JPS5827255B2 - Method for producing unsaturated fatty acids - Google Patents

Method for producing unsaturated fatty acids

Info

Publication number
JPS5827255B2
JPS5827255B2 JP49062067A JP6206774A JPS5827255B2 JP S5827255 B2 JPS5827255 B2 JP S5827255B2 JP 49062067 A JP49062067 A JP 49062067A JP 6206774 A JP6206774 A JP 6206774A JP S5827255 B2 JPS5827255 B2 JP S5827255B2
Authority
JP
Japan
Prior art keywords
parts
catalyst
reaction
water
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49062067A
Other languages
Japanese (ja)
Other versions
JPS50151816A (en
Inventor
英雄 松沢
正明 加藤
寛 園部
啓道 石井
観太郎 山田
雅夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP49062067A priority Critical patent/JPS5827255B2/en
Priority to DE19752523757 priority patent/DE2523757C3/en
Priority to FR7516803A priority patent/FR2275436A1/en
Priority to GB2344875A priority patent/GB1473035A/en
Priority to NL7506423A priority patent/NL7506423A/en
Publication of JPS50151816A publication Critical patent/JPS50151816A/ja
Publication of JPS5827255B2 publication Critical patent/JPS5827255B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8872Alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Description

【発明の詳細な説明】 本発明は不飽和アルデヒドと分子状酸素から相当する不
飽和カルボン酸を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing the corresponding unsaturated carboxylic acid from an unsaturated aldehyde and molecular oxygen.

更に詳しくはアクロレインまたはメタクロレインと分子
状酸素を含む混合ガスを触媒と高温の気相で接触させて
、アクリル酸またはメタクリル酸を製造する方法に関す
る。
More specifically, the present invention relates to a method for producing acrylic acid or methacrylic acid by contacting a mixed gas containing acrolein or methacrolein and molecular oxygen with a catalyst in a high-temperature gas phase.

本発明の目的は、不飽和アルデモドから不飽和脂肪酸な
高収率で取る方法を提供することである。
The object of the present invention is to provide a method for obtaining unsaturated fatty acids from unsaturated aldemode in high yield.

本発明の別の目的は、不飽和アルデヒドから不飽和脂肪
酸を高収率で得る方法に用いる寿命の長い触媒を提供す
ることである。
Another object of the present invention is to provide a long-life catalyst for use in a process for obtaining unsaturated fatty acids in high yield from unsaturated aldehydes.

本発明で用いる触媒はモリブデン、リン、銅および酸素
からなり、更にアンチモン、バナジウム、タングステン
、鉄、マンガンおよび錫からなる群から選ばれる少くと
も1種の金属元素と更にリチウム、ナトリウム、カリウ
ム、ルビジウム、セシウムからなるアルカリ金属元素の
群から選ばれる少なくとも1種の元素を含み、さらに任
意成分としてヒ素を含むものである。
The catalyst used in the present invention consists of molybdenum, phosphorus, copper, and oxygen, and further includes at least one metal element selected from the group consisting of antimony, vanadium, tungsten, iron, manganese, and tin, and lithium, sodium, potassium, and rubidium. , cesium, and further contains arsenic as an optional component.

本発明の触媒は次の実験式で表わせる。The catalyst of the present invention can be expressed by the following empirical formula.

ここで、a、b、c、d、e、flgは各々の取分の原
子比を表わし、a=0.025〜1、b−1、c−0,
0025〜0.5、d =0〜0.015(d\0.0
15)、e =0−0025〜0.5、f=0.003
〜0.417であり、gは触媒の酸化状態によって定ま
る値である。
Here, a, b, c, d, e, flg represent the atomic ratio of each fraction, a=0.025~1, b-1, c-0,
0025~0.5, d = 0~0.015 (d\0.0
15), e = 0-0025 ~ 0.5, f = 0.003
~0.417, and g is a value determined by the oxidation state of the catalyst.

Xはアンチモン、バナジウム、タングステン、鉄、マン
ガンおよび錫からなる群から選ばれる少なくとも1種の
金属であり、Xがバナジン又はバナジンとアンチモンで
ある場合には更にタングステン、鉄、マンガンおよび錫
のうちの少くとも1種を含むものであり、Yはリチウム
、ナトリウム、カリウム、ルビジウム、セシウムからな
る群から選ばれる少なくとも1種のアルカリ族元素であ
る。
X is at least one metal selected from the group consisting of antimony, vanadium, tungsten, iron, manganese and tin, and when X is vanadine or vanadine and antimony, it is further selected from the group consisting of tungsten, iron, manganese and tin. Y is at least one alkali group element selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium.

