JPH10111159A - Spout type mass flowmeter - Google Patents

Spout type mass flowmeter

Info

Publication number
JPH10111159A
JPH10111159A JP28342596A JP28342596A JPH10111159A JP H10111159 A JPH10111159 A JP H10111159A JP 28342596 A JP28342596 A JP 28342596A JP 28342596 A JP28342596 A JP 28342596A JP H10111159 A JPH10111159 A JP H10111159A
Authority
JP
Japan
Prior art keywords
differential pressure
flow rate
main pipe
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28342596A
Other languages
Japanese (ja)
Other versions
JP3800691B2 (en
Inventor
Ippei Torigoe
一平 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28342596A priority Critical patent/JP3800691B2/en
Publication of JPH10111159A publication Critical patent/JPH10111159A/en
Application granted granted Critical
Publication of JP3800691B2 publication Critical patent/JP3800691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To calculate flow rate in a main pipe by forming positive and negative spouts having an equal absolute value, applying a known alternating fluctuation of flow rate to a flow in the main pipe and then measuring the differential pressure across the upstream spout and the downstream spout. SOLUTION: A spout pipe 2 is jointed to a main pipe 1 at an upstream spout point 11 and a downstream spout point 12 and an inner diaphragm 3 is vibrated by a driver 4 at constant frequency and amplitude to impart a sine wave fluid fluctuation to a flow in the main pipe 1 in the opposite directions at the spout points 11, 12. An upstream differential pressure gauge 7 measures differential pressure between pressure introduction ports 13, 14 through pressure introduction pipes 5, 5' whereas a downstream differential pressure gauge 8 measures differential pressure between pressure introduction ports 15, 16 through pressure introduction pipes 6, 6'. Distance between the cross-sections of the pressure introduction port 14 and the spout point 11 is equalized to that of the pressure introduction port 15 and the spout point 12, and the distance between the cross-sections of the pressure introduction port 13 and the spout point 11 is equalized to that of the pressure introduction port 16 and the spout point 12. A signal processor 9 calculates mass flow rate in the main pipe 1 based on the outputs from the differential pressure gauges 7, 8 and delivers the mass flow rate to an indicator 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、管内を流れる流体の質
量流量を差圧を利用して測定する装置、とくに、管内に
既知の強さの正負二つの湧出しを形成し、各湧出しの上
流と下流の間の静圧差を測定して、これら二つの静圧差
と湧出しの強さとから、管内の質量流量を知る流量計に
係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring a mass flow rate of a fluid flowing in a pipe by utilizing a differential pressure, and in particular, to form two positive and negative springs of known strength in a pipe, It relates to a flow meter which measures the static pressure difference between the upstream and downstream of the pipe and knows the mass flow rate in the pipe from the difference between these two static pressures and the strength of the discharge.

【0002】[0002]

【従来の技術】差圧式の質量流量計として、いわゆるシ
モンズの流量計がよく知られている。図2はシモンズの
原理による従来の差圧式質量流量計の例を示している。
図2において、1は密度ρの流体が体積流量Qで流れて
いる断面積Sの主管、23および24は分流管、25は
合流管、21および22は互いに流量の等しい定流量ポ
ンプ、26および27は互いに装置定数の等しいオリフ
ィス、28は差圧計である。定流量ポンプ21は分流管
23から、一方、定流量ポンプ22は分流管24から、
それぞれ一定の体積流量qを吸い込み、共に合流管25
に吐出している。このとき、オリフィス26を通過する
体積流量はQ−q、オリフィス27を通過する体積流量
はQ+qとなる。オリフィス26の上流とオリフィス2
7の下流の差圧Δp28は、k28をオリフィスと主管断面
積Sによって決まる定数として、Δp28=k28ρQqと
なる。ここで、流量qが既知であるから、差圧計28の
出力から主管内の質量流量ρQを知ることができる。図
2の質量流量計においては、定流量ポンプの流量qは主
管1の流量Qよりも大きい値を用いる。このため、測定
しようとする流量Qが大きい場合には、非常に大きな定
流量ポンプを必要とする。また、二つのオリフィス26
および27の装置定数が一定で互いに等しい事を原理上
の前提としている
2. Description of the Related Art A so-called Simmons flow meter is well known as a differential pressure type mass flow meter. FIG. 2 shows an example of a conventional differential pressure type mass flow meter based on the Simmons principle.
In FIG. 2, 1 is a main pipe having a sectional area S in which a fluid having a density ρ flows at a volume flow rate Q, 23 and 24 are branch pipes, 25 is a merge pipe, 21 and 22 are constant flow pumps having the same flow rate, 26 and 27 is an orifice having the same device constant as each other, and 28 is a differential pressure gauge. The constant flow pump 21 is from the diversion tube 23, while the constant flow pump 22 is from the diversion tube 24.
A constant volume flow rate q is sucked into each,
Is discharged. At this time, the volume flow rate passing through the orifice 26 is Q-q, and the volume flow rate passing through the orifice 27 is Q + q. Upstream of orifice 26 and orifice 2
Downstream of the pressure difference Delta] p 28 of 7, the k 28 as constant determined by the orifice main pipe cross-sectional area S, the Δp 28 = k 28 ρQq. Here, since the flow rate q is known, the mass flow rate ρQ in the main pipe can be known from the output of the differential pressure gauge 28. In the mass flow meter of FIG. 2, the flow rate q of the constant flow pump is larger than the flow rate Q of the main pipe 1. Therefore, when the flow rate Q to be measured is large, a very large constant flow pump is required. Also, two orifices 26
And 27 are assumed to be constant and equal to each other in principle.

【0003】シモンズの質量流量計では、オリフィスを
用いているため、大きな圧力損失が発生する。この欠点
を解決した差圧式質量流量計として、シモンズの流量計
からオリフィスを取り去った質量流量計がある(芝亀吉
他「差圧式質量流量計」、応用物理、第37巻、第4
号、334ページ)。図3に示すのはその構成である。
図3において、1は密度ρの流体が体積流量Qで流れて
いる断面積Sの主管、23および24は分流管、25は
合流管、21と22は互いに流量の等しい定流量ポン
プ、28は差圧計、33および34は主管1に穿たれた
導圧口である。定流量ポンプ21は分流管23から、一
方、定流量ポンプ22は分流管24から、それぞれ一定
の体積流量qを吸い込み、共に合流管25に吐出してい
る。30、31および32は、それぞれ、分流管23、
合流管25および分流管24と主管1との接続点であ
る。接続点30、31、32を境とする主管内の領域に
おける体積流量は、上流から順にQ、Q−q、Q+q、
Qとなる。ここで、主管1の上流から下流に至る流線に
沿ってベルヌーイの定理を適用すれば、導圧口33にお
ける圧力p33と、導圧口34における圧力p34に対し
て、
[0003] Simmons mass flowmeters use orifices, which cause large pressure losses. As a differential pressure type mass flow meter that solves this drawback, there is a mass flow meter in which an orifice is removed from a Simmons flow meter (Shikameyoshi et al., “Differential pressure type mass flow meter”, Applied Physics, Vol. 37, No. 4,
Issue, p. 334). FIG. 3 shows the configuration.
In FIG. 3, 1 is a main pipe having a sectional area S through which a fluid having a density ρ flows at a volume flow rate Q, 23 and 24 are branch pipes, 25 is a merge pipe, 21 and 22 are constant flow pumps having the same flow rate, and 28 is a constant flow pump. The differential pressure gauges 33 and 34 are pressure guiding ports formed in the main pipe 1. The constant flow pump 21 sucks a constant volume flow q from the branch pipe 23, while the constant flow pump 22 sucks a constant volume flow q from the branch pipe 24, and discharges both to the merge pipe 25. 30, 31, and 32 are diverter tubes 23,
It is a connection point between the main pipe 1 and the junction pipe 25 and the split pipe 24. The volume flow rates in the region within the main pipe bordering on the connection points 30, 31, 32 are Q, Q-q, Q + q,
Q. Here, by applying the Bernoulli's principle along the flow line leading from upstream to downstream of the main pipe 1, a pressure p 33 in electrical pressure port 33, the pressure p 34 in electrical pressure port 34,

