JPH10106712A - Discharge tube - Google Patents

Discharge tube

Info

Publication number
JPH10106712A
JPH10106712A JP25458096A JP25458096A JPH10106712A JP H10106712 A JPH10106712 A JP H10106712A JP 25458096 A JP25458096 A JP 25458096A JP 25458096 A JP25458096 A JP 25458096A JP H10106712 A JPH10106712 A JP H10106712A
Authority
JP
Japan
Prior art keywords
electrodes
discharge
coating film
metal
cap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25458096A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tanaka
芳幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP25458096A priority Critical patent/JPH10106712A/en
Publication of JPH10106712A publication Critical patent/JPH10106712A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain scattering of a metallic component at discharge time, and prevent the early degradation thereby by covering a surface facing a discharge space of a metallic electrode with a covering layer lower in volatility at discharge time than this metal. SOLUTION: Metallic cap electrodes 4A and 4B having a flange are press fitted into both sides of a ceramic element assembly 1, and an SnO2 coating film 10 is formed on the whole outside surface of the cap electrodes 4A and 4B and the ceramic element assembly 1 as a nonvolatile covering layer. Next, a microgap 10A is formed in an intermediate position of the electrodes 4A and 4B, and is sealed in a glass tube 5 by sealing electrodes 6A and 6B having lead wires 7A and 7B. In order to omit a forming process of the coating film, an SnO2 coating film and an SnO2 coating film of the electrodes are simultaneously formed as a nonvolatile covering layer of the ceramic element assembly 1. In a surge absorber of this structure or a button type arrester, since the electrodes are covered with the SnO2 coating film 10, even if they are exposed to a high temperature at a discharge time, a metallic component to constitute the electrodes does not scatter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は放電管に係り、特
に、放電時の電極成分の飛散を防止することで、寿命を
大幅に延長した放電管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge tube, and more particularly, to a discharge tube having a long life by preventing scattering of electrode components during discharge.

【0002】[0002]

【従来の技術】電話機、ファクシミリ、電話交換機、モ
デム等の通信機器用の電子機器に印加されるサージ電圧
を吸収したり、継続的な過電圧又は過電流が電子機器に
侵入して当該電子機器やこれを搭載するプリント基板が
熱的損傷又は発火するのを防止したりするための放電管
型サージアブソーバとして、図2に示す如く、マイクロ
ギャップを有するサージ吸収素子を不活性ガスとともに
ガラス管に封止(hermetic seal) した放電型のサージア
ブソーバ(特願平6−300514号,特開平7−32
0845号公報)や、図5に示すようなボタン型アレス
タが提供されている。
2. Description of the Related Art A surge voltage applied to an electronic device for a communication device such as a telephone, a facsimile, a telephone exchange, and a modem is absorbed, or a continuous overvoltage or overcurrent invades the electronic device and the electronic device or the like is damaged. As shown in FIG. 2, a surge absorbing element having a micro gap is sealed in a glass tube together with an inert gas, as shown in FIG. 2, as a discharge tube type surge absorber for preventing a printed circuit board on which it is mounted from being thermally damaged or ignited. Discharge type surge absorber that has been hermetically sealed (Japanese Patent Application No. 6-300514, Japanese Patent Application Laid-Open No. 7-32)
No. 0845) and a button type arrester as shown in FIG.

【0003】図2のサージアブソーバは、円柱状のセラ
ミック素体1の表面にマイクロギャップ2Aを有するS
nO2 導電性皮膜2が形成されたマイクロギャップ式サ
ージ吸収素子3の両端に、金属製のフランジ付キャップ
電極4A,4Bを被着したものを、鉛ガラスからなるガ
ラス管5内に不活性ガス(CO2 )と共に挿入し、ガラ
ス管5の両端を封止電極6A,6Bで封止したものであ
る。7A,7Bはリード線を示す。
The surge absorber shown in FIG. 2 has a cylindrical ceramic body 1 having a micro gap 2A on its surface.
A microgap type surge absorbing element 3 having an nO 2 conductive film 2 formed thereon is provided with metal cap electrodes 4A and 4B with flanges attached to both ends, and is placed in a glass tube 5 made of lead glass with an inert gas. (CO 2 ), and both ends of the glass tube 5 are sealed with sealing electrodes 6A and 6B. 7A and 7B indicate lead wires.

