JPH10112316A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH10112316A
JPH10112316A JP8266890A JP26689096A JPH10112316A JP H10112316 A JPH10112316 A JP H10112316A JP 8266890 A JP8266890 A JP 8266890A JP 26689096 A JP26689096 A JP 26689096A JP H10112316 A JPH10112316 A JP H10112316A
Authority
JP
Japan
Prior art keywords
negative electrode
carbide
lithium
metal elements
mxc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8266890A
Other languages
Japanese (ja)
Inventor
Kazuhiro Okamura
一広 岡村
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8266890A priority Critical patent/JPH10112316A/en
Publication of JPH10112316A publication Critical patent/JPH10112316A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent needle crystal with high capacity from being created on the electrode surface in charge and discharge reaction, by using as a negative electrode carbide represented by a general composition formula MxC into which lithium can be electrochemically inserted or removed. SOLUTION: Carbide is set as a negative electrode 5 which is represented by a general composition formula MxC (M is one or two transition metal elements, x is in the range of 1<=x<=4 and is total number of available metal elements for one carbon atom) into which lithium can be electrochemically inserted or removed. The negative electrode 5 is metal carbide such as TiC, ZrC, VC, V2C, NbC, or TaC, which is created by mixing metal carbide and polyvinylidene fluoride as binding agent at the weight ratio of 9:1, fitting the mix on a current collector, and depressing and drying the collector. Thus, using the carbide as the negative electrode 5 prevents needle crystal with high capacity from being created on the electrode surface in charge and discharge reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池の、特にリチウムを吸蔵・放出することができる負極
材料の改良に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in a negative electrode material capable of inserting and extracting lithium.

【0002】[0002]

【従来の技術】非水電解液二次電池は、小型、軽量で、
かつ高エネルギー密度を有するため、機器のポータブル
化、コードレス化が進む中で、その期待は高まってい
る。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are small, lightweight,
In addition, due to the high energy density, the expectation is increasing as portable and cordless devices are progressing.

【0003】従来、非水電解液二次電池用の正極活物質
としてLiCoO2、LiNiO2などのリチウム含有金
属酸化物が提案されている。一方、負極としては金属リ
チウム、リチウム合金、リチウムイオンを吸蔵・放出す
ることのできる炭素材料などが提案され、一部実用化さ
れている。
Hitherto, lithium-containing metal oxides such as LiCoO 2 and LiNiO 2 have been proposed as positive electrode active materials for non-aqueous electrolyte secondary batteries. On the other hand, as a negative electrode, metallic lithium, a lithium alloy, a carbon material capable of inserting and extracting lithium ions and the like have been proposed, and some of them have been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
金属リチウムを用いた負極では、充電時において極板表
面に金属リチウムが針状結晶となって析出し、この針状結晶
がセハ゜レータを突き破って、正極と接触して内部短絡を起こ
すことがあった。
However, in a conventional negative electrode using metallic lithium, during charging, metallic lithium precipitates as acicular crystals on the surface of the electrode plate, and the acicular crystals break through the separator, An internal short circuit was sometimes caused by contact with the positive electrode.

【0005】この問題を解決するために、炭素材料を負
極に用いる検討がなされているが、例えば黒鉛の場合
は、炭素は理論的にC6Li(炭素原子6個に対してLi原子
1個)までLiイオンを吸蔵でき、372mAh/gの可逆容量を
持ち、真密度2.2g/cm3を用いた体積あたりの換算数値は
818mAh/cm3であると言われているが、これ以上の高容量
化は困難であった。
In order to solve this problem, studies have been made to use a carbon material for the negative electrode. For example, in the case of graphite, carbon is theoretically C 6 Li (one Li atom per six carbon atoms). ) Up to), has a reversible capacity of 372 mAh / g, and the converted value per volume using a true density of 2.2 g / cm 3 is
It is said to be 818 mAh / cm 3 , but it was difficult to further increase the capacity.

【0006】本発明は、このような課題を解決するもの
で、負極の表面で金属リチウムが針状に析出することを
防止するとともに、充電時に一般式C6Liで規定され
る絶対容量を越えることのできる負極用活物質を提供す
るものである。
The present invention solves such a problem, and prevents metallic lithium from being precipitated in the form of needles on the surface of the negative electrode, and at the time of charging, exceeds the absolute capacity defined by the general formula C 6 Li. The present invention provides a negative electrode active material that can be used.

【0007】[0007]

【課題を解決するための手段】これらの課題を解決する
ために、本発明の非水電解液二次電池は、電気化学的に
リチウムの脱挿入が可能な一般組成式MxC(Mは1種ある
いは2種の遷移金属元素、xは1≦x≦4であって炭素原子
1個あたり取り得る金属元素の総数)で表される炭化物
を負極に用いるものである。
In order to solve these problems, a non-aqueous electrolyte secondary battery of the present invention has a general composition formula MxC (where M is one kind) capable of electrochemically inserting and removing lithium. Alternatively, two types of transition metal elements, x is 1 ≦ x ≦ 4, and a carbide represented by the total number of metal elements that can be taken per carbon atom) is used for the negative electrode.

【0008】[0008]

【発明の実施の形態】炭素は、非金属性の性質を持ち合
わせており、通常の炭素を含む化合物では電子ドナーあ
るいはアクセプターとして作用し共有結合性の特質を示
す。金属を含む炭化物は主として共有結合性の性質を示
すが、金属組成比率が上がると金属種に依存するものの
金属間距離の短縮化あるいは金属元素同士の高配位化が
加わり、その結果として金属元素同士での電子的な相互
作用を形成しやすくなりイオン性が付加されるようにな
る。
BEST MODE FOR CARRYING OUT THE INVENTION Carbon has non-metallic properties, and ordinary compounds containing carbon act as electron donors or acceptors and exhibit the property of covalent bonding. Carbides containing metals mainly show covalent bonding properties, but when the metal composition ratio increases, depending on the metal species, the intermetallic distance is shortened or the coordination between metal elements is added, and as a result, the metal element It is easy to form an electronic interaction between them, and ionicity is added.

【0009】このようなイオン性の発現は外部流入によ
る電子やイオンのキャリヤーとしての振る舞いを容易に
させ、電気化学的なリチウムイオンの脱挿入反応を可能
にすると考えられる。これはたとえば炭素骨格の層構造
黒鉛におけるsp2混成軌道で形成される平面パイ電子系
とリチウムイオンとの相互作用で進行する電気化学反応
系とは機構が異なる。
It is considered that the expression of such ionicity facilitates the behavior of electrons and ions as carriers due to external inflow, and enables electrochemical lithium ion deintercalation reaction. This is different in mechanism from an electrochemical reaction system which proceeds by the interaction between a planar pi-electron system formed by sp2 hybrid orbitals and lithium ions in layered graphite having a carbon skeleton, for example.

【0010】たとえばMxCのMが典型元素の場合、次のよ
うな化合物が用いられる。炭素とリチウムを真空加熱し
て得られるLi2C2、種々のアルカリ金属をアセチレン気
流中で加熱して得られるNa2C2、K2C2、種々のアルカリ
土類金属をアセチレン気流中あるいは真空中で加熱して
得られるBe2Cほか、あるいは酸化硼素と炭素を2500℃以
上で加熱して得られるB12C3、その他としてSi5C3などが
ある。これらの化合物は水分との接触では不安定であ
り、分解するが非水電解液中では安定であり、電気化学
的な酸化還元反応が可能である。
For example, when M of MxC is a typical element, the following compounds are used. Li 2 C 2 obtained by vacuum heating carbon and lithium, Na 2 C 2 , K 2 C 2 obtained by heating various alkali metals in an acetylene stream, various alkaline earth metals in an acetylene stream or There are Be 2 C obtained by heating in vacuum, B 12 C 3 obtained by heating boron oxide and carbon at 2500 ° C. or higher, and Si 5 C 3 as others. These compounds are unstable in contact with moisture and decompose, but are stable in non-aqueous electrolytes, and are capable of electrochemical oxidation-reduction reactions.

【0011】しかし、遷移金属元素やその化合物と炭素
の混合物を加熱して得られる遷移金属炭化物は組成上、
炭素原子あたり比較的多くの金属元素を含むことがで
き、かつ局在化しやすいd軌道を持ち合わせているた
め、炭素2p軌道と金属元素間での電子相関作用のほか
に近接金属同士の電子的な相関作用が及ぼされ電気化学
的な活性度が増大する。
However, a transition metal carbide obtained by heating a mixture of a transition metal element or a compound thereof and carbon has a compositional disadvantage.
Since it can contain a relatively large number of metal elements per carbon atom and has d orbitals that are easily localized, in addition to the electron correlation between the carbon 2p orbitals and the metal elements, the electronic Correlation is exerted and electrochemical activity is increased.

【0012】たとえば、次のような遷移金属炭化物TiC,
Ti8C5,ZrC,VC,V2C,V6C5,V8C7,NbC,Nb2C,Nb6C5,TaC,Ta
2C,Cr3C,Mo2C,Mn5C2,Mn7C3,Mn3C,Fe3C,Fe7C3,Co2C,NiC,
Ni3Cが用いられる。これらの素材は真密度が黒鉛よりも
高く約5〜9g/cm3であり、体積あたりの高容量化に有利
である。
For example, the following transition metal carbide TiC,
Ti 8 C 5 , ZrC, VC, V 2 C, V 6 C 5 , V 8 C 7 , NbC, Nb 2 C, Nb 6 C 5 , TaC, Ta
2 C, Cr 3 C, Mo 2 C, Mn 5 C 2 , Mn 7 C 3 , Mn 3 C, Fe 3 C, Fe 7 C 3 , Co 2 C, NiC,
Ni 3 C is used. These materials have a true density higher than that of graphite and about 5 to 9 g / cm3, which is advantageous for increasing the capacity per volume.

【0013】特に一般式MxCにおける炭素原子1個あた
りの含有金属原子総数を示すxが2あるいは3に相当するM
2CあるいはM3Cのタイプでは1000mAh/cm3以上の理論容量
が得られる。このような電気化学的な活性度と体積的な
容量利得が得られるのは主として金属過剰組成が可能な
炭化物に見られ、その一般的な組成はMxCにおけるxが1
≦x≦4である。
In particular, in the general formula MxC, x represents the total number of metal atoms contained per carbon atom, and x corresponds to 2 or 3.
With 2 C or M 3 C type, a theoretical capacity of 1000 mAh / cm 3 or more can be obtained. Such electrochemical activity and volumetric capacity gain can be obtained mainly in carbides capable of metal excess composition, and the general composition is that x in MxC is 1
≦ x ≦ 4.

【0014】本発明はこのような事実に基づくものであ
り、以下実施例を述べる。
The present invention is based on such a fact, and an embodiment will be described below.

【0015】[0015]

【実施例】以下、図面と共に本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】図1に本発明の負極を評価するための評価
用電池の縦断面図を示す。図1において、1は耐有機電
解液性のステンレス鋼板を加工した電池ケース、2は同
材料の封口板、3は同材料の集電体で、電池ケース1の
内面にスポット溶接されている。4は金属リチウムで、
封口板2の内部に圧着されている。5は本発明の金属炭
化物を用いた負極で、電極作成に当たっては種々の金属
炭化物90重量部に対し、結着剤としてポリフッ化ビニ
リデン10重量部を混合して得られる合剤の所定量を集
電体3の上に成形し、これを110℃で減圧乾燥した
後、電池構成に用いた。
FIG. 1 is a longitudinal sectional view of an evaluation battery for evaluating the negative electrode of the present invention. In FIG. 1, reference numeral 1 denotes a battery case made of a stainless steel sheet having resistance to organic electrolytic solution, reference numeral 2 denotes a sealing plate of the same material, and reference numeral 3 denotes a current collector of the same material, which is spot-welded to the inner surface of the battery case 1. 4 is metallic lithium,
It is crimped inside the sealing plate 2. Reference numeral 5 denotes a negative electrode using the metal carbide of the present invention. In preparing an electrode, a predetermined amount of a mixture obtained by mixing 10 parts by weight of polyvinylidene fluoride as a binder with 90 parts by weight of various metal carbides was collected. After being formed on the electric body 3 and dried at 110 ° C. under reduced pressure, it was used for a battery configuration.

【0017】6は微孔性のポリプロピレン樹脂製セパレ
ータ、7はポリプロピレン樹脂製絶縁ガスケットであ
る。電解液は炭酸エチレン、1、3ージメトキシエタン
の等体積混合溶媒に溶質として過塩素酸リチウムを1モ
ル/リットルの濃度で溶解して用いた。この評価用電池
の寸法は直径20mm、電池総高1.6mmである。
Reference numeral 6 denotes a microporous polypropylene resin separator, and reference numeral 7 denotes a polypropylene resin insulating gasket. The electrolytic solution was prepared by dissolving lithium perchlorate at a concentration of 1 mol / l as a solute in a mixed solvent of equal volume of ethylene carbonate and 1,3 dimethoxyethane. The dimensions of the battery for evaluation are 20 mm in diameter and 1.6 mm in total battery height.

【0018】上記負極は、充電することにより電気化学
的な還元反応でリチウムイオンを挿入し、放電において
はこれと逆の反応により可逆的にリチウムを放出するこ
とができる。
The above-mentioned negative electrode can insert lithium ions by an electrochemical reduction reaction upon charging, and reversibly release lithium by a reverse reaction upon discharging.

【0019】なお、比較として黒鉛材料を用い、同様の
電極を作成した。金属炭化物合成の実施例を述べる。Mo
2Cはモリブデンと炭素を1250℃で3時間、還元雰囲気下
で焼成すると斜方晶系の白色結晶が得られる。この素材
は比重が8.6g/cm3あり、体積的な容量利得は大きい。理
論的に1電子反応に伴う単位重量あたりの容量は130mAh
/gで少ないが体積あたりでは1100mAh/cm3を越える容量
が期待できる。
For comparison, a similar electrode was prepared using a graphite material. An example of metal carbide synthesis will be described. Mo
As for 2C, molybdenum and carbon are calcined at 1250 ° C for 3 hours in a reducing atmosphere to obtain orthorhombic white crystals. This material has a specific gravity of 8.6 g / cm 3 and a large volumetric capacity gain. Theoretically, the capacity per unit weight for one-electron reaction is 130mAh
/ g is small, but a capacity exceeding 1100 mAh / cm 3 can be expected per volume.

【0020】Mn5C2あるいはMn7C3はマンガンと炭素ある
いはメタンと加熱反応させると斜方晶系の結晶が得られ
る。この素材は比重が6.8g/cm3あり、体積的な容量利得
は黒鉛より大きい。理論的に1電子反応に伴う単位重量
あたりの容量(1炭素換算)は170mAh/gであるが体積あ
たりではやはり1100mAh/cm3を越える容量が期待でき
る。
When Mn 5 C 2 or Mn 7 C 3 is heated and reacted with manganese and carbon or methane, orthorhombic crystals can be obtained. This material has a specific gravity of 6.8 g / cm 3 and a volumetric capacity gain greater than graphite. Theoretically, the capacity per unit weight (in terms of 1 carbon) associated with one-electron reaction is 170 mAh / g, but a capacity exceeding 1100 mAh / cm 3 per volume can be expected.

【0021】同様に、Fe3Cは還元雰囲気中(炭酸ガス雰
囲気下)で炭素と鉄を1000℃で加熱反応させ空間群Pnam
の斜方晶系の結晶が得られる。この素材は比重が7.5g/c
m3あり、体積的な容量利得は黒鉛よりも大きい。理論的
に1電子反応に伴う単位重量あたりの容量は150mAh/gで
あるが体積あたりではやはり1100mAh/cm3を越える容量
が期待できる。
Similarly, Fe 3 C is subjected to a heating reaction between carbon and iron at 1000 ° C. in a reducing atmosphere (under a carbon dioxide gas atmosphere) to cause a space group
Are obtained. This material has a specific gravity of 7.5g / c
m 3 and the volumetric capacity gain is greater than graphite. Theoretically, the capacity per unit weight associated with one-electron reaction is 150 mAh / g, but a capacity exceeding 1100 mAh / cm 3 can be expected per volume.

【0022】このほか、2種の遷移金属が固溶した混合
原子系あるいはその他の遷移金属炭化物についても同様
の手法で得られ、体積的な容量利得の効果が得られる。
In addition, a mixed atom system in which two types of transition metals are dissolved, or other transition metal carbides can be obtained in the same manner, and the effect of volumetric capacity gain can be obtained.

【0023】そこで、対極を金属リチウムとし、電流密
度50μA/cm2で電位領域0〜2.5V vs.Liで電気化学的酸化
還元反応を行い可逆容量を測定した。その結果を(表
1)に示す。
Therefore, the counter electrode was made of metallic lithium, and an electrochemical oxidation-reduction reaction was performed at a current density of 50 μA / cm 2 and a potential range of 0 to 2.5 V vs. Li to measure the reversible capacity. The results are shown in (Table 1).

【0024】[0024]

【表1】 [Table 1]

【0025】(表1)からわかるように、容量密度は金
属炭化物の方が黒鉛よりも大きくなっており、とりわけ
M2CあるいはM3Cタイプの試料に高容量化の効果がある。
また、固溶化混合原子系についても同様の効果が得られ
ている。(表1)において、容量密度が理論計算値より
も低い原因は、可逆容量の利用率が十分得られないこと
および極板作成時での活物質充填性が低く真密度それ自
身が完全に反映されていないことによる。
As can be seen from (Table 1), the capacity density of metal carbide is larger than that of graphite.
M 2 C or M 3 C type samples have the effect of increasing the capacity.
The same effect is obtained with a solution-mixed mixed atom system. In Table 1, the reason why the capacity density is lower than the theoretically calculated value is that the utilization rate of the reversible capacity is not sufficiently obtained and the active material filling property at the time of preparing the electrode plate is low, and the true density itself is completely reflected. By not being.

【0026】また、実際の電池への適用ではこの半電池
で得られた容量密度の結果を基にしてLiCoO2、LiMn
2O4、LiNiO2などのような正極材料と適正な容量バラン
スで電池設計を行い、電池を構成することができる。
In an actual application to a battery, LiCoO 2 , LiMn
A battery can be constructed by designing a battery with an appropriate capacity balance with a cathode material such as 2 O 4 and LiNiO 2 .

【0027】なお、こうして得られた負極材料の電極表
面からは針状のリチウムが観測されることはなかった。
Needle-like lithium was not observed from the electrode surface of the negative electrode material thus obtained.

【0028】本発明における効果は、LiCoO2,LiNiO2,Li
Mn2O4などの正極活物質、その他のリチウム電池用有機電解
液に対しても同様に効果がある。
The effect of the present invention is that LiCoO 2, LiNiO 2, Li
The same effect is obtained for a positive electrode active material such as Mn 2 O 4 and other organic electrolytes for lithium batteries.

【0029】[0029]

【発明の効果】以上のように、本発明では電気化学的に
リチウムの脱挿入が可能な一般組成式MxC(Mは1種ある
いは2種の遷移金属元素、xは1≦x≦4であって炭素原子
1個あたり取り得る金属元素の総数)で表される炭化物
を負極に用いると、高容量を有し、さらに充放電反応に
伴う電極表面上の針状結晶を抑えることができる非水電
解液二次電池を提供できる。
As described above, in the present invention, the general composition formula MxC (where M is one or two transition metal elements, and x is 1 ≦ x ≦ 4) is capable of electrochemically inserting and removing lithium. When the carbide represented by the total number of metal elements that can be taken per carbon atom) is used for the negative electrode, a non-aqueous solution having a high capacity and capable of suppressing acicular crystals on the electrode surface due to the charge / discharge reaction can be suppressed. An electrolyte secondary battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】評価用電池の縦断面図FIG. 1 is a longitudinal sectional view of an evaluation battery.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 集電体 4 金属リチウム 5 負極 6 セパレータ 7 ガスケット DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Current collector 4 Metal lithium 5 Negative electrode 6 Separator 7 Gasket

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非水電解液と、正極と、電気化学的にリチ
ウムの脱挿入が可能な一般組成式MxC(Mは1種あるいは
2種の遷移金属元素、xは1≦x≦4であって炭素原子1個
あたり取り得る金属元素の総数)で表される炭化物を負
極に用いる非水電解液二次電池。
1. A non-aqueous electrolyte, a positive electrode, and a general composition formula MxC (M is one or two transition metal elements, wherein x is 1 ≦ x ≦ 4) capable of electrochemically inserting and removing lithium. And a nonaqueous electrolyte secondary battery using a carbide represented by the formula (total number of metal elements that can be taken per carbon atom) as a negative electrode.
JP8266890A 1996-10-08 1996-10-08 Nonaqueous electrolyte secondary battery Pending JPH10112316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8266890A JPH10112316A (en) 1996-10-08 1996-10-08 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8266890A JPH10112316A (en) 1996-10-08 1996-10-08 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10112316A true JPH10112316A (en) 1998-04-28

Family

ID=17437082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8266890A Pending JPH10112316A (en) 1996-10-08 1996-10-08 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10112316A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148184A1 (en) * 2001-04-09 2003-08-07 Atsuo Omaru Negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell using the negative electrode
WO2003073539A1 (en) * 2002-02-27 2003-09-04 Cyprus Amax Minerals Company Electrochemical cell with carbonaceous material and molybdenum carbide as anode
EP2723559A4 (en) * 2011-06-21 2015-03-04 Univ Drexel Compositions comprising free standing two dimensional nanocrystals
US9193595B2 (en) 2011-06-21 2015-11-24 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
US10538431B2 (en) 2015-03-04 2020-01-21 Drexel University Nanolaminated 2-2-1 MAX-phase compositions
US10573768B2 (en) 2014-09-25 2020-02-25 Drexel University Physical forms of MXene materials exhibiting novel electrical and optical characteristics
US10720644B2 (en) 2015-04-20 2020-07-21 Drexel University Two-dimensional, ordered, double transition metals carbides having a nominal unit cell composition M′2M″nXn+1
US11278862B2 (en) 2017-08-01 2022-03-22 Drexel University Mxene sorbent for removal of small molecules from dialysate
US11470424B2 (en) 2018-06-06 2022-10-11 Drexel University MXene-based voice coils and active acoustic devices

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450245B2 (en) * 2001-04-09 2016-09-20 Sony Corporation Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material
US9972831B2 (en) * 2001-04-09 2018-05-15 Murata Manufacturing Co., Ltd Negative material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative material
US20030148184A1 (en) * 2001-04-09 2003-08-07 Atsuo Omaru Negative electrode for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell using the negative electrode
US20160351895A1 (en) * 2001-04-09 2016-12-01 Sony Corporation Negative Material for Nonaqueous Electrolyte Secondary Battery and Nonaqueous Electrolyte Secondary Battery Using Negative Material
WO2003073539A1 (en) * 2002-02-27 2003-09-04 Cyprus Amax Minerals Company Electrochemical cell with carbonaceous material and molybdenum carbide as anode
US6740453B2 (en) 2002-02-27 2004-05-25 Cyprus Amax Minerals Company Electrochemical cell with carbonaceous material and molybdenum carbide as anode
JP2005519426A (en) * 2002-02-27 2005-06-30 サイプラス・アマックス・ミネラルズ・カンパニー Electrochemical cell with carbonaceous material and molybdenum carbide as anode
US9837182B2 (en) 2011-06-21 2017-12-05 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
US9416011B2 (en) 2011-06-21 2016-08-16 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
US9415570B2 (en) 2011-06-21 2016-08-16 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
US9193595B2 (en) 2011-06-21 2015-11-24 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
EP2723559A4 (en) * 2011-06-21 2015-03-04 Univ Drexel Compositions comprising free standing two dimensional nanocrystals
US10573768B2 (en) 2014-09-25 2020-02-25 Drexel University Physical forms of MXene materials exhibiting novel electrical and optical characteristics
US11296243B2 (en) 2014-09-25 2022-04-05 Drexel University Physical forms of MXene materials exhibiting novel electrical and optical characteristics
US10538431B2 (en) 2015-03-04 2020-01-21 Drexel University Nanolaminated 2-2-1 MAX-phase compositions
US10720644B2 (en) 2015-04-20 2020-07-21 Drexel University Two-dimensional, ordered, double transition metals carbides having a nominal unit cell composition M′2M″nXn+1
US11411218B2 (en) 2015-04-20 2022-08-09 Drexel University Two-dimensional, ordered, double transition metals carbides having a nominal unit cell composition M′2M″NXN+1
US11278862B2 (en) 2017-08-01 2022-03-22 Drexel University Mxene sorbent for removal of small molecules from dialysate
US11772066B2 (en) 2017-08-01 2023-10-03 Drexel University MXene sorbent for removal of small molecules from dialysate
US11470424B2 (en) 2018-06-06 2022-10-11 Drexel University MXene-based voice coils and active acoustic devices

Similar Documents

Publication Publication Date Title
JPH09330720A (en) Lithium battery
JPH11507171A (en) Positive electrode material for rechargeable electrochemical cell and method of making the same
WO2007029659A1 (en) Nonaqueous electrolyte secondary battery
JPH06342673A (en) Lithium secondary battery
JP2012174535A (en) Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH10112316A (en) Nonaqueous electrolyte secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JP2003282147A (en) Lithium ion secondary battery
JP3497420B2 (en) Lithium secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JPH09102312A (en) Secondary battery
JPH08180875A (en) Lithium secondary battery
JP3928032B2 (en) Electrode active material for non-aqueous electrolyte battery, electrode and battery including the same
JP2953024B2 (en) Non-aqueous electrolyte secondary battery
JP3887849B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode for nonaqueous electrolyte secondary battery
JPH1125973A (en) Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same
JP3130531B2 (en) Non-aqueous solvent secondary battery
JPH10134813A (en) Active electrode material, nonaqueous electrolyte secondary battery, and nonaqueous alkali metal electrolyte secondary battery
JP3555321B2 (en) Anode material and lithium secondary battery
JP2526093B2 (en) Lithium secondary battery
US20220246935A1 (en) Positive electrode active material and magnesium secondary battery
JPH10223225A (en) Electrode active material, and alkali metallic non-aqueous electrolyte secondary battery
JP3289259B2 (en) Negative electrode for lithium secondary battery
JPH11162520A (en) Nonaqueous electrolyte secondary battery