リン、ヒ素および銅板外の金属元素のモリブデンに対す
る原子比は広い範囲で選ぶことができるが、これらのう
ちアンチモン、バナジウム、タングステン、鉄、マンガ
ンを共存させる割合はモリブデンに対する原子比として
0.0025〜0.5と(に0.006〜0.2が好ま
しく、これらの金属元素を2種以上共存させるときはそ
れらの合計の原子比がこの範囲にある事が好ましい。
The atomic ratio of phosphorus, arsenic, and metal elements other than the copper plate to molybdenum can be selected within a wide range, but among these, the ratio of antimony, vanadium, tungsten, iron, and manganese to coexist is 0.0025 to molybdenum. 0.5 and 0.006 to 0.2 are preferable, and when two or more of these metal elements are allowed to coexist, it is preferable that their total atomic ratio is within this range.

またスズを共存させる場合はモリブデンに対する原子比
として0.003〜lとくに0.006〜0.5が好ま
しい。
When tin is present, the atomic ratio to molybdenum is preferably 0.003 to 1, particularly 0.006 to 0.5.

アンチモン、バナジウム、タングステン、鉄およびマン
ガンの1種以上とスズとを共存させるときは、夫々の原
子比の合計がモリブデンに対し0.003〜1とくに0
.01〜0.5でありかつバナジウム、タングステン、
銅、鉄またはマンガンの夫々の合計のモリブデンに対す
る原子比が0.25以下と(に0.2以下である事が好
ましい。
When tin coexists with one or more of antimony, vanadium, tungsten, iron, and manganese, the total atomic ratio of each is 0.003 to 1, particularly 0.00 to molybdenum.
.. 01 to 0.5 and vanadium, tungsten,
It is preferable that the total atomic ratio of each of copper, iron, or manganese to molybdenum is 0.25 or less and 0.2 or less.

リチウム、ナトリウム、カリウム、ルビジウムおよび/
またはセシウムを共存させる割合はモリブデンに対する
原子比として0.003〜0.417が好ましく、これ
らのアルカリ族元素を2種以上共存させるときはそれら
の合計の原子比がこの範囲にあることが好ましい。
Lithium, sodium, potassium, rubidium and/or
Alternatively, the proportion of cesium coexisting is preferably 0.003 to 0.417 as an atomic ratio to molybdenum, and when two or more of these alkali group elements are coexisting, it is preferable that their total atomic ratio is within this range.

ヒ素は全く含まないが、含む場合でもモリブデンに対す
る原子比が0.015未満である量用いられる。
It does not contain any arsenic, but even if it does, it is used in such an amount that the atomic ratio to molybdenum is less than 0.015.

本発明者らは先にモリブデンに対するヒ素の量が0.0
15〜0.15である触媒を提案したが(特願昭48−
91976号)銅を必須成分とし、更にSb、V、W、
Fe、Mn、Snのいずれかの金属を共存させた本願触
媒ではヒ素の量を減じても優れた性能を示すことができ
る。
The present inventors previously determined that the amount of arsenic relative to molybdenum was 0.0.
15 to 0.15 (Japanese patent application 1972-
No. 91976) Copper is an essential component, and Sb, V, W,
The catalyst of the present invention in which any one of metals Fe, Mn, and Sn coexists can exhibit excellent performance even if the amount of arsenic is reduced.

本発明で用いる触媒の各成分元素の化学的な存在状態は
極めて複雑であって厳密には明らかではないが、おそら
くどの成分も単独の酸化物としては存在せず、これらの
すべてを含む多重へテロポリ化合物を形成しているもの
と考えられる。
The chemical state of existence of each component element in the catalyst used in the present invention is extremely complex and is not strictly clear, but it is likely that none of the components exists as a single oxide, but as a multiplex containing all of them. It is thought that they form a telopoly compound.

触媒を調製するにあたっては、まずその原料を混合せね
ばならない。
To prepare a catalyst, the raw materials must first be mixed.

この段階で各成分が均密に接触するような方法を選んだ
場合とくに良好な結果が得られるが、原料の混合方法を
特殊な方法に限定する必要はなく、成分の著しい偏在を
伴なわない限り、従来からよく知られている蒸発乾固法
、沈澱法、酸化物混合法等の種々の方法を用いることが
できる。
Particularly good results can be obtained if a method is chosen that allows each component to come into even close contact at this stage, but there is no need to limit the method of mixing the raw materials to a special method, and it does not involve significant uneven distribution of components. As far as possible, various conventionally well-known methods such as evaporation to dryness, precipitation, and oxide mixing methods can be used.

触媒調整の原料化合物としてはモリブデン酸、リン酸、
銅、ヒ素、アンチモン バナジウム、タングステン、銅
、鉄、マンガン、錫およびアルカリ族元素の酸化物、硝
酸塩、アンモニウム塩などを組合せて使用することがで
きる。
Molybdic acid, phosphoric acid,
Copper, arsenic, antimony vanadium, tungsten, copper, iron, manganese, tin and oxides, nitrates, ammonium salts of alkali group elements, etc. can be used in combination.

本発明の触媒は熱処理温度を高くしてもその性能が大き
く低下しないため、300〜550℃の広い範囲から選
ぶことができるが好ましい熱処理温度は380〜500
℃である。
Since the performance of the catalyst of the present invention does not deteriorate significantly even if the heat treatment temperature is increased, the catalyst can be selected from a wide range of 300 to 550°C, but the preferable heat treatment temperature is 380 to 500°C.
It is ℃.

熱処理の時間は温度によって異なるが30分から30時
間までの範囲内が適当である。
The heat treatment time varies depending on the temperature, but is suitably within the range of 30 minutes to 30 hours.

熱処理時の雰囲気は空気もしくは不活性ガスで稀釈した
空気が好ましいが、必要ならば還元性物質を低濃度で含
むガスを用い、ることもできる。
The atmosphere during the heat treatment is preferably air or air diluted with an inert gas, but if necessary, a gas containing a low concentration of reducing substances can also be used.

本発明の方法で用いる触媒はシリカ、アルミナ、シリコ
ンカーバイド等の不活性担体に担持させるか、あるいは
これらで稀釈して用いることができる。
The catalyst used in the method of the present invention can be supported on an inert carrier such as silica, alumina, silicon carbide, or the like, or can be diluted with these.

しかし担体な含む全触媒中の担体の割合については、こ
れを過大にすると全触媒の見かけの活性が低下するため
制約があり、許容される担体の割合は触媒の熱処理温度
によっても異なるが、多くの場合70重量%以下である
However, there are restrictions on the proportion of the carrier in the total catalyst, as increasing this too much will reduce the apparent activity of the whole catalyst.Although the allowable proportion of the carrier varies depending on the heat treatment temperature of the catalyst, there are many In this case, it is 70% by weight or less.

このようにして得られた触媒は触媒中のアンモニウムイ
オンの存在量に影響を受けず、性能が安定している。
The catalyst thus obtained has stable performance without being affected by the amount of ammonium ions present in the catalyst.

この触媒を充填して用いる反応器は固定床式反応器でも
流動床式反応器でもよい。
The reactor packed with this catalyst and used may be a fixed bed reactor or a fluidized bed reactor.

反応原料としては水、低級飽和アルデヒド、低級炭化水
素等の不純物を少量含んでいる不飽和アルデヒドを用い
ることもできる。
As the reaction raw material, unsaturated aldehydes containing small amounts of impurities such as water, lower saturated aldehydes, and lower hydrocarbons can also be used.

従ってプロピレン、イソブチレンまたは第三級ブタノー
ルを接触酸化して得た不飽和アルデヒドを含む反応生成
ガスを分離精製し、又はそのまま原料ガスとして使用す
ることができる。
Therefore, the reaction product gas containing an unsaturated aldehyde obtained by catalytically oxidizing propylene, isobutylene or tertiary butanol can be separated and purified or used as it is as a raw material gas.

原料ガス中の不飽和アルデヒトの濃度は広い範囲で変え
ることができるが、容量で1〜20%が適当でありとく
に好ましくは3〜15%である。
The concentration of unsaturated aldehyde in the feed gas can vary within a wide range, but is suitably between 1 and 20% by volume, particularly preferably between 3 and 15%.

酸素源としては空気を用いるのが経済的であるが、必要
ならば純酸素で富化した空気も用いうる。
It is economical to use air as the oxygen source, but air enriched with pure oxygen can also be used if necessary.

原料ガス中の酸素濃度は不飽和アルデヒドに対するモル
比で規定され、この値は0.3〜4とくに0.4〜2.
5が好ましい。
The oxygen concentration in the raw material gas is defined by the molar ratio to the unsaturated aldehyde, and this value is 0.3 to 4, particularly 0.4 to 2.
5 is preferred.

原料ガスには窒素、水蒸気、炭酸ガス等の不活性ガスを
加えて稀釈してもよL・。
You can dilute the raw material gas by adding an inert gas such as nitrogen, water vapor, or carbon dioxide.

原料ガスを供給するにあたっては不飽和アルデヒドと酸
素を含む混合ガスが触媒層外の部分で高温になる時間を
できるだけ短かくするのがよい。
When supplying the raw material gas, it is preferable to minimize the time during which the mixed gas containing unsaturated aldehyde and oxygen reaches a high temperature outside the catalyst layer.

反応圧は常圧から数気圧までがよい。The reaction pressure is preferably from normal pressure to several atmospheres.

ガス空間速度は反応圧と反応温度によって変るが300
hr ’ 〜10000hr−1にするのがよい。
The gas hourly space velocity varies depending on the reaction pressure and reaction temperature, but 300
It is preferable to set hr' to 10,000 hr-1.

反応温度は240℃〜390℃の範囲で選ぶことができ
るが、とくに270℃〜340℃が好ましい。
Although the reaction temperature can be selected within the range of 240°C to 390°C, 270°C to 340°C is particularly preferred.

以下に実施例を挙げて本発明の方法を更に詳しく説明す
る。
The method of the present invention will be explained in more detail with reference to Examples below.

以下において部は重量部を表わし、不飽和脂肪酸選択率
は不飽和アルデヒドの反応したモル数に対する生成した
不飽和脂肪酸のモル数の割合(パーセント)を表わす。
In the following, parts represent parts by weight, and unsaturated fatty acid selectivity represents the ratio (percentage) of the number of moles of unsaturated fatty acid produced to the number of moles of reacted unsaturated aldehyde.

■■実施例 1 パラモリブデン酸アンモニウム177部を純水(以下単
に水と記載する)約500部に溶解させ、これに85%
リン酸9.5部を添加した。
■■Example 1 177 parts of ammonium paramolybdate was dissolved in about 500 parts of pure water (hereinafter simply referred to as water), and 85%
9.5 parts of phosphoric acid were added.

次いで硝酸銅661部(水50部に溶解)、メタバナジ
ン酸アンモニウム6.1部(水200部に溶解)、硝酸
第二鉄17.0部(水ioo部に溶解)を添加した。
Then, 661 parts of copper nitrate (dissolved in 50 parts of water), 6.1 parts of ammonium metavanadate (dissolved in 200 parts of water), and 17.0 parts of ferric nitrate (dissolved in ioO parts of water) were added.

更に硝酸カリウム8.4部を水100部に溶解させた液
を添加した。
Furthermore, a solution prepared by dissolving 8.4 parts of potassium nitrate in 100 parts of water was added.

この混合液を攪拌しながら、加熱して蒸発乾固させ、更
に130℃に約16時間保って乾燥させた。
While stirring, this mixed solution was heated to evaporate to dryness, and was further dried by keeping it at 130° C. for about 16 hours.

得られた固形物を微粉砕後、圧縮成型し、これを400
℃で5時間焼成し、触媒とした。
After finely pulverizing the obtained solid, it was compression molded and
It was calcined at ℃ for 5 hours and used as a catalyst.

この触媒を固定床式反応器に充填し、300℃に保ち、
容量でアクロレイン5%、酸素10%、水蒸気20%、
窒素65%の組成の混合ガスを空間速度1000hr’
で送入し、この条件で長時間反応を継続させた。
This catalyst was packed into a fixed bed reactor and kept at 300°C.
Acrolein 5%, oxygen 10%, water vapor 20% by volume,
A mixed gas with a composition of 65% nitrogen at a space velocity of 1000 hr'
The reaction was continued under these conditions for a long time.

この反応試験では途中の種々の時点において反応後のガ
スを採取し、ガスクロマトグラフィ等により分析して触
媒性能変化の有無を調べた。
In this reaction test, post-reaction gas was sampled at various points during the reaction and analyzed by gas chromatography or the like to check for changes in catalyst performance.

この結果の要点を表1に示す。Table 1 shows the main points of the results.

実施例 2 実施例1の触媒を用い、メタクロレインで反応試験を行
なった。
Example 2 Using the catalyst of Example 1, a reaction test was conducted with methacrolein.

原料ガス組成は容量でメタクロレイン5%、酸**素1
0%、水蒸気20%、窒素65%とし、反応温度は30
0℃とした。
Raw material gas composition is 5% methacrolein by volume, 1 acid** element
0%, water vapor 20%, nitrogen 65%, and the reaction temperature was 30%.
The temperature was 0°C.

その他の方法ならびに条件は実施例1と同じにした。Other methods and conditions were the same as in Example 1.

反応試験結果の要点を表2に示す。実施例 3 パラモリブデン酸アンモニウム177部を水500部に
溶解させ、85%リン酸9.5部と50%ヒ酸水溶液1
.9部を添加した。
Table 2 shows the main points of the reaction test results. Example 3 177 parts of ammonium paramolybdate was dissolved in 500 parts of water, 9.5 parts of 85% phosphoric acid and 1 part of 50% arsenic acid aqueous solution.
.. 9 parts were added.

次いで硝酸銅1.9部(水50部に溶解)とメタバナジ
ン酸アンモニウム6.1部(水200部、に溶解)と、
二酸化スズ12.5部を添加した。
Next, 1.9 parts of copper nitrate (dissolved in 50 parts of water) and 6.1 parts of ammonium metavanadate (dissolved in 200 parts of water),
12.5 parts of tin dioxide was added.

更に硝酸ルビジウム12.2部を水100部に溶■■解
させた液を添加した。
Furthermore, a solution prepared by dissolving 12.2 parts of rubidium nitrate in 100 parts of water was added.

この混合溶液を攪拌しながら、加熱して蒸発乾固させ、
更に130℃に約16時間保って乾燥させた。
While stirring this mixed solution, heat it to evaporate to dryness,
It was further dried by keeping it at 130°C for about 16 hours.

得られた固形物を微粉砕後、圧縮成型し、これを400
℃で5時間焼成し触媒とした。
After finely pulverizing the obtained solid, it was compression molded and
It was calcined at ℃ for 5 hours and used as a catalyst.

この触媒を295°Cに保ち、その他の条件は実施例2
と同じにして反応した。
This catalyst was maintained at 295°C, and the other conditions were as in Example 2.
I reacted the same way.

反応試験結果の要点を表3に示す。Table 3 shows the main points of the reaction test results.

実施例 4 パラモリブデン酸アンモニウム177部を水500部に
溶解させ、これに85%リン酸9.5部を添加した。
Example 4 177 parts of ammonium paramolybdate was dissolved in 500 parts of water, and 9.5 parts of 85% phosphoric acid was added thereto.

ついで硝酸銅4.1部を水50部に溶解して添加した。Then, 4.1 parts of copper nitrate dissolved in 50 parts of water was added.

さらに硝酸カリウム4.2部と硝酸セシウム24,4部
とを水200部に溶解して添加し、これに、パラタング
ステン酸アンモニウム水溶液**(8,9部を水ioo
部に溶解)を加え、最後に、二酸化アンチモン1,2部
と二酸化スズ12.5部を加え、この混合液を攪拌しな
がら加熱して蒸発乾固させ、更に130℃で約16時間
乾燥させた。
Further, 4.2 parts of potassium nitrate and 24.4 parts of cesium nitrate were dissolved in 200 parts of water and added, and to this was added an aqueous solution of ammonium paratungstate** (8.9 parts of
Finally, 1.2 parts of antimony dioxide and 12.5 parts of tin dioxide were added, and the mixture was heated with stirring to evaporate to dryness, and further dried at 130°C for about 16 hours. Ta.

得られた固形物を微粉砕後、圧縮成型し、これを450
℃で5時間焼成し触媒とした。
After finely pulverizing the obtained solid, it was compression molded and
It was calcined at ℃ for 5 hours and used as a catalyst.

反応試験結果の要点を表4に示す。Table 4 shows the main points of the reaction test results.

実施例 5 実施例4の触媒を用い、触媒床の温度を310℃に保ち
、その他の条件は実施例2と同じにして反応した。
Example 5 A reaction was carried out using the catalyst of Example 4, keeping the temperature of the catalyst bed at 310° C., and keeping the other conditions the same as in Example 2.

反応試験結果の要点を表5に示す。実施例 6 パラモリブデン酸アンモニウム177部を水500部に
溶解させ、これに85%リン酸19.6部と50%ヒ酸
水溶液1.0部を添加した。
Table 5 shows the main points of the reaction test results. Example 6 177 parts of ammonium paramolybdate was dissolved in 500 parts of water, and 19.6 parts of 85% phosphoric acid and 1.0 part of 50% arsenic acid aqueous solution were added thereto.

ついで硝酸銅1.9部(水50部に溶解)、硝酸第二鉄
3,2部(水50部に溶解)の水溶液を加え、さらに二
酸化スズ6.3部を添加した。
Then, an aqueous solution of 1.9 parts of copper nitrate (dissolved in 50 parts of water) and 3.2 parts of ferric nitrate (dissolved in 50 parts of water) was added, and further 6.3 parts of tin dioxide were added.

最後に硝酸リビジウム12.2部と硝酸セシウム16.
2部とを水100部に溶解した液を添加し、この混合液
を攪拌しながら、加熱して蒸発乾固させ、更に130℃
で約16時間乾燥後、微粉砕して後圧縮成型し、これを
450℃で5時間焼成し触媒とした。
Finally, 12.2 parts of ribidium nitrate and 16 parts of cesium nitrate.
A solution prepared by dissolving 2 parts of
After drying for about 16 hours, the mixture was finely pulverized, then compression molded, and then calcined at 450° C. for 5 hours to obtain a catalyst.

この触媒を330℃に保ち、その他の条件は実施例1と
同じにして反応した。
The reaction was carried out under the same conditions as in Example 1 except that this catalyst was kept at 330°C.

その結果、反応時間1440時間でも反応成績は反応開
始時と殆んど変らずに推移し、アクロレイン変化率90
,0%、アクリル酸選択率75%を得た。
As a result, even after a reaction time of 1440 hours, the reaction results remained almost unchanged from those at the start of the reaction, and the acrolein change rate was 90.
, 0%, and an acrylic acid selectivity of 75% was obtained.

実施例 7 実施例6の触媒床の温度を330°Cに保ち、その他の
条件は実施例2と同じにして反応した。
Example 7 The temperature of the catalyst bed in Example 6 was maintained at 330°C, and the other conditions were the same as in Example 2 to carry out the reaction.

その結果、反応時間1440時間でも反応成績は反応開
始時と殆んど変らずに推移し、メタクロレイン変化率9
2%、メタクリル酸選択率79.0%を得た。
As a result, even after a reaction time of 1440 hours, the reaction results remained almost the same as at the start of the reaction, and the methacrolein change rate was 9.
2% and a methacrylic acid selectivity of 79.0%.

実施例 8 パラモリブデン酸アンモニウム177部を水500部に
溶解させ、これに85%リン酸4.8部を添加した。
Example 8 177 parts of ammonium paramolybdate was dissolved in 500 parts of water, and 4.8 parts of 85% phosphoric acid was added thereto.

ついで硝酸鋼8.0部(水100部に溶解)、硝酸マン
ガン2.3部(水50部に溶解)およびメタバナジン酸
アンモニウム6.1部(水200部に溶解)を添加し、
さらに三酸化アンチモン3.6部を添加した。
Then 8.0 parts of steel nitrate (dissolved in 100 parts of water), 2.3 parts of manganese nitrate (dissolved in 50 parts of water) and 6.1 parts of ammonium metavanadate (dissolved in 200 parts of water) were added,
Furthermore, 3.6 parts of antimony trioxide was added.

最後に硝酸カリウム8.4部と硝酸セシウム16.2部
とを水200部に溶解して添加し、この混合液を攪拌し
ながら、加熱し蒸発乾固させ更に130℃で約16時間
乾燥後、微粉砕しついで圧縮成型し、これを450℃で
5時間焼成し、触媒とした。
Finally, 8.4 parts of potassium nitrate and 16.2 parts of cesium nitrate were dissolved in 200 parts of water and added, and the mixture was heated and evaporated to dryness while stirring, and after further drying at 130°C for about 16 hours, The mixture was finely pulverized, compression molded, and calcined at 450° C. for 5 hours to obtain a catalyst.

この触媒を300℃に保ち、その他の条件は実施例1と
同じにして反応した。
The reaction was carried out under the same conditions as in Example 1 except that this catalyst was kept at 300°C.

その結果、反応時間1440時間まで安定に反応は推移
し、アクロレイン変化率83.5%、アクリル酸選択率
81.0%を得た。
As a result, the reaction progressed stably until the reaction time was 1440 hours, and an acrolein conversion rate of 83.5% and an acrylic acid selectivity of 81.0% were obtained.

実施例 9 実施例8の触媒を用い、触媒床の温度を300℃に保ち
、その他の条件は実施例2と同じにして反応した。
Example 9 A reaction was carried out using the catalyst of Example 8, keeping the temperature of the catalyst bed at 300° C., and keeping the other conditions the same as in Example 2.

その結果、反応時間1440時間まで安定に反応は推移
し、メタクロレイン変化率85.0%、メタクリル酸選
択率80.0%を得た。
As a result, the reaction progressed stably until the reaction time was 1440 hours, and a methacrolein conversion rate of 85.0% and a methacrylic acid selectivity of 80.0% were obtained.

実施例 10 パラモリブデン酸アンモニウム177部を水500部に
溶解させ、これに85%リン酸9.5部を添加した。
Example 10 177 parts of ammonium paramolybdate was dissolved in 500 parts of water, and 9.5 parts of 85% phosphoric acid was added thereto.

ついで硝酸銅5.1部(水100部に溶解)、メタバナ
ジン酸アンモニウム12.1部(水400部に溶解)お
よびパラタングステン酸アンモニウム4.6部(水10
0部に溶解)を添加し、さらに硝酸セシウム33.2部
(水200部に溶解)を添加し、この混合液を攪拌しな
がら、加熱し蒸発乾固させ、更に130℃で約16時間
乾燥後、微粉砕し、ついで圧縮成型しこれを450℃で
5時間焼成し触媒とした。
Then 5.1 parts of copper nitrate (dissolved in 100 parts of water), 12.1 parts of ammonium metavanadate (dissolved in 400 parts of water) and 4.6 parts of ammonium paratungstate (dissolved in 100 parts of water) were added.
Then, 33.2 parts of cesium nitrate (dissolved in 200 parts of water) was added, and the mixture was heated and evaporated to dryness while stirring, and further dried at 130°C for about 16 hours. Thereafter, it was finely pulverized, then compression molded, and then calcined at 450° C. for 5 hours to obtain a catalyst.

触媒床を330℃に保ち、その他の条件は実施例1と同
じにして反応した。
The reaction was carried out under the same conditions as in Example 1 except that the catalyst bed was kept at 330°C.

その結果、反応時間2000時間の反応成績としてアク
ロレイン変化率90.0%、アクリル酸選択率80.0
%を得た。
As a result, the reaction results after a reaction time of 2000 hours were acrolein conversion rate of 90.0% and acrylic acid selectivity of 80.0.
I got %.

実施例 11 実施例10と同じ触媒を用い、実施例2と同じ条件で、
但し触媒床の温度は325℃に保って長時間反応を連続
で行なった。
Example 11 Using the same catalyst as in Example 10 and under the same conditions as in Example 2,
However, the temperature of the catalyst bed was maintained at 325°C and the reaction was carried out continuously for a long time.

その結果、反応時間2000時間でも反応成績的には反
応開始時と殆んど変らずに推移し、メタクロレイン変化
率91.5%、メタクリル酸選択率82.0%を得た。
As a result, even after a reaction time of 2000 hours, the reaction results remained almost unchanged from those at the start of the reaction, with a methacrolein conversion rate of 91.5% and a methacrylic acid selectivity of 82.0%.

実施例 12 実施例1Oの触媒調製において、硝酸セシウムの代りに
、硝酸リチウム0.17部、硝酸ナトリウム0.14部
および硝酸カリウム8,4部を水200部に添加して触
媒を調製した。
Example 12 In the catalyst preparation of Example 1O, a catalyst was prepared by adding 0.17 parts of lithium nitrate, 0.14 parts of sodium nitrate, and 8.4 parts of potassium nitrate to 200 parts of water instead of cesium nitrate.

触媒床の温度を300℃に保ち、他は実施例2と同じ条
件で反応した。
The reaction was carried out under the same conditions as in Example 2, except that the temperature of the catalyst bed was maintained at 300°C.

その結果反応時間1440時間でも安定に反応は推移し
、メタクロレイン変化率84.5%、メタクリル酸選択
率80.5%を得た。
As a result, the reaction progressed stably even after a reaction time of 1440 hours, and a methacrolein conversion rate of 84.5% and a methacrylic acid selectivity of 80.5% were obtained.

Claims (1)

【特許請求の範囲】 1 アクロレインまたはメタクロレインと分子状酸素を
含む混合ガスを次式で示す原子比の組成(式中Xはアン
チモン、バナジウム、タングステン、鉄、マンガンおよ
び/または錫を表わし、Xがバナジウム又はバナジウム
とアンチモンである場合にはタングステン、鉄、マンガ
ンおよび錫のうちいずれか1種以上を更に含むものであ
り、Yはリチウム、ナトリウム、カリウム、ルビジウム
および/またはセシウムを表わす。 a、b、c、d、e、f、gは各々の元素の原子比を表
わし、a=0.025〜1、b=1、c=0.0025
〜0.5、d =O〜0.015 (d\0.015)
、e−0,0025〜0.5、f=o、003〜0.4
17、gは触媒の酸化状態によって定まる値である。 )で表わされた触媒と高温の気相で接触させることを特
徴とするアクリル酸またはメタクリル酸の製造法。
[Claims] 1 A mixed gas containing acrolein or methacrolein and molecular oxygen having an atomic ratio composition represented by the following formula (wherein X represents antimony, vanadium, tungsten, iron, manganese and/or tin, is vanadium or vanadium and antimony, it further contains any one or more of tungsten, iron, manganese and tin, and Y represents lithium, sodium, potassium, rubidium and/or cesium. a. b, c, d, e, f, g represent the atomic ratio of each element, a = 0.025 to 1, b = 1, c = 0.0025
~0.5, d = O ~ 0.015 (d\0.015)
, e-0,0025~0.5, f=o, 003~0.4
17.g is a value determined by the oxidation state of the catalyst. ) A method for producing acrylic acid or methacrylic acid, which comprises contacting the catalyst in a high-temperature gas phase.
JP49062067A 1974-05-31 1974-05-31 Method for producing unsaturated fatty acids Expired JPS5827255B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP49062067A JPS5827255B2 (en) 1974-05-31 1974-05-31 Method for producing unsaturated fatty acids
DE19752523757 DE2523757C3 (en) 1974-05-31 1975-05-28 Process for the production of methacrylic acid by the catalytic oxidation of methacrolein with oxygen
FR7516803A FR2275436A1 (en) 1974-05-31 1975-05-29 PROCESS FOR THE PREPARATION OF ACRYLIC ACID OR METHACRYLIC ACID
GB2344875A GB1473035A (en) 1974-05-31 1975-05-29 Catalyst and process for producing unsaturated carboxylic acid
NL7506423A NL7506423A (en) 1974-05-31 1975-05-30 PROCESS FOR PREPARING AN UNSATURATED CARBONIC ACID FROM THE CORRESPONDING ALDEHYDE.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49062067A JPS5827255B2 (en) 1974-05-31 1974-05-31 Method for producing unsaturated fatty acids

Publications (2)

Publication Number Publication Date
JPS50151816A JPS50151816A (en) 1975-12-06
JPS5827255B2 true JPS5827255B2 (en) 1983-06-08

Family

ID=13189375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49062067A Expired JPS5827255B2 (en) 1974-05-31 1974-05-31 Method for producing unsaturated fatty acids

Country Status (5)

Country Link
JP (1) JPS5827255B2 (en)
DE (1) DE2523757C3 (en)
FR (1) FR2275436A1 (en)
GB (1) GB1473035A (en)
NL (1) NL7506423A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115414A (en) * 1975-04-03 1976-10-12 Mitsubishi Rayon Co Ltd Process for preparation of unsaturated fatty acids
JPS5946934B2 (en) * 1976-02-09 1984-11-15 東ソー株式会社 Method for manufacturing methacrylic acid
US4085065A (en) 1976-10-19 1978-04-18 The Standard Oil Company (Ohio) Process for the preparation of unsaturated acids from unsaturated aldehydes
JPS5924140B2 (en) * 1977-10-31 1984-06-07 日本化薬株式会社 Method for producing methacrylic acid and catalyst
DE2962547D1 (en) * 1978-05-31 1982-06-03 Nippon Kayaku Kk A process for producing methacrolein and methacrylic acid
JPS5811416B2 (en) * 1978-12-13 1983-03-02 日本化薬株式会社 Method for producing methacrylic acid
US4252682A (en) * 1978-12-26 1981-02-24 Halcon Research And Development Corp. Catalyst for producing methacrylic acid
NL7909142A (en) * 1978-12-26 1980-06-30 Halcon Res & Dev CATALYST AND METHOD FOR PREPARING METHACRYLIC ACID.
JPS55124734A (en) * 1979-03-22 1980-09-26 Nippon Kayaku Co Ltd Preparation of methacrylic acid
DE3030243A1 (en) 1980-08-09 1982-03-18 Basf Ag, 6700 Ludwigshafen OXIDATION CATALYST, IN PARTICULAR FOR THE PRODUCTION OF METHACRYLIC ACID BY GAS PHASE OXIDATION OF METHACROLEIN
DE3208571A1 (en) * 1982-03-10 1983-09-22 Basf Ag, 6700 Ludwigshafen OXIDATION CATALYST, ESPECIALLY FOR THE PRODUCTION OF METHACRYLIC ACID BY GAS PHASE OXIDATION OF METHACROLEIN
DE3208572A1 (en) * 1982-03-10 1983-09-22 Basf Ag, 6700 Ludwigshafen METHOD AND CATALYST FOR PRODUCING METHACRYLIC ACID
CA1199905A (en) * 1982-06-07 1986-01-28 William J. Kennelly Catalyst compositions and their use for the preparation of unsaturated carboxylic acids
JPS5916850A (en) * 1982-07-20 1984-01-28 Mitsubishi Chem Ind Ltd Preparation of methacrylic acid and/or methacrylic acid ester
DE3308625A1 (en) * 1983-03-11 1984-09-13 Basf Ag, 6700 Ludwigshafen METHOD AND CATALYST FOR PRODUCING METHACRYLIC ACID
JP4222721B2 (en) * 2000-12-25 2009-02-12 三菱レイヨン株式会社 Method for producing methacrylic acid
WO2009125658A1 (en) * 2008-04-09 2009-10-15 株式会社日本触媒 Process for the production of acrolein and/or acrylic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101316A (en) * 1974-01-19 1975-08-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50101316A (en) * 1974-01-19 1975-08-11

Also Published As

Publication number Publication date
FR2275436A1 (en) 1976-01-16
DE2523757B2 (en) 1978-05-03
DE2523757A1 (en) 1976-01-15
JPS50151816A (en) 1975-12-06
NL7506423A (en) 1975-12-02
DE2523757C3 (en) 1979-01-04
GB1473035A (en) 1977-05-11

Similar Documents

Publication Publication Date Title
US4155938A (en) Oxidation of olefins
US4341900A (en) Catalytic process for the preparation of unsaturated carboxylic acid
US4118419A (en) Catalytic process for the preparation of an unsaturated carboxylic acid
EP0006248A1 (en) A process for producing methacrylic acid and a catalyst
JPS5827255B2 (en) Method for producing unsaturated fatty acids
JPH03238051A (en) Preparation of catalyst for preparing methacrylic acid
KR102431212B1 (en) Improved mixed metal oxide ammoxidation catalysts
JPS5826329B2 (en) Seizouhou
JPH03109943A (en) Preparation of catalyst for production of methacrolein and methacylic acid
US4558029A (en) Antimony-containing C4 oxidation catalysts
JP4081824B2 (en) Acrylic acid production method
KR920009118B1 (en) Process for preparing catalysts for producing methacrylic acid
KR0131336B1 (en) Process for producing methacrylic acid
JP2558036B2 (en) Method for producing methacrolein and / or methacrylic acid
JP3209778B2 (en) Preparation of catalyst for methacrylic acid production
JP3146486B2 (en) Method for producing catalyst for producing methacrylic acid
JP3186243B2 (en) Preparation of catalyst for methacrylic acid production
JP2814321B2 (en) Method for producing methacrylic acid
JP3482476B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP2671040B2 (en) Method for preparing catalyst for producing unsaturated carboxylic acid
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
JPH03167152A (en) Production of methacrylic acid
JPS5829289B2 (en) Deck steam pipe with thermal insulation coating
JP2883454B2 (en) Method for producing unsaturated carboxylic acid
JP3036948B2 (en) Method for producing α, β-unsaturated compound