【0004】図2に示すサージアブソーバにおいては、
ガラス管5の内面に向って突設するフランジを有するキ
ャップ電極4A,4Bを用いているため、サージ吸収素
子3がガラス管5内の軸心付近に配置されるように容易
に位置決めすることができる。このため、サージ吸収素
子3の偏心によるガラス管5の熱溶融は防止される。
[0004] In the surge absorber shown in FIG.
Since the cap electrodes 4A and 4B having flanges protruding toward the inner surface of the glass tube 5 are used, it is possible to easily position the surge absorbing element 3 so that the surge absorbing element 3 is arranged near the axis in the glass tube 5. it can. Therefore, thermal melting of the glass tube 5 due to eccentricity of the surge absorbing element 3 is prevented.

【0005】一方、図5のボタン型アレスタは、アルミ
ナ等のセラミックス製の円筒11の両端に封止電極12
A,12Bを配置し、内部をCO2 ガスに置換した後、
円筒11と封止電極12A,12Bとをろう材で封着し
て作製される。13A,13Bはリード線である。
On the other hand, the button type arrester shown in FIG. 5 has sealing electrodes 12 at both ends of a ceramic cylinder 11 made of alumina or the like.
A, 12B are arranged, and after replacing the inside with CO 2 gas,
It is manufactured by sealing the cylinder 11 and the sealing electrodes 12A and 12B with a brazing material. 13A and 13B are lead wires.

【0006】[0006]

【発明が解決しようとする課題】図2に示されるよう
に、現在のマイクロギャップ式サージアブソーバでは、
セラミック素体1上にSnO2 導電性皮膜2を形成し、
その両端に金属製のキャップ電極4A,4Bを圧入し、
SnO2 導電性皮膜2の中央部にマイクロギャップ2A
を形成している。このため、主放電(アーク放電)はキ
ャップ電極4A,4B間に形成されるが、金属製キャッ
プ電極4A,4B間にアーク放電が形成されると、アー
ク放電の高温により、電極4A,4Bを構成する金属成
分が飛散し、これがマイクロギャップ2Aを埋めること
で、寿命が早期に劣化するという欠点がある。
As shown in FIG. 2, in the current micro-gap type surge absorber,
Forming a SnO 2 conductive film 2 on a ceramic body 1,
Press-fit metal cap electrodes 4A and 4B at both ends,
Micro gap 2A at the center of SnO 2 conductive film 2
Is formed. For this reason, a main discharge (arc discharge) is formed between the cap electrodes 4A and 4B. However, when an arc discharge is formed between the metal cap electrodes 4A and 4B, the electrodes 4A and 4B are caused by the high temperature of the arc discharge. There is a drawback that the constituent metal component is scattered and fills the micro gap 2A, thereby shortening the service life.

【0007】このような金属製キャップ電極からの飛散
物をなくすために、図3に示す如く、キャップ電極を無
くした場合、封止電極6A,6Bからの飛散物が同様に
問題になり、また、この場合には、セラミック素体1と
ガラス管5との熱膨張率の差によって封止後にガラス管
5が割れてしまうという問題がある。
When the cap electrode is eliminated as shown in FIG. 3 in order to eliminate such a scattered object from the metal cap electrode, the scattered object from the sealing electrodes 6A and 6B similarly causes a problem. However, in this case, there is a problem that the glass tube 5 is broken after sealing due to a difference in thermal expansion coefficient between the ceramic body 1 and the glass tube 5.

【0008】また、図5のボタン型アレスタの場合に
も、封止電極12A,12BがFe−Ni合金やコバー
ル(Fe−Ni−Co合金)等の金属製であるため、サ
ージ吸収時のアーク放電時に同様に電極12A,12B
を構成する金属成分が飛散して封止材(円筒11)の内
壁が汚損され、これにより寿命が早期に劣化するという
欠点がある。
Also, in the case of the button type arrester shown in FIG. 5, since the sealing electrodes 12A and 12B are made of a metal such as an Fe—Ni alloy or Kovar (Fe—Ni—Co alloy), the arc at the time of absorbing a surge is also required. During discharge, the electrodes 12A, 12B
Is scattered, and the inner wall of the sealing material (cylinder 11) is contaminated, thereby shortening the service life.

【0009】本発明は上記従来の問題点を解決し、アー
ク放電時の電極からの金属成分の飛散を防止し、長寿命
の放電管を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned conventional problems, to prevent a metal component from scattering from an electrode during arc discharge, and to provide a long-life discharge tube.

【0010】[0010]

【課題を解決するための手段】本発明の放電管は、両端
部に金属電極が配置された放電管において、該金属電極
の放電空間に臨む面を該金属よりも放電時の揮散性が低
い被覆層で覆ったことを特徴とする。
According to the present invention, in a discharge tube having metal electrodes disposed at both ends, the surface of the metal electrode facing the discharge space has a lower volatility at the time of discharge than the metal. It is characterized by being covered with a coating layer.

【0011】本発明では、金属電極の放電空間に臨む面
を該金属よりも放電時の揮散性が低い被覆層(以下「非
揮散性被覆層」と称す場合がある。)で覆ったため、こ
の被覆層により、放電時の金属成分の飛散が抑制され、
マイクロギャップや封止材内壁の汚損、それによる早期
劣化が防止される。
In the present invention, the surface of the metal electrode facing the discharge space is covered with a coating layer having a lower volatility at the time of discharge than the metal (hereinafter sometimes referred to as a "non-volatile coating layer"). Due to the coating layer, scattering of metal components during discharge is suppressed,
The microgap and the inner wall of the sealing material are prevented from being stained and thereby deteriorated early.

【0012】[0012]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1は本発明の放電管をマイクロギャップ
式サージアブソーバに適用した例を示す断面図である。
FIG. 1 is a sectional view showing an example in which the discharge tube of the present invention is applied to a micro gap type surge absorber.

【0014】本実施例のサージアブソーバは、セラミッ
ク素体1の両端にステンレス、コバール、Fe−Ni合
金、Ni、ジュメット等の金属製のフランジ付キャップ
電極4A,4Bを圧入しキャップ電極4A,4B及びセ
ラミック素体1の全外表面に、非揮散性被覆層としてS
nO2 皮膜10を形成し、次いで電極4A,4Bの中間
の位置にマイクロギャップ10Aを形成してなるもの
を、従来と同様にガラス管5内にリード線7A,7B付
き封止電極6A,6Bで封止したものである。
In the surge absorber of this embodiment, cap electrodes 4A, 4B made of metal such as stainless steel, Kovar, Fe-Ni alloy, Ni, Dumet, etc. are press-fitted at both ends of the ceramic body 1 to press the cap electrodes 4A, 4B. And on the entire outer surface of the ceramic body 1 as a non-volatile coating layer
An nO 2 film 10 is formed and then a microgap 10A is formed at an intermediate position between the electrodes 4A and 4B, and sealed electrodes 6A and 6B with lead wires 7A and 7B are placed in a glass tube 5 as in the prior art. It is what was sealed with.

【0015】即ち、本発明をフランジ付キャップ電極等
の電極をセラミック素体の両端に取り付けたサージ吸収
素子に適用する場合、予めセラミック素体の表面にSn
2皮膜を形成し、マイクロギャップを形成したもの
に、電極を圧入し、更に、電極部分に非揮散性被覆層と
してSnO2 皮膜を形成することも考えられるが、Sn
2 皮膜の形成工程を省略するために、上述の如く、セ
ラミック素体の非揮散性被覆層としてのSnO2 皮膜と
電極のSnO2 皮膜を同時に形成するようにするのが好
ましい。
That is, when the present invention is applied to a surge absorbing element in which electrodes such as a cap electrode with a flange are attached to both ends of a ceramic body, the surface of the ceramic body must have Sn
It is also conceivable that an electrode is press-fitted into an O 2 film formed and a micro gap is formed, and a SnO 2 film is formed as a non-volatile coating layer on the electrode portion.
To omit the step of forming the O 2 film, as described above, preferably so as to form a non-volatile SnO 2 coating SnO 2 film and the electrode as a coating layer of the ceramic body at the same time.

【0016】図3は本発明の放電管をマイクロギャップ
式ボタン型アレスタに適用した例を示す断面図である。
FIG. 3 is a sectional view showing an example in which the discharge tube of the present invention is applied to a micro gap type button type arrester.

【0017】本実施例のボタン型アレスタは、アルミナ
等のセラミック製の円筒11の両端をコバール、ステン
レス、Fe−Ni合金、Ni、ジュメット等の金属製の
封止電極12A,12Bで封止したものにおいて、封止
電極12A,12Bの円筒11内に表出した放電電極面
に非揮散性被覆層としてSnO2 皮膜10を形成したも
のである。
In the button type arrester of this embodiment, both ends of a ceramic cylinder 11 such as alumina are sealed with metal sealing electrodes 12A and 12B such as Kovar, stainless steel, Fe-Ni alloy, Ni, and Dumet. In this example, a SnO 2 film 10 was formed as a non-volatile coating layer on the discharge electrode surface exposed in the cylinder 11 of the sealing electrodes 12A and 12B.

【0018】このようなサージアブソーバ又はボタン型
アレスタであれば、SnO2 皮膜10により電極が被覆
されているため、放電時の高温に晒されても電極を構成
する金属成分が飛散することはない。
In the case of such a surge absorber or button type arrester, since the electrodes are covered with the SnO 2 film 10, the metal components constituting the electrodes do not scatter even when exposed to a high temperature during discharge. .

【0019】なお、上記の説明では、金属電極に形成す
る非揮散性被覆層としてSnO2 皮膜を形成したものを
例示したが、本発明において、非揮散性被覆層として
は、SnO2 皮膜の他、W,SiC等の皮膜を用いても
良い。
In the above description, an example in which a SnO 2 film is formed as a non-volatile coating layer formed on a metal electrode has been described. However, in the present invention, the non-volatile coating layer may be other than the SnO 2 film. , W, SiC or the like may be used.

【0020】また、非揮散性被覆層の厚さは、過度に薄
いと、この被覆層を形成したことによる電極の金属成分
の飛散防止効果を十分に得ることができず、逆に過度に
厚いとコスト高であるため、一般には、厚さ1〜10μ
m程度とするのが好ましい。
If the thickness of the non-volatile coating layer is excessively thin, the effect of preventing the metal component of the electrode from scattering due to the formation of the coating layer cannot be sufficiently obtained, and conversely, the thickness is excessively large. In general, the thickness is 1 to 10 μm
m is preferable.

【0021】SnO2 皮膜等の非揮散性被覆層は、スパ
ッタリング法、蒸着法、イオンプレーティング法、めっ
き法、CVD法等の各種薄膜形成法により形成される。
図1のサージアブソーバにおいて、マイクロギャップ1
0Aは、このようにして形成された皮膜をレーザ加工す
ることで、通常の場合、10〜200μmの幅に形成さ
れる。また、図4のボタン型アレスタにおいて、マイク
ロギャップとなる封止電極間距離は通常の場合、0.5
〜5mmの幅に設定される。
The non-volatile coating layer such as a SnO 2 coating is formed by various thin film forming methods such as a sputtering method, an evaporation method, an ion plating method, a plating method, and a CVD method.
In the surge absorber of FIG.
OA is usually formed to a width of 10 to 200 μm by laser processing the film thus formed. Further, in the button type arrester of FIG.
The width is set to 55 mm.

【0022】[0022]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0023】実施例1 図1に示すサージアブソーバを作製した。Example 1 A surge absorber shown in FIG. 1 was manufactured.

【0024】まず、直径1mm、長さ3mmのコランダ
ムムライト製の円柱状セラミック素体1の両端に、該素
体とのかみ合わせ部分の直径が0.99mmで深さが
0.7mm、最大外径1.8mmのステンレス製フラン
ジ付キャップ電極4A,4Bを圧入した後、全表面(キ
ャップ電極を含むセラミック素体)に厚さ3μmのSn
2 皮膜10を形成した。その後、キャップ電極4Aと
キャップ電極4Bとの中間の位置に幅50μmのマイク
ロギャップ10Aを形成し、サージ吸収素子を作製し
た。
First, at both ends of a columnar ceramic body 1 made of corundum mullite having a diameter of 1 mm and a length of 3 mm, the diameter of a portion to be engaged with the body is 0.99 mm, the depth is 0.7 mm, and the maximum outer diameter. After press-fitting 1.8 mm stainless steel flanged cap electrodes 4A and 4B, the entire surface (ceramic body including the cap electrode) of 3 μm thick Sn
An O 2 film 10 was formed. Thereafter, a microgap 10A having a width of 50 μm was formed at an intermediate position between the cap electrode 4A and the cap electrode 4B to manufacture a surge absorbing element.

【0025】このサージ吸収素子を内径1.8mm、外
径3.0mm、長さ7.5mmのL−29ガラス管5内
にセットし、その両端にスラグリード(リード線7A,
7B付き封止電極6A,6B,ガラスとの接触部の直径
1.8mm、長さ1.7mm)でサージ吸収素子を挟持
し、内部のガスをCO2 ガス(1000Torr)に置
換した後ガラスを溶かすことにより封止した。
This surge absorbing element is set in an L-29 glass tube 5 having an inner diameter of 1.8 mm, an outer diameter of 3.0 mm, and a length of 7.5 mm, and a slag lead (lead wire 7A,
The surge absorbing element is sandwiched between the sealing electrodes 6A and 6B with 7B and the contact portion with the glass (diameter 1.8 mm, length 1.7 mm), and the gas inside is replaced with CO 2 gas (1000 Torr). Sealed by melting.

【0026】このようにして作製したサージアブソーバ
について、放電開始電圧を調べると共に、放電を繰り返
し行った場合の放電開始電圧の低下の有無で寿命特性を
調べ、結果を表1に示した。
With respect to the surge absorber thus manufactured, the discharge starting voltage was examined, and the life characteristics were examined based on whether or not the discharge starting voltage decreased when the discharge was repeated. The results are shown in Table 1.

【0027】比較例1 図2に示すサージアブソーバを作製した。Comparative Example 1 A surge absorber shown in FIG. 2 was manufactured.

【0028】まず、直径1mm、長さ3mmのコランダ
ムムライト製の円柱状セラミック素体1の表面に厚さ3
μmのSnO2 皮膜2を形成し、この素体に素体とのか
み合わせ部分の直径が0.99mmで深さが0.7m
m、最大外径1.8mmのステンレス製フランジ付きキ
ャップ電極4A,4Bを圧入する。このキャップ電極を
圧入した素体のキャップ電極4Aとキャップ電極4Bと
の間のSnO2 皮膜2上に幅50μmのマイクロギャッ
プ2Aを形成し、このサージ吸収素子を内径1.8m
m、外径3.0mm、長さ7.5mmのL−29ガラス
管5内にセットし、実施例1と同様に封止を行った。
First, a thickness of 3 mm was formed on the surface of a cylindrical ceramic body 1 made of corundum mullite having a diameter of 1 mm and a length of 3 mm.
A SnO 2 film 2 having a thickness of 0.99 mm and a depth of 0.7 m was formed on the element body.
m, the stainless steel flanged cap electrodes 4A and 4B having a maximum outer diameter of 1.8 mm are press-fitted. A micro gap 2A having a width of 50 μm is formed on the SnO 2 film 2 between the cap electrode 4A and the cap electrode 4B of the element body into which the cap electrode has been press-fitted.
m, an outer diameter of 3.0 mm and a length of 7.5 mm were set in an L-29 glass tube 5 and sealed in the same manner as in Example 1.

【0029】このようにして作製したサージアブソーバ
について、放電開始電圧を調べると共に、放電を繰り返
し行った場合の放電開始電圧の低下の有無で寿命特性を
調べ、結果を表1に示した。
With respect to the surge absorber manufactured in this manner, the discharge starting voltage was examined, and the life characteristics were examined based on whether or not the discharge starting voltage decreased when the discharge was repeated. The results are shown in Table 1.

【0030】比較例2 図3に示すサージアブソーバを作製した。Comparative Example 2 A surge absorber shown in FIG. 3 was manufactured.

【0031】まず、直径1mm、長さ3mmのコランダ
ムムライト製の円柱状セラミック素体1の表面にSnO
2 皮膜2を形成し、SnO2 皮膜2を形成した素体の長
さ方向の中央部付近に幅50μmのマイクロギャップ2
Aを形成し、このサージ吸収素子を、内径1.8mm、
外径3.0mm、長さ7.5mmのL−29ガラス管5
内にセットし、実施例1と同様に封止を行った。
First, a surface of a columnar ceramic body 1 made of corundum mullite having a diameter of 1 mm and a length of 3 mm was coated on a surface of SnO.
2 A micro gap 2 having a width of 50 μm is formed near the center in the longitudinal direction of the element body on which the SnO 2 film 2 is formed.
A is formed, and the surge absorbing element is provided with an inner diameter of 1.8 mm,
L-29 glass tube 5 with an outer diameter of 3.0 mm and a length of 7.5 mm
And sealed in the same manner as in Example 1.

【0032】このようにして作製したサージアブソーバ
について、放電開始電圧を調べると共に、放電を繰り返
し行った場合の放電開始電圧の低下の有無で寿命特性を
調べ、結果を表1に示した。
With respect to the surge absorber thus manufactured, the discharge starting voltage was examined, and the life characteristics were examined based on whether or not the discharge starting voltage decreased when the discharge was repeatedly performed. The results are shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】なお、実施例1及び比較例1では、封止後
にガラス管が割れることはなかったが、比較例2では、
セラミック素体の熱膨張率がガラス管に比べて非常に小
さいため(約1/2)、封止後に長さ方向の縮み量の差
がガラス管に引っ張り応力をかけ、5%の確率で破壊が
起きた。
In Example 1 and Comparative Example 1, the glass tube did not break after sealing, but in Comparative Example 2,
Since the coefficient of thermal expansion of the ceramic body is very small compared to glass tubes (about 1/2), the difference in the amount of shrinkage in the length direction after sealing puts tensile stress on the glass tube and breaks at a probability of 5%. Happened.

【0035】実施例2 図4に示すボタン型アレスタを作製した。Example 2 A button type arrester shown in FIG. 4 was manufactured.

【0036】即ち、放電電極部を厚さ3μmのSnO2
皮膜10で覆ったコバール製の封止電極12A,12B
を2個用意し、これをセラミックス(アルミナ)製の円
筒11の両端に配置し、内部のガスをCO2 ガス(10
00Torr)に置換した後セラミックス円筒11と封
止電極12A,12Bをろう材で封着し、アレスタを作
製した。なお、電極間距離(ギャップ幅)は1mmとし
た。
That is, the discharge electrode portion is made of SnO 2 having a thickness of 3 μm.
Kovar sealing electrodes 12A and 12B covered with a film 10
Are provided at both ends of a ceramic (alumina) cylinder 11, and the internal gas is CO 2 gas (10
(00 Torr), the ceramic cylinder 11 and the sealing electrodes 12A and 12B were sealed with a brazing material to produce an arrester. The distance between electrodes (gap width) was 1 mm.

【0037】このようにして作製したボタン型アレスタ
について、放電開始電圧を調べると共に、放電を繰り返
し行った場合の放電開始電圧の低下の有無で寿命特性を
調べ、結果を表2に示した。
With respect to the button-type arrester thus manufactured, the discharge starting voltage was examined, and the life characteristics were examined based on whether or not the discharge starting voltage was reduced when the discharge was repeated. The results are shown in Table 2.

【0038】比較例3 封止電極として、SnO2 皮膜を形成していないコバー
ル製の封止電極12A,12Bを用いたこと以外は実施
例2と同様に行って、図5に示すボタン型アレスタを作
製した。
Comparative Example 3 A button type arrester shown in FIG. 5 was carried out in the same manner as in Example 2 except that the sealing electrodes 12A and 12B made of Kovar without forming the SnO 2 film were used as the sealing electrodes. Was prepared.

【0039】このようにして作製したボタン型アレスタ
について、放電開始電圧を調べると共に、放電を繰り返
し行った場合の放電開始電圧の低下の有無で寿命特性を
調べ、結果を表2に示した。
With respect to the button type arrester thus manufactured, the discharge starting voltage was examined, and the life characteristics were examined based on whether or not the discharge starting voltage was reduced when the discharge was repeated. The results are shown in Table 2.

【0040】[0040]

【表2】 [Table 2]

【0041】表1,2より、本発明によれば、放電管の
耐久性が向上し、寿命特性が大幅に改善されることが明
らかである。
From Tables 1 and 2, it is clear that according to the present invention, the durability of the discharge tube is improved and the life characteristics are greatly improved.

【0042】[0042]

【発明の効果】以上詳述した通り、本発明の放電管によ
れば、放電管の電極を構成する金属成分の放電時の飛散
の問題がなく、寿命特性に優れた放電管が提供される。
As described in detail above, according to the discharge tube of the present invention, there is provided a discharge tube which is free from the problem of scattering of metal components constituting the electrodes of the discharge tube at the time of discharge and has excellent life characteristics. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放電管の実施の形態を示すマイクロギ
ャップ式サージアブソーバの断面図である。
FIG. 1 is a sectional view of a micro-gap surge absorber showing an embodiment of a discharge tube of the present invention.

【図2】従来のマイクロギャップ式サージアブソーバの
断面図である。
FIG. 2 is a cross-sectional view of a conventional micro gap type surge absorber.

【図3】比較例に係るマイクロギャップ式サージアブソ
ーバの断面図である。
FIG. 3 is a cross-sectional view of a micro-gap surge absorber according to a comparative example.

【図4】本発明の放電管の実施の形態を示すボタン型ア
レスタの断面図である。
FIG. 4 is a sectional view of a button type arrester showing an embodiment of the discharge tube of the present invention.

【図5】従来のボタン型アレスタの断面図である。FIG. 5 is a sectional view of a conventional button type arrester.

【符号の説明】[Explanation of symbols]

1 セラミック素体 2 SnO2 導電性皮膜 2A,10A マイクロギャップ 3 サージ吸収素子 4A,4B キャップ電極 5 ガラス管 6A,6B,12A,12B 封止電極 7A,7B,13A,13B リード線 10 SnO2 皮膜 11 円筒1 ceramic body 2 SnO 2 conductive film 2A, 10A microgap 3 surge absorber 4A, 4B cap electrodes 5 glass tubes 6A, 6B, 12A, 12B sealing electrodes 7A, 7B, 13A, 13B lead 10 SnO 2 film 11 cylinder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 両端部に金属電極が配置された放電管に
おいて、該金属電極の放電空間に臨む面を該金属よりも
放電時の揮散性が低い被覆層で覆ったことを特徴とする
放電管。
In a discharge tube having metal electrodes disposed at both ends, a surface of the metal electrode facing a discharge space is covered with a coating layer having a lower volatility at the time of discharge than the metal. tube.
JP25458096A 1996-09-26 1996-09-26 Discharge tube Pending JPH10106712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25458096A JPH10106712A (en) 1996-09-26 1996-09-26 Discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25458096A JPH10106712A (en) 1996-09-26 1996-09-26 Discharge tube

Publications (1)

Publication Number Publication Date
JPH10106712A true JPH10106712A (en) 1998-04-24

Family

ID=17267018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25458096A Pending JPH10106712A (en) 1996-09-26 1996-09-26 Discharge tube

Country Status (1)

Country Link
JP (1) JPH10106712A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008853A1 (en) * 2003-07-17 2005-01-27 Mitsubishi Materials Corporation Surge absorber
US6891709B2 (en) 2000-04-18 2005-05-10 Bing Lin Yang Surface mounting surge absorber and surface mounting cap for surge absorber
WO2006009055A1 (en) * 2004-07-15 2006-01-26 Mitsubishi Materials Corporation Surge absorber
JP2006032090A (en) * 2004-07-15 2006-02-02 Mitsubishi Materials Corp Surge absorber
JP2006049064A (en) * 2004-08-04 2006-02-16 Mitsubishi Materials Corp Surge absorber
US7733622B2 (en) 2003-02-28 2010-06-08 Mitsubishi Materials Corporation Surge absorber and production method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891709B2 (en) 2000-04-18 2005-05-10 Bing Lin Yang Surface mounting surge absorber and surface mounting cap for surge absorber
US7733622B2 (en) 2003-02-28 2010-06-08 Mitsubishi Materials Corporation Surge absorber and production method therefor
WO2005008853A1 (en) * 2003-07-17 2005-01-27 Mitsubishi Materials Corporation Surge absorber
US7660095B2 (en) 2003-07-17 2010-02-09 Mitsubishi Materials Corporation Surge protector
US7937825B2 (en) 2003-07-17 2011-05-10 Mitsubishi Materials Corporation Method of forming a surge protector
WO2006009055A1 (en) * 2004-07-15 2006-01-26 Mitsubishi Materials Corporation Surge absorber
JP2006032090A (en) * 2004-07-15 2006-02-02 Mitsubishi Materials Corp Surge absorber
US7570473B2 (en) 2004-07-15 2009-08-04 Mitsubishi Materials Corporation Surge absorber
JP2006049064A (en) * 2004-08-04 2006-02-16 Mitsubishi Materials Corp Surge absorber

Similar Documents

Publication Publication Date Title
US7570473B2 (en) Surge absorber
US7937825B2 (en) Method of forming a surge protector
JPH10106712A (en) Discharge tube
TWI380545B (en) Surge absorber and manufacturing method thereof
JP4544255B2 (en) Electronic component enclosure
JP4894361B2 (en) surge absorber
JP3601320B2 (en) surge absorber
JP2007048759A (en) Surge absorber
JPH0729667A (en) Discharge type surge absorber and its manufacture
JP2006286251A (en) Surge absorber
JP3134905B2 (en) surge absorber
JP3969098B2 (en) surge absorber
JPH11224761A (en) High voltage surge absorber
JP2006049064A (en) Surge absorber
JPH1022042A (en) Electronic part sealing body
JP4265277B2 (en) surge absorber
JP3428610B2 (en) Micro gap type surge absorber
JP4265321B2 (en) surge absorber
JP4407259B2 (en) Surge absorber and manufacturing method thereof
JPH0722152A (en) Surge absorber and its manufacture
JP4363180B2 (en) surge absorber
JP4123977B2 (en) Chip-type surge absorber and manufacturing method thereof
JP2005078968A (en) Surge absorber
JP4407287B2 (en) surge absorber
JP4830646B2 (en) surge absorber

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030930