【0004】[0004]

【数1】 (Equation 1)

【0005】が成り立つ。従って、圧力p33と圧力p34
の差は、
The following holds. Therefore, the pressure p 33 and the pressure p 34
The difference between

【0006】[0006]

【数2】 (Equation 2)

【0007】となり、定流量ポンプの体積流量qが既知
であるから、差圧計28の出力から主管1内の質量流量
ρQを知ることができる。
Since the volume flow q of the constant flow pump is known, the mass flow ρQ in the main pipe 1 can be known from the output of the differential pressure gauge 28.

【0008】[0008]

【発明が解決しようとする課題】シモンズの原理に基づ
く質量流量計においては、オリフィスを用いているため
大きな圧力損失が生じる事、二つのオリフィスの装置係
数が互いに等しい事が原理上の前提になっているが、オ
リフィスの装置定数は厳密には流量や粘度の関数である
ため、流れの条件によって装置定数が変化した分が測定
誤差となる事、特性のそろった定流量ポンプが必要で構
造が複雑である事などの問題がある。シモンズの流量計
からオリフィスを取り去った質量流量計においても、特
性のそろった定流量ポンプを必要とするといった構造の
複雑さの問題、流体の粘性に起因する圧力降下が差圧出
力に重畳し、この圧力降下の大きさが流れの条件によっ
て変化するため、誤差を生じるという問題がある。この
ように、従来の差圧式質量流量計には、構造が複雑であ
る事、圧力損失が大きい事、粘性等の流れの条件の変化
によって誤差を生じる事などの問題点がある。本発明
は、圧力損失が小さく、構造が単純で、流体の粘性に起
因する圧力降下の影響を受けない差圧式質量流量計を提
供することを目的としている。
In a mass flow meter based on Simmons' principle, it is premised on principle that a large pressure loss occurs due to the use of an orifice and that the device coefficients of the two orifices are equal to each other. However, since the equipment constant of the orifice is strictly a function of the flow rate and viscosity, the change in the equipment constant depending on the flow condition causes a measurement error, and a constant flow pump with uniform characteristics is required, and the structure is required. There are problems such as complexity. Even with mass flowmeters with orifices removed from Simmons flowmeters, the problem of structural complexity, such as the need for a constant flow pump with uniform characteristics, and the pressure drop due to the viscosity of the fluid are superimposed on the differential pressure output, Since the magnitude of the pressure drop changes depending on the flow conditions, there is a problem that an error occurs. As described above, the conventional differential pressure type mass flow meter has problems such as a complicated structure, a large pressure loss, and an error caused by a change in flow conditions such as viscosity. An object of the present invention is to provide a differential pressure type mass flow meter which has a small pressure loss, a simple structure, and is not affected by a pressure drop caused by the viscosity of a fluid.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
め、本発明においては、絶対値が等しく符号が逆の強さ
を持つ正負二つの湧出しを形成して、主管内の流れに既
知の交番的流量変動を加え、上流側湧出しの上流下流間
の差圧と下流側湧出しの上流下流間の差圧の二つの差圧
を測定し、これら二つの差圧と流量変動とから主管内の
質量流量を求める。
In order to solve the above-mentioned problems, according to the present invention, two positive and negative wells having the same magnitude and the opposite sign are formed to have a known flow in the main pipe. In addition to the above, the two differential pressures, the differential pressure between the upstream and downstream of the upstream source and the differential pressure between the upstream and downstream of the downstream source, are measured. Obtain the mass flow rate in the main pipe.

【0010】[0010]

【作用】主管内に湧出しを形成して流れに流量変動を加
えると、湧出し点の上流の流量と下流の流量の間には差
が生じ、湧出し点の上流の静圧と下流の静圧には、流量
変動の大きさと管内の質量流量とに比例した差が発生す
る。もし流体の粘性が無視できるなら、この差圧の大き
さを測定することで主管内の質量流量を知ることができ
る。しかし実際の流体には粘性があるので、湧出し点の
上流と下流の間の差圧には、質量流量に比例する差圧成
分の他に、粘性に起因する圧力降下分が含まれる。この
ため、一つの湧出し点の上下流の差圧から質量流量を求
めようとすると、粘性に起因した誤差を生じる。本発明
においては、正負二つの湧出しを形成し、二つの湧出し
点において絶対値が等しく符号が逆の交番的流量変動を
加えている。このとき、二つの湧出し点の上下流の差圧
には、質量流量に比例する差圧成分が逆相で含まれるの
に対して、流体の粘性に起因する圧力降下分は同相成分
として含まれる。従って、二つの静圧差を測定してその
差を取ることで、粘性による圧力降下の影響を除いて、
主管内の質量流量を知ることができる。
[Function] If a flow is added to the flow by forming a spring in the main pipe, a difference occurs between the flow upstream and the downstream of the spring, and the static pressure upstream of the spring and the downstream The static pressure has a difference proportional to the magnitude of the flow fluctuation and the mass flow in the pipe. If the viscosity of the fluid is negligible, measuring the magnitude of this differential pressure allows the mass flow in the main pipe to be known. However, since the actual fluid is viscous, the differential pressure between the upstream and downstream of the discharge point includes a pressure drop component due to the viscosity in addition to the differential pressure component proportional to the mass flow rate. For this reason, if an attempt is made to obtain the mass flow rate from the differential pressure between the upstream and downstream of one spring point, an error due to viscosity occurs. In the present invention, two positive and negative springs are formed, and alternating flow fluctuations having the same absolute value and opposite signs at the two spring points are added. At this time, the differential pressure upstream and downstream of the two discharge points includes a differential pressure component proportional to the mass flow rate in the opposite phase, whereas the pressure drop due to the viscosity of the fluid is included as an in-phase component. It is. Therefore, by measuring the difference between the two static pressures and taking the difference, we eliminate the effect of pressure drop due to viscosity,
The mass flow rate in the main pipe can be known.

【0011】[0011]

【実施例】以下、本発明の詳細を図1に示す実施例をも
とに説明する。図1において、1は、密度ρの流体がQ
なる体積流量で流れている断面積Sの主管である。2
は、上流側湧出し点11と下流側湧出し点12で主管1
に接続し、内に隔膜としてダイアフラム3が取り付けら
れた湧出し管である。4は、電磁力によりダイアフラム
3を一定の周波数と一定振幅で正弦的に振動させる駆動
装置である。駆動装置4がダイアフラム3を振動させる
ことにより、主管1内の流れに対して、上流側湧出し点
11では、一定の周波数と一定振幅の正弦的な流量変動
−q=−q0 sinωtが加えられ、一方、下流側湧出
し点12では流量変動q=q0 sinωtが加えられ
る。7は上流側差圧計で、導圧管5および5’によって
導かれた主管1内の圧力の差を検出している。8は下流
側差圧計で、導圧管6および6’によって導かれた主管
1内の圧力の差を検出している。上流側差圧計7の導圧
管5は、上流側湧出し点11より上流の導圧口13にお
いて、また導圧管5’は、上流側湧出し点11よりも下
流で、下流側湧出し点12よりも上流の導圧口14にお
いて、主管1と接続されている。下流側差圧計8の導圧
管6は、上流側湧出し点11よりも下流で下流側湧出し
点12よりも上流の導圧口15において、また導圧管
6’は、下流側湧出し点12よりも下流の導圧口16に
おいて、主管1と接続されている。本実施例は、湧出し
点11、12および導圧口13、14、15、16が含
まれる断面の、主管1の管軸に沿って測った位置につい
て、次の条件が満たされるように作製されている。すな
わち、導圧口14と上流側湧出し点11の断面間の距離
は、導圧口15と下流側湧出し点12の断面間の距離に
等しく、また、導圧口13と上流側湧出し点11の断面
間の距離は、導圧口16と下流側湧出し点12の断面間
の距離に等しい。9は、信号処理装置で、上流側差圧計
7および下流側差圧計8の出力から、主管内の質量流量
ρQを計算して指示計器10に出力している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the embodiment shown in FIG. In FIG. 1, 1 indicates that the fluid having a density ρ is Q
This is a main pipe having a cross-sectional area S flowing at a volume flow rate. 2
Is the main pipe 1 at the upstream discharge point 11 and the downstream discharge point 12.
And a discharge pipe in which the diaphragm 3 is attached as a diaphragm. Reference numeral 4 denotes a driving device that vibrates the diaphragm 3 sinusoidally at a constant frequency and a constant amplitude by an electromagnetic force. When the driving device 4 oscillates the diaphragm 3, the flow in the main pipe 1 is subjected to a sinusoidal flow fluctuation −q = −q 0 sinωt at a constant frequency and a constant amplitude at the upstream discharge point 11. On the other hand, the flow rate fluctuation q = q 0 sinωt is added at the downstream side spring point 12. Reference numeral 7 denotes an upstream differential pressure gauge, which detects a pressure difference in the main pipe 1 guided by the pressure guiding pipes 5 and 5 '. Reference numeral 8 denotes a downstream differential pressure gauge which detects a pressure difference in the main pipe 1 guided by the pressure guiding pipes 6 and 6 '. The impulse line 5 of the upstream differential pressure gauge 7 is located at a pressure impulse port 13 upstream of the upstream spout point 11, and the impulse line 5 ′ is downstream of the upstream spout point 11 and at the downstream spout point 12. The pressure pipe 14 is connected to the main pipe 1 at an upstream side of the pressure introducing port 14. The impulse line 6 of the downstream differential pressure gauge 8 is connected to the impulse port 15 downstream of the upstream side discharge point 11 and upstream of the downstream side discharge point 12, and the impulse line 6 ′ is connected to the downstream side discharge point 12. The pressure pipe 16 is connected to the main pipe 1 at a pressure guiding port 16 further downstream. The present embodiment is manufactured such that the following conditions are satisfied at positions measured along the pipe axis of the main pipe 1 on the cross section including the wells 11 and 12 and the pressure introduction ports 13, 14, 15 and 16. Have been. That is, the distance between the cross-section of the pressure-guiding port 14 and the upstream spouting point 11 is equal to the distance between the cross-section of the pressure-guiding port 15 and the cross-section of the downstream spouting point 12, and the pressure-guiding port 13 and the upstream spouting point. The distance between the cross sections of the points 11 is equal to the distance between the cross sections of the pressure introduction port 16 and the downstream discharge point 12. Reference numeral 9 denotes a signal processing device which calculates the mass flow rate ρQ in the main pipe from the outputs of the upstream differential pressure gauge 7 and the downstream differential pressure gauge 8 and outputs the calculated mass flow ρQ to the indicating instrument 10.

【0012】湧出し管2、ダイアフラム3および駆動装
置4の働きにより、主管1内の、上流側湧出し点11よ
り上流における体積流量はQ、上流側湧出し点11より
下流で下流側湧出し点12より上流の範囲における体積
流量はQ−q、下流側湧出し点12より下流における体
積流量はQとなる。導圧口13より上流の点を通って導
圧口16の下流に至る流線に沿って圧力方程式(非定常
流に拡張されたベルヌーイの定理)を適用すると、導圧
口13、14、15、16の断面内の圧力をそれぞれp
13、p14、p15、p16として、
Due to the operation of the discharge pipe 2, the diaphragm 3 and the driving device 4, the volume flow in the main pipe 1 upstream of the upstream discharge point 11 is Q, and the downstream flow downstream of the upstream discharge point 11 is Q. The volume flow rate in the range upstream from the point 12 is Qq, and the volume flow rate downstream from the downstream discharge point 12 is Q. Applying the pressure equation (Bernoulli's theorem extended to an unsteady flow) along a streamline that passes through a point upstream of the pressure introduction port 13 and downstream of the pressure introduction port 16, the pressure introduction ports 13, 14, and 15 are obtained. , 16 are respectively p
As 13, p 14, p 15, p 16,

【0013】[0013]

【数3】 (Equation 3)

【0014】[0014]

【数4】 (Equation 4)

【0015】が成り立つ。実際には、流体に粘性がある
ため圧力降下が生じ、結局、上流側差圧計7の出力Δp
7 および下流側差圧計8の出力Δp8 は、それぞれ
The following holds. Actually, since the fluid is viscous, a pressure drop occurs, and as a result, the output Δp of the upstream differential pressure gauge 7
7 and the output Δp 8 of the downstream differential pressure gauge 8 are respectively

【0016】[0016]

【数5】 (Equation 5)

【0017】[0017]

【数6】 (Equation 6)

【0018】となる。数5および数6の右辺第三項は、
流量変動の時間微分の項、すなわち流れの加速度の項で
ある。一方、右辺第四項は、粘性に起因する圧力降下の
項で、流量変動qに比例した成分を含んでいる。本実施
例では、導圧口13、14、15、16と湧出し点1
1、12とが、湧出し点11と12から等距離にある断
面を基準にして対称に配置されているため、数5と数6
の右辺第三項および右辺第四項の大きさはそれぞれ互い
に等しくなる。すなわち、k7 =k8 およびτ7 =τ8
が成り立つ。従って、差圧Δp8 とΔp7 の差をとれ
ば、加速度項および粘性項は互いに相殺して
## EQU1 ## The third term on the right side of Equations 5 and 6 is
This is the term of the time derivative of the flow rate fluctuation, that is, the term of the acceleration of the flow. On the other hand, the fourth term on the right side is a term of pressure drop caused by viscosity, and includes a component proportional to the flow rate fluctuation q. In the present embodiment, the pressure introduction ports 13, 14, 15, 16 and the spring point 1
Since Equations 1 and 12 are arranged symmetrically with reference to a cross section equidistant from the spring points 11 and 12, Equations 5 and 6 are obtained.
Of the right side third term and the right side fourth term are equal to each other. That is, k 7 = k 8 and τ 7 = τ 8
Holds. Therefore, by taking the difference between the differential pressures Δp 8 and Δp 7 , the acceleration term and the viscosity term cancel each other out.

【0019】[0019]

【数7】 (Equation 7)

【0020】となる。信号処理装置9において、流量変
動と同相同波形の信号sinωtを参照信号として同期
検波をおこなえば、数7の右辺の第一項と第二項とは分
離してそれぞれの大きさを求められる。流量変動の大き
さqと主管1の断面積Sは既知であるから、数7右辺第
一項の大きさから、主管1内の質量流量ρQを知ること
ができる。なお、本実施例では、導圧口を上述のように
対称性を持たせて配置して、粘性項が相殺するようにし
たが、必ずしもこのように配置する必要はなく、差圧Δ
8 とΔp7 に重みを乗じた上で差をとって、粘性項が
相殺するように配置しても構わない。このとき、流れの
加速度項である数7の右辺第三項は、同期検波によって
分離可能であるので、必ずしも相殺されている必要はな
い。
## EQU1 ## If the signal processing device 9 performs synchronous detection using the signal sinωt having the same homologous waveform as the flow rate fluctuation as a reference signal, the first term and the second term on the right side of Expression 7 can be separated and their respective magnitudes can be obtained. Since the magnitude q of the flow rate fluctuation and the cross-sectional area S of the main pipe 1 are known, the mass flow rate ρQ in the main pipe 1 can be known from the magnitude of the first term on the right side of Equation 7. In the present embodiment, the pressure-guiding ports are arranged with symmetry as described above so that the viscous term cancels out.
taking the difference on which multiplied by the weight to p 8 and Delta] p 7, it may be arranged so as viscosity term is canceled. At this time, the third term on the right-hand side of Equation 7, which is the acceleration term of the flow, can be separated by synchronous detection, and therefore does not necessarily have to be canceled.

【0021】[0021]

【発明の効果】本発明では、主管内の流れに既知の流量
変動を与える正負二つの湧出しを形成し、上流側湧出し
の上流側と下流側の差圧と、下流側湧出しの上流側と下
流側の差圧の二つの差圧を測定し、これら二つの差圧と
流量変動とから、主管内の質量流量を測定する。本発明
では、流れの中に障害物を置くことが原理的に不要であ
り、管路を曲げる等の必要も無いため、流量計挿入に伴
う圧力損失が全く生じない。また、定流量ポンプを用い
て定常的な流量変化を加えていた従来の差圧式質量流量
計と異なって、交番的に変動する流量変動を用いること
で、流量変化を与えるための機構が非常に単純・小型に
できる。さらに、二つの変動する湧出しの上下流の差圧
をとり、二つの差圧を用いることによって、粘性に起因
する誤差を生じることなく質量流量を測定することが可
能である。このように、本発明によって、圧力損失が無
く、構造が単純で、粘性に起因する誤差を生じないとい
う特長を備えた質量流量計を実現できる。
According to the present invention, there are formed two positive and negative springs which give a known flow rate variation to the flow in the main pipe, a differential pressure between the upstream side and the downstream side, and an upstream side of the downstream side. The differential pressure between the side and the downstream is measured, and the mass flow rate in the main pipe is measured from these two differential pressures and the flow rate fluctuation. In the present invention, it is unnecessary in principle to place an obstacle in the flow, and since there is no need to bend the pipe, there is no pressure loss associated with the insertion of the flow meter. Also, unlike conventional differential pressure type mass flowmeters that use a constant flow pump to add a steady flow rate change, the mechanism for giving a flow rate change by using an alternating flow rate change is very Simple and compact. Furthermore, by taking the differential pressure between the upstream and downstream of the two fluctuating sources and using the two differential pressures, it is possible to measure the mass flow rate without causing errors due to viscosity. As described above, according to the present invention, it is possible to realize a mass flow meter having the features of no pressure loss, a simple structure, and no error caused by viscosity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である。FIG. 1 is an embodiment of the present invention.

【図2】シモンズの原理に基づいた質量流量計の例であ
る。
FIG. 2 is an example of a mass flow meter based on the Simmons principle.

【図3】オリフィスを用いない差圧式質量流量計の例で
ある。
FIG. 3 is an example of a differential pressure type mass flow meter that does not use an orifice.

【符号の説明】[Explanation of symbols]

1 主管 2 湧出し管 3 ダイアフラム 4 駆動装置 5、5’、6、6’導圧管 7 上流側差圧計 8 下流側差圧計 9 信号処理装置 10 指示計器 11 上流側湧出し点 12 下流側湧出し点 13、14、15、16、33、34 導圧口 21、22 定流量ポンプ 23、24 分流管 25 合流管 26、27 オリフィス 28 差圧計 30、32 主管と分流管の接続点 31 主管と合流管の接続点 DESCRIPTION OF SYMBOLS 1 Main pipe 2 Spring pipe 3 Diaphragm 4 Drive device 5, 5 ', 6, 6' impulse pipe 7 Upstream differential pressure gauge 8 Downstream differential pressure gauge 9 Signal processing device 10 Indicator 11 Upstream spring point 12 Downstream spring Points 13,14,15,16,33,34 Pressure inlet 21,22 Constant flow pump 23,24 Separating pipe 25 Merging pipe 26,27 Orifice 28 Differential pressure gauge 30,32 Connection point between main pipe and dividing pipe 31 Main pipe and merging Pipe junction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 差圧を測定して管内の質量流量を知る差
圧式質量流量計において、主管(1)内の流れに、上流
側湧出し点(11)において交番的な流量変動を加え、
下流側湧出し点(12)において前記上流側湧出し点
(11)における流量変動と絶対値が等しく符号が反対
の流量変動を加える手段(2、3、4)と、前記上流側
湧出し点(11)の上流と下流の間の前記主管内静圧差
を測定する上流側差圧計(7)と、前記下流側湧出し点
(12)の上流と下流の間の主管内静圧差を測定する下
流側差圧計(8)とを備え、前記主管の流れに加えられ
る前記流量変動の大きさと、前記上流側差圧計および前
記下流側差圧計の出力とから、前記主管内の質量流量を
知ることを特徴とする湧出し式質量流量計。
In a differential pressure type mass flow meter for measuring a differential pressure to know a mass flow rate in a pipe, an alternating flow rate variation is added to a flow in a main pipe (1) at an upstream discharge point (11).
Means (2, 3, 4) for applying a flow rate change at the downstream side discharge point (12) having the same absolute value as the flow rate fluctuation at the upstream side discharge point (11) and having the opposite sign, and the upstream side discharge point An upstream differential pressure gauge (7) for measuring the main pipe static pressure difference between upstream and downstream of (11), and a main pipe static pressure difference between upstream and downstream of the downstream discharge point (12). A downstream differential pressure gauge (8), wherein the mass flow rate in the main pipe is determined from the magnitude of the flow rate fluctuation applied to the flow in the main pipe and the outputs of the upstream differential pressure gauge and the downstream differential pressure gauge. A mass flow meter with a spring.
JP28342596A 1996-10-03 1996-10-03 Source mass flow meter Expired - Fee Related JP3800691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28342596A JP3800691B2 (en) 1996-10-03 1996-10-03 Source mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28342596A JP3800691B2 (en) 1996-10-03 1996-10-03 Source mass flow meter

Publications (2)

Publication Number Publication Date
JPH10111159A true JPH10111159A (en) 1998-04-28
JP3800691B2 JP3800691B2 (en) 2006-07-26

Family

ID=17665372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28342596A Expired - Fee Related JP3800691B2 (en) 1996-10-03 1996-10-03 Source mass flow meter

Country Status (1)

Country Link
JP (1) JP3800691B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007016865A1 (en) * 2005-08-10 2007-02-15 Yu Chen A flow measuring device of a stream

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007016865A1 (en) * 2005-08-10 2007-02-15 Yu Chen A flow measuring device of a stream

Also Published As

Publication number Publication date
JP3800691B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
RU2181477C2 (en) Flowmeter of overflow type
JP3246851B2 (en) Ultrasonic flowmeter detector
WO2004099733A1 (en) Coriolis flowmeter
JP6336122B2 (en) Apparatus and method for detecting asymmetric flow in an oscillating flow meter
NO851375L (en) PLANNING AND VERTILIZING MASS FLOW METERS
US9593978B2 (en) Device and method for measuring mass flow rate of fluids
WO2019195074A1 (en) Method of compensating for mass flow using known density
CN203657862U (en) Flow dividing main body of Coriolis mass flow meter
JP3119782B2 (en) Flowmeter
US20230102539A1 (en) Compact vibrating type flowmeter
WO2016109073A1 (en) Ultrasonic viscometer
US3314289A (en) Swirl flow meter transducer system
JPH10111159A (en) Spout type mass flowmeter
RU2351900C2 (en) Rate-of-flow indicator of liquid mediums in pipelines
JP3757009B2 (en) Split flow meter
JP3252187B2 (en) Flowmeter
JPH0242319A (en) Fluid measuring device
CN208847264U (en) A kind of tandem coriolis mass flowmeters
JPH11316144A (en) Differential pressure type flow meter
JP3237366B2 (en) Vibration type flow meter
JPH0499918A (en) Mass flowmeter
JPS6033372Y2 (en) mass flow meter
JP3098935B2 (en) Wide range measurement flow meter
JPH03199922A (en) Coriolis mass flowmeter
JP2019128168A (en) Laminar flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050311

Free format text: JAPANESE INTERMEDIATE CODE: A971007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A131 Notification of reasons for refusal

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees