ酸、しゅう酸水
素ニオブ、酸化ニオブ、塩化ニオブ等のニオブ化合物;
タンタル酸、酸化タンタル、塩化タンタル、タンタルエ
トキシド等のタンタル化合物等が挙げられる。上記金属
化合物の使用量は、得られる混合物を蒸発乾固して得ら
れた固形分を焼成して得られる金属酸化物における各金
属の割合が、次式の原子比を満足する割合である。 MoVi Sbj Ak (I) (式中、 i、j およびk は、いずれも0.001〜3.0で
ある) 上記式中、より好ましい i、j およびk は、0.1〜0.5
である。上記金属酸化物において、Moを1とした場合
のVの割合が、3を越えると燃焼反応の割合が大きくな
る。Moを1とした場合のSbの割合が、3を越えると
プロパンの転化率が低下する。また、Moを1とした場
合のAの割合が、3を越えると転化率および反応物にお
けるアクリル酸の割合すなわち選択率のいずれもが低下
する。Moを1とした場合のV、SbおよびAの割合
が、それぞれ0.001未満であると、いずれの場合にも
プロパンの転換率およびアクリル酸選択率に劣る。
In the present invention, metal Mo and A (where A is a solid) obtained by removing the aqueous medium from the black-green dispersion obtained by the above reaction or by removing the aqueous medium from the dispersion are used.
Nb or Ta) is added and mixed homogeneously. Specific examples of the metal compound added here include molybdenum compounds such as molybdic acid, ammonium molybdate and molybdenum oxide; niobium compounds such as niobate, niobium hydrogen oxalate, niobium oxide and niobium chloride;
Tantalum compounds such as tantalic acid, tantalum oxide, tantalum chloride, and tantalum ethoxide are included. The amount of the metal compound used is such that the proportion of each metal in the metal oxide obtained by baking the solid obtained by evaporating the obtained mixture to dryness satisfies the following atomic ratio. MoVi Sbj Ak (I) (where i, j and k are all 0.001 to 3.0) In the above formula, more preferred i, j and k are 0.1 to 0.5.
It is. In the above metal oxide, if the ratio of V when Mo is 1 exceeds 3, the ratio of the combustion reaction increases. If the ratio of Sb exceeds 3 when Mo is 1, the conversion of propane decreases. Further, when the ratio of A when Mo is 1 exceeds 3, both the conversion and the ratio of acrylic acid in the reaction product, that is, the selectivity, decrease. When the ratio of V, Sb and A is less than 0.001 when Mo is 1, the conversion rate of propane and the selectivity of acrylic acid are inferior in each case.

【0008】上記操作によって得られる金属化合物の混
合物は、必要により蒸発乾固または噴霧乾燥等の方法に
より乾燥した後、300〜900℃の温度で1〜20時
間焼成することにより、金属酸化物に転換される。焼成
の雰囲気は、窒素およびアルゴン等の不活性ガス気流中
または空気および酸素等の酸素含有気流中が好ましい。
得られた金属酸化物の確認は、螢光X線分析によって行
うことができる。上記方法により得られる金属酸化物す
なわち本発明におけるアクリル酸製造用触媒は、適当な
粒度にまで粉砕して、表面積を増大させることが好まし
く、粉砕方法としては、乾式粉砕法または湿式粉砕法の
いずれの方法も使用でき、粉砕装置としては、乳鉢、ボ
ールミル等が挙げられる。本触媒の好ましい粒度は、2
0μm以下であり、さらに好ましくは5μm以下であ
る。
The mixture of the metal compounds obtained by the above operation is dried by evaporation to dryness or spray drying if necessary, and then calcined at a temperature of 300 to 900 ° C. for 1 to 20 hours to form a metal oxide. Is converted. The firing atmosphere is preferably in a stream of an inert gas such as nitrogen and argon or in a stream of an oxygen-containing gas such as air and oxygen.
Confirmation of the obtained metal oxide can be performed by fluorescent X-ray analysis. The metal oxide obtained by the above method, that is, the catalyst for producing acrylic acid in the present invention, is preferably pulverized to an appropriate particle size to increase the surface area, and the pulverization method may be any of a dry pulverization method and a wet pulverization method. Can be used, and examples of the pulverizing device include a mortar and a ball mill. The preferred particle size of the catalyst is 2
It is 0 μm or less, and more preferably 5 μm or less.

【0009】本発明におけるアクリル酸製造用触媒は、
無担体の状態でも使用できるが、適当な粒度を有するシ
リカ、アルミナ、シリカアルミナおよびシリコンカーバ
イド等の担体に担持させた状態で使用することもでき
る。アクリル酸製造の原料であるプロパンおよび酸素ガ
スは、別々に反応器に導入して反応器内で混合させても
よく、また予め両者を混合させた状態で反応器に導入し
てもよい。酸素ガスとしては、純酸素ガスまたは空気、
ならびにこれらを窒素、スチームまたは炭酸ガスで希釈
したガスが挙げられる。プロパンおよび空気を使用する
場合、空気のプロパンに対する使用割合は、容積比率で
30倍以下が好ましく、さらに好ましくは、0.2〜2
0倍の範囲である。好ましい反応温度は300〜600
℃であり、より好ましくは350〜500℃である。ま
た、ガス空間速度(以下SVという)としては、300
〜5000/hrが適当である。以下、実施例および比
較例を挙げることにより、本発明をさらに具体的に説明
する。
The catalyst for producing acrylic acid according to the present invention comprises:
Although it can be used without a carrier, it can also be used in a state of being supported on a carrier having an appropriate particle size, such as silica, alumina, silica-alumina, and silicon carbide. Propane and oxygen gas, which are raw materials for producing acrylic acid, may be separately introduced into the reactor and mixed in the reactor, or may be introduced into the reactor in a state where both are mixed in advance. As oxygen gas, pure oxygen gas or air,
And gases obtained by diluting them with nitrogen, steam or carbon dioxide. When propane and air are used, the ratio of air to propane is preferably 30 times or less by volume, more preferably 0.2 to 2 times.
The range is 0 times. Preferred reaction temperatures are 300-600
° C, more preferably 350-500 ° C. The gas space velocity (hereinafter referred to as SV) is 300
55000 / hr is appropriate. Hereinafter, the present invention will be described more specifically by giving Examples and Comparative Examples.

【0010】[0010]

【実施例1】蒸留水100mlに五酸化バナジウム4.
07gを加え攪拌下に、さらに35%過酸化水素水2
6.4gを滴下し、五酸化バナジウムを溶解させた。得
られた溶液に、三酸化アンチモン5.43gを加え8時
間加熱還流させ、スラリー溶液を得た。他方、蓚酸1
1.27gおよびニオブ酸2.77gを180mlの蒸
留水に加熱溶解してニオブ含有水溶液を得た。上記スラ
リー液に、モリブデン酸アンモニウム26.31gおよ
び前記ニオブ含有溶液の全量を加えた後、さらに50℃
で30分撹拌を行った。得られたスラリーを加熱して蒸
発乾固した後、さらに120℃で3時間乾燥させ、次い
で窒素中600℃で2時間焼成した。上記操作により、
Mo/Sb/V/Nbの原子比が1.0/0.25/
0.3/0.11(螢光X線分析による測定結果)の酸
化物を得た。得られた酸化物を16〜30メッシュに粉
砕し、アクリル酸製造用反応器に充填した。
Example 1 Vanadium pentoxide in 100 ml of distilled water
07 g, and further stirred and stirred for 35% hydrogen peroxide solution 2
6.4 g was added dropwise to dissolve vanadium pentoxide. 5.43 g of antimony trioxide was added to the obtained solution, and the mixture was refluxed for 8 hours to obtain a slurry solution. On the other hand, oxalic acid 1
1.27 g and 2.77 g of niobic acid were heated and dissolved in 180 ml of distilled water to obtain a niobium-containing aqueous solution. After 26.31 g of ammonium molybdate and the total amount of the niobium-containing solution were added to the slurry, the mixture was further heated to 50 ° C.
For 30 minutes. The resulting slurry was heated and evaporated to dryness, then dried at 120 ° C. for 3 hours, and then calcined in nitrogen at 600 ° C. for 2 hours. By the above operation,
The atomic ratio of Mo / Sb / V / Nb is 1.0 / 0.25 /
An oxide of 0.3 / 0.11 (result of measurement by fluorescent X-ray analysis) was obtained. The obtained oxide was pulverized to 16 to 30 mesh and charged into a reactor for producing acrylic acid.

【0011】触媒を充填した反応器を温度400℃に維
持し、プロパン4.4容量%、酸素7.0容量%、窒素
26.3容量%および水蒸気62.3容量%の混合ガス
(以下テストガスという)をSV1600/hrの速度
で該反応器中に供給して、アクリル酸製造を行った。こ
の反応におけるプロパン転化率(%)、プロピレン選択
率(%)およびアクリル酸選択率(%)を、それぞれ以
下の式によって算出し、結果を表1に記載した。 ・プロパン転化率(%)=〔(供給プロパン−未反応プ
ロパン)/供給プロパン〕×100 ・プロピレン選択率(%)=〔生成プロピレン/(供給
プロパン−未反応プロパン)〕×100 ・アクリル酸選択率(%)=〔生成アクリル酸/(供給
プロパン−未反応プロパン)〕×100 上記式の左辺の物質の量の単位は、いずれもモルであ
る。
The reactor filled with the catalyst was maintained at a temperature of 400 ° C., and a mixed gas of 4.4% by volume of propane, 7.0% by volume of oxygen, 26.3% by volume of nitrogen and 62.3% by volume of steam (hereinafter referred to as test). (Referred to as gas) at a rate of SV 1600 / hr into the reactor to produce acrylic acid. The propane conversion (%), propylene selectivity (%) and acrylic acid selectivity (%) in this reaction were calculated by the following equations, respectively, and the results are shown in Table 1. -Propane conversion (%) = [(supply propane-unreacted propane) / supply propane] x 100-Propylene selectivity (%) = [propylene produced / (supply propane-unreacted propane)] x 100-Acrylic acid selection Rate (%) = [Producted acrylic acid / (supply propane−unreacted propane)] × 100 The unit of the amount of the substance on the left side of the above formula is mol.

【0012】[0012]

【実施例2】反応温度を380℃とした以外は、すべて
実施例1と同一の条件で反応を行った。反応の結果は表
1に記載のとおりである。
Example 2 The reaction was carried out under the same conditions as in Example 1 except that the reaction temperature was 380 ° C. The results of the reaction are as shown in Table 1.

【0013】[0013]

【比較例1】メタバナジン酸アンモニウム12.3gを
蒸留水259mlに加熱溶解させた後、三酸化アンチモ
ン12.7gを加えて12時間加熱還流させ、スラリー
液を得た。他方、蓚酸26.3gおよびニオブ酸6.5
gを180mlの蒸留水に加熱溶解して、ニオブ含有水
溶液を得た。上記スラリー液に、モリブデン酸アンモニ
ウム61.0gおよび前記ニオブ含有水溶液の全量を加
えた後、さらに30分撹拌を行った。得られたスラリー
を蒸発乾固し、さらに120℃で3時間乾燥させた後、
窒素中600℃で2時間焼成して前記金属を含む金属酸
化物を得た。上記金属酸化物におけるMo/Sb/V/
Nbの原子比は、1.0/0.25/0.3/0.11
であった。該金属酸化物を16〜30メッシュに粉砕
し、反応器に充填して、以下実施例1と同様にプロパン
を反応させて、その結果を表1に記載した。
COMPARATIVE EXAMPLE 1 12.3 g of ammonium metavanadate was dissolved in 259 ml of distilled water while heating, 12.7 g of antimony trioxide was added, and the mixture was heated under reflux for 12 hours to obtain a slurry liquid. On the other hand, 26.3 g of oxalic acid and 6.5 of niobic acid
g was heated and dissolved in 180 ml of distilled water to obtain a niobium-containing aqueous solution. After adding 61.0 g of ammonium molybdate and the whole amount of the niobium-containing aqueous solution to the slurry liquid, stirring was further performed for 30 minutes. The obtained slurry was evaporated to dryness and further dried at 120 ° C. for 3 hours.
The mixture was calcined at 600 ° C. for 2 hours in nitrogen to obtain a metal oxide containing the metal. Mo / Sb / V / in the above metal oxide
The atomic ratio of Nb is 1.0 / 0.25 / 0.3 / 0.11
Met. The metal oxide was pulverized to 16 to 30 mesh, filled in a reactor, and reacted with propane in the same manner as in Example 1, and the results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】本発明のアクリル酸製造用触媒によれ
ば、プロパンから一段反応により高収率でアクリル酸を
製造することができる。
According to the catalyst for producing acrylic acid of the present invention, acrylic acid can be produced in high yield from propane by one-step reaction.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年12月19日[Submission date] December 19, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Correction target item name] Name of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【発明の名称】 アクリル酸製造用触媒の製造方法Patent application title: Method for producing catalyst for producing acrylic acid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 モノペルオキソバナジウムイオン水溶液
と、原子価3のアンチモンを含む化合物を水性媒体中で
加熱下に反応させることにより、前記アンチモンの原子
価を5価に酸化させる工程(1)と、上記工程(1)で
得られた反応生成物に、Moからなる化合物および以下
に定義するAからなる化合物を加えて均一に混合し、得
られる混合物を焼成することにより、上記金属を酸化物
に転換する工程(2)からなることを特徴とする、構成
金属の割合が下記組成式(I)で表される金属酸化物か
らなるプロパンの気相接触酸化によるアクリル酸製造用
触媒の製造方法。 MoVi Sbj Ak (I) (式中、Aは、NbまたはTaであり、また i、j およ
びk は、いずれも0.001〜3.0である)
A step of reacting a monoperoxovanadium ion aqueous solution with a compound containing antimony having a valence of 3 in an aqueous medium under heating to thereby oxidize the valence of antimony to pentavalent; A compound consisting of Mo and a compound consisting of A defined below are added to the reaction product obtained in the above step (1), mixed uniformly, and the resulting mixture is calcined to convert the above metal into an oxide. A method for producing a catalyst for producing acrylic acid by gas phase catalytic oxidation of propane comprising a metal oxide having a composition metal ratio represented by the following composition formula (I), which comprises a conversion step (2). MoVi Sbj Ak (I) (where A is Nb or Ta, and i, j and k are all 0.001 to 3.0)
JP29930996A 1996-10-24 1996-10-24 Method for producing acrylic acid production catalyst Expired - Fee Related JP3750229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29930996A JP3750229B2 (en) 1996-10-24 1996-10-24 Method for producing acrylic acid production catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29930996A JP3750229B2 (en) 1996-10-24 1996-10-24 Method for producing acrylic acid production catalyst

Publications (2)

Publication Number Publication Date
JPH10118491A true JPH10118491A (en) 1998-05-12
JP3750229B2 JP3750229B2 (en) 2006-03-01

Family

ID=17870878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29930996A Expired - Fee Related JP3750229B2 (en) 1996-10-24 1996-10-24 Method for producing acrylic acid production catalyst

Country Status (1)

Country Link
JP (1) JP3750229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7378541B2 (en) 2000-12-13 2008-05-27 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7498463B2 (en) 2000-12-13 2009-03-03 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation

Also Published As

Publication number Publication date
JP3750229B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP4530595B2 (en) Oxide catalyst for oxidation or ammoxidation
US5994580A (en) Process for producing acrylic acid
US6143916A (en) Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US4180678A (en) Process for preparing methacrylic acid
JP4174852B2 (en) Acrylic acid production method
JP4247565B2 (en) Catalyst for producing acrylic acid and method for producing acrylic acid using the same
US4225466A (en) Catalytic oxide composition for preparing methacrylic acid
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPH11343262A (en) Production of acrylic acid
JP4081824B2 (en) Acrylic acid production method
JP3959836B2 (en) Method for producing a catalyst for acrylic acid production
JP2005320331A (en) Method for producing acrolein and/or acrylic acid
JPH11285637A (en) Catalyst for production of acrylic acid, its production and production of acrylic acid using the same
JP3924824B2 (en) Acrylic acid production method
JP4212154B2 (en) Catalyst and method for producing unsaturated nitrile using the same
JP4944798B2 (en) Process for producing acrylic acid comprising partial oxidation of propane to propylene
JP3750234B2 (en) Method for producing acrylic acid production catalyst
JP3750229B2 (en) Method for producing acrylic acid production catalyst
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JPH05194347A (en) Process for ammoxidation of saturated hydrocarbon
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2000317309A (en) Production of catalyst for producing acrylic acid
EP0060066B1 (en) Process for the production of methacrylic acid from isobutyraldehyde employing a catalyst
JP4218471B2 (en) Method for producing metal oxide catalyst
JP2814321B2 (en) Method for producing methacrylic acid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees