JPH1010344A - Optical waveguide with optical filter and its production - Google Patents

Optical waveguide with optical filter and its production

Info

Publication number
JPH1010344A
JPH1010344A JP15718296A JP15718296A JPH1010344A JP H1010344 A JPH1010344 A JP H1010344A JP 15718296 A JP15718296 A JP 15718296A JP 15718296 A JP15718296 A JP 15718296A JP H1010344 A JPH1010344 A JP H1010344A
Authority
JP
Japan
Prior art keywords
groove
optical filter
optical
optical waveguide
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15718296A
Other languages
Japanese (ja)
Inventor
Nobuo Tomita
信夫 富田
Yoshinori Kurosawa
芳宣 黒沢
Tatsuo Teraoka
達夫 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP15718296A priority Critical patent/JPH1010344A/en
Publication of JPH1010344A publication Critical patent/JPH1010344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease deterioration in characteristics against hysteresis of temp. cycles or in a high temp. and high humidity environment and to prevent increase in the insertion loss by specifying the depth of a groove and using a thermosetting adhesive having specified elastic modulus after hardened to fix a thin film type optical filter. SOLUTION: A groove 3 is formed to cross the cores 8 of optical waveguides while the depth of the groove 3 is controlled to <150μm. A thin film optical filter 2 is inserted into the groove 3, and a thermosetting adhesive 9 having <1kgf/mm<2> elastic modulus after hardened is injected into the space of the groove 3 and heated to fix the thin film filter 2. Namely, the groove 3 is formed to cross the cores 8 of optical waveguides on the surface of the optical waveguide substrate 1 by using a diamond blade or the like. Then a filter 2 preliminarily processed into a comblike shape which matches the pitch of the cores 8 of the optical waveguides is inserted into the groove 3. After the optical filter 2 is inserted and fixed, the filter is aligned in the horizontal direction. Then a silicone-based thermosetting adhesive 9 is injected into the groove 3 and hardened by heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光導波路、特に光導
波路に光フィルタを装着した光フィルタ付光導波路及び
その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide, and more particularly to an optical waveguide with an optical filter in which an optical filter is mounted on the optical waveguide, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】光導波路に光フィルタを装着した光フィ
ルタ付光導波路は近い将来の光加入者系あるいは幹線系
の光通信システムの必須光デバイスとして注目されてい
る。
2. Description of the Related Art An optical waveguide with an optical filter in which an optical filter is mounted on an optical waveguide has attracted attention as an essential optical device of an optical subscriber or trunk optical communication system in the near future.

【0003】光導波路のコアを横切って溝を設け、この
溝に薄膜状の光フィルタを装着することは、通常行われ
ている。例えば、1995年春の電子情報通信学会総合
全国大会の論文、C−219では光導波路基板を模擬し
たパイレックスガラスに幅15μmのスリットを形成
し、厚さ9μmの光フィルタを模擬したポリイミドフィ
ルムを接着剤の種類を変えて固定し、接着部の信頼性、
すなわち耐ヒートショック、耐水性を評価している。
[0003] It is common practice to provide a groove across the core of an optical waveguide and to mount a thin-film optical filter in the groove. For example, in a paper of the IEICE General Conference in the spring of 1995, C-219, a 15 μm-wide slit was formed in Pyrex glass simulating an optical waveguide substrate, and a polyimide film simulating an optical filter having a thickness of 9 μm was used as an adhesive. Of the adhesive part,
That is, heat shock resistance and water resistance are evaluated.

【0004】光導波路のコアを横切って溝を設ける方法
は、一般にダイヤモンドブレードが用いられている。そ
して、薄膜状の光フィルタを固定する接着剤はエポキシ
系の紫外線硬化樹脂、アクリル系の紫外線硬化樹脂、シ
リコーン系の熱硬化樹脂などが用いられている。
A method of providing a groove across the core of an optical waveguide generally uses a diamond blade. As an adhesive for fixing the thin film optical filter, an epoxy-based ultraviolet curable resin, an acrylic-based ultraviolet curable resin, a silicone-based thermosetting resin, or the like is used.

【0005】溝の幅、深さ、長さは挿入する薄膜状の光
フィルタの寸法に合わせて、任意に決めていた。
The width, depth and length of the groove have been arbitrarily determined in accordance with the dimensions of the thin-film optical filter to be inserted.

【0006】[0006]

【発明が解決しようとする課題】光フィルタ付光導波路
の問題点は信頼性である。つまり、高温高湿中に長期間
放置されたり、また温度サイクルを履歴した場合、上記
薄膜状の光フィルタが剥離したり、また該光フィルタを
挿入固定している溝にクラックが発生したりして、光フ
ィルタ付光導波路の特性が劣化することである。この問
題は光フィルタ固定用の接着剤の弾性率によって、2つ
の場合に分けて考えることができる。
The problem with the optical waveguide with an optical filter is reliability. That is, if the optical filter is left in a high-temperature and high-humidity state for a long period of time or has undergone a temperature cycle, the thin-film optical filter may peel off or cracks may occur in the groove in which the optical filter is inserted and fixed. Thus, the characteristics of the optical waveguide with an optical filter are deteriorated. This problem can be considered in two cases depending on the elastic modulus of the adhesive for fixing the optical filter.

【0007】接着剤の弾性率が高弾性である場合は、次
の現象が見られる。接着材の硬化後の弾性率が概ね50
kg/mm 2 以上と高弾性の場合は、光導波路の基板材質が
シリコンまたは石英の時、室温が70から80度で、か
つ湿度が80から95%という高温高湿の雰囲気に数日
間放置すると、接着材の膨潤・膨張によって光フィルタ
を挿入している溝の先端部から基板にクラックが発生す
ることがある。
When the elastic modulus of the adhesive is high, the following phenomenon is observed. The elastic modulus of the adhesive after curing is approximately 50
In the case of high elasticity of kg / mm 2 or more, when the substrate of the optical waveguide is silicon or quartz, it is left for several days in a high-temperature and high-humidity atmosphere at a room temperature of 70 to 80 degrees and a humidity of 80 to 95%. In addition, a crack may be generated in the substrate from the tip of the groove into which the optical filter is inserted due to swelling / expansion of the adhesive.

【0008】また光フィルタは、一般にポリイミド等の
基板上にガラスの多層膜で形成されている。従って光フ
ィルタは脆性材料であり、残留歪みが内在しており、接
着剤の膨潤・膨張により光フィルタの多層膜内で層間剥
離が発生することがある。
The optical filter is generally formed of a glass multilayer film on a substrate of polyimide or the like. Therefore, the optical filter is a brittle material, has residual strain therein, and delamination may occur in the multilayer film of the optical filter due to swelling and expansion of the adhesive.

【0009】図2は、光導波路基板1の溝に、このよう
な脆性材料である光フィルタ2を挿入して、高弾性率の
接着材4で固定した場合の光導波路基板1のクラックの
発生状況及び光フィルタ2の層間剥離6の状況を示す図
である。例えば−40度から85度の温度サイクルを履
歴すると、特に低温時に溝内の接着材4に収縮応力が発
生して、光導波路基板1のクラック5が発生すると共
に、光フィルタ2の多層膜内で層間剥離6を起こし、光
フィルタ2の特性が劣化する。
FIG. 2 shows the occurrence of cracks in the optical waveguide substrate 1 when the optical filter 2 made of such a brittle material is inserted into the groove of the optical waveguide substrate 1 and fixed with an adhesive 4 having a high elastic modulus. It is a figure showing a situation and a situation of delamination 6 of optical filter 2. For example, when a temperature cycle of −40 ° C. to 85 ° C. is recorded, a contraction stress is generated in the adhesive material 4 in the groove especially at a low temperature, a crack 5 of the optical waveguide substrate 1 is generated, and the multilayer film of the optical filter 2 is formed. As a result, delamination 6 occurs, and the characteristics of the optical filter 2 deteriorate.

【0010】接着剤の弾性率が低弾性である場合は、図
3に示すような現象が見られる。弾性率が低いので発生
応力は小さく、上記のような光フィルタ2を挿入してい
る溝のクラック5や光フィルタ2における層間剥離6と
いう問題は生じない。しかし、高弾性の接着材に比べ
て、線膨張係数が大きい。従って、例えば−40度から
85度の温度サイクルを履歴すると、特に低温時に収縮
応力によって、接着剤4内部に気泡7が発生することが
ある。この気泡7が溝内の光路中に発生するとフレネル
損失、散乱損失等が発生して、光フィルタ2の挿入損失
が大幅に増大して、光フィルタ付光導波路の特性を著し
く劣化することがある。
When the elastic modulus of the adhesive is low, the phenomenon shown in FIG. 3 is observed. Since the elastic modulus is low, the generated stress is small, and the problems such as the crack 5 in the groove in which the optical filter 2 is inserted and the delamination 6 in the optical filter 2 do not occur. However, the coefficient of linear expansion is larger than that of a highly elastic adhesive. Therefore, when a temperature cycle of, for example, -40 degrees to 85 degrees is recorded, air bubbles 7 may be generated inside the adhesive 4 due to shrinkage stress particularly at a low temperature. When this bubble 7 is generated in the optical path in the groove, Fresnel loss, scattering loss and the like occur, and the insertion loss of the optical filter 2 is greatly increased, so that the characteristics of the optical waveguide with the optical filter may be significantly deteriorated. .

【0011】従って、本発明の目的は、前記した従来技
術の問題点を解決し、温度サイクルを履歴しても、さら
に高温高湿の雰囲気中でも特性劣化や、挿入損失の増加
が無い、信頼性の高い光フィルタ付光導波路及びその製
造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to achieve a reliability without a characteristic deterioration or an increase in insertion loss even in a high-temperature and high-humidity atmosphere even after a history of temperature cycles. To provide an optical waveguide with an optical filter and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を実
現するため、光導波路の回路が平面状に形成された光導
波路基板表面に、光導波路のコアを横切って溝を形成
し、該溝の内に薄膜状の光フィルタを挿入した光フィル
タ付光導波路において、上記溝の深さを150μm以下
とし、該溝に上記薄膜状の光フィルタを挿入し、該溝内
の空間に硬化後の弾性率が1kgf/mm2 未満の熱硬化型接
着材を流し込み、熱を印加して上記薄膜状のフィルタを
固定する方法を用いた。
According to the present invention, in order to achieve the above object, a groove is formed on a surface of an optical waveguide substrate on which a circuit of an optical waveguide is formed in a plane so as to cross a core of the optical waveguide. In the optical waveguide with an optical filter in which a thin-film optical filter is inserted in the groove, the depth of the groove is set to 150 μm or less, and the thin-film optical filter is inserted in the groove, and the space in the groove is cured. A method of pouring a thermosetting adhesive having an elastic modulus of less than 1 kgf / mm 2 and applying heat to fix the thin film filter was used.

【0013】上記の方法を採用した技術的な根拠を以下
に述べる。硬化後の弾性率、硬化方式の異なる種々の接
着剤を用いて、厚さ15μmの光フィルタを、石英基板
上に切削した幅30μmで、深さの異なる種々の溝に挿
入固定し、温度サイクル試験や高温高湿試験を実施した
後、光フィルタ及び接着剤の状況を観察した。光フィル
タは、ポリイミドをベースに、TiO2 とSiO2 を所
望の特性となるよう積層した干渉膜フィルタである。観
察結果を表1に示す。
The technical basis for adopting the above method will be described below. Using various adhesives with different elastic modulus and curing method after curing, an optical filter with a thickness of 15 μm was inserted and fixed into various grooves with a width of 30 μm cut on a quartz substrate and different depths, and a temperature cycle was performed. After conducting the test and the high-temperature and high-humidity test, the condition of the optical filter and the adhesive was observed. The optical filter is an interference film filter in which TiO 2 and SiO 2 are laminated to have desired characteristics based on polyimide. Table 1 shows the observation results.

【0014】[0014]

【表1】 [Table 1]

【0015】接着剤硬化直後はNo.1から13まで、い
ずれのサンプルも光フィルタ接着部周辺や光フィルタ内
部に異常は見られなかった。温度サイクル試験後では、
紫外線硬化型の比較的弾性率の高いNO. 1から4では、
図2、図3で説明した光フィルタ2内部の層間剥離6や
接着剤内部の気泡7が発生した。
Immediately after the adhesive was cured, No. 1 to No. 13 showed no abnormality in the vicinity of the optical filter bonding portion or inside the optical filter. After the temperature cycle test,
In UV-curable NO. 1 to 4 with relatively high elastic modulus,
2 and 3, delamination 6 inside the optical filter 2 and bubbles 7 inside the adhesive occurred.

【0016】NO. 7から10及びNO. 13では、光フィ
ルタ内部の層間剥離は見られなかったものの、接着剤内
部の気泡が発生した。NO. 8から10は紫外線硬化型で
あることから、接着剤硬化後に既に、3から10%の硬
化収縮歪みが内在していたためである。
In Nos. 7 to 10 and No. 13, no delamination inside the optical filter was observed, but bubbles inside the adhesive were generated. Nos. 8 to 10 are ultraviolet-curing types, and after curing of the adhesive, 3 to 10% of curing shrinkage distortion was inherent.

【0017】一方、NO. 7とNO. 13のサンプルは熱硬
化型のシリコーンであり、硬化収縮歪みは小さいにもか
かわらず、溝の底部付近で接着剤の内部に気泡が発生し
た。これは、NO. 5、6及びNO. 11、12のサンプル
が低弾性率の樹脂特有の粘弾性により、低温時に樹脂の
流動により、溝底部においても引張応力が緩和されたの
に対し、NO. 7、13のサンプルでは、溝が深いため流
動による応力緩和が不十分なためである。
On the other hand, the samples of No. 7 and No. 13 were thermosetting silicones, and bubbles were generated inside the adhesive near the bottom of the groove although the curing shrinkage strain was small. This is because, while the samples of Nos. 5 and 6 and Nos. 11 and 12 had low elastic modulus, the viscoelasticity of the resin was low and the flow of the resin at low temperature reduced the tensile stress even at the bottom of the groove. This is because, in the samples Nos. 7 and 13, the grooves are deep and the stress relaxation due to the flow is insufficient.

【0018】以上の結果から、基板上に溝を形成し、該
溝中に光フィルタを接着固定する場合、接着固定部の高
信頼性化のために、接着剤は硬化後の弾性率が1kgf/mm
2 未満であること、硬化方式は熱硬化型であること、光
フィルタを挿入・固定する溝の深さは150μm以下で
あることが肝要である。
From the above results, when a groove is formed on a substrate and an optical filter is bonded and fixed in the groove, the adhesive after curing has an elastic modulus of 1 kgf in order to increase the reliability of the bonded portion. / mm
It is important that it is less than 2 , that the curing method is a thermosetting type, and that the depth of the groove for inserting and fixing the optical filter is 150 μm or less.

【0019】[0019]

【発明の実施の形態】図1に本発明の実施例を示す。光
導波路基板1は、厚さ1mmの石英基板上にフォトリソグ
ラフィの技術を用いて、4つの光合分岐回路が形成され
ている。ガラス膜を形成する方法は火炎堆積法を用い、
屈折率を高める材料はGeO2 を採用した。コアとクラ
ッドの比屈折率差は約0.5%である。
FIG. 1 shows an embodiment of the present invention. In the optical waveguide substrate 1, four optical coupling / branching circuits are formed on a quartz substrate having a thickness of 1 mm by using a photolithography technique. The method of forming a glass film uses a flame deposition method,
GeO 2 was used as a material for increasing the refractive index. The relative refractive index difference between the core and the clad is about 0.5%.

【0020】このような光導波路基板1の表面に光導波
路のコア8を横切って、ダイヤモンドブレード等により
幅30μm、深さ120μmの溝3を形成する。
A groove 3 having a width of 30 μm and a depth of 120 μm is formed on the surface of the optical waveguide substrate 1 across the core 8 of the optical waveguide by a diamond blade or the like.

【0021】次に、光導波路のコア8のピッチに合わせ
て、予めクシ刃状に加工された厚さ15μmの光フィル
タ2を上記溝3に挿入する。なお、この光フィルタ2は
ポリイミドの基板状にTiO2 とSiO2 の膜が多層に
組み合わされたものである。上記溝3に上記光フィルタ
2を挿入固定し、水平方向に位置を調整した後、溝3に
シリコーン系の熱硬化型の接着材9を注入し、60度で
2時間放置して硬化させた。このようにして得られた光
フィルタ付光導波路は、−40度から85度の温度サイ
クルを、少なくとも100回履歴しても特性の劣化は見
られなかった。また、室温が70度から80度で、かつ
湿度が80から95%の高温高湿の雰囲気に6週間放置
しても特性の劣化は見られなかった。
Next, an optical filter 2 having a thickness of 15 μm and previously processed into a comb blade shape is inserted into the groove 3 in accordance with the pitch of the core 8 of the optical waveguide. The optical filter 2 is formed by combining TiO 2 and SiO 2 films in a multilayer on a polyimide substrate. After inserting and fixing the optical filter 2 in the groove 3 and adjusting the position in the horizontal direction, a silicone-based thermosetting adhesive 9 was injected into the groove 3 and left at 60 ° C. for 2 hours to cure. . The optical waveguide with an optical filter obtained in this manner did not show any deterioration in the characteristics even after a history of at least 100 temperature cycles from -40 degrees to 85 degrees. In addition, no deterioration of the characteristics was observed even when the device was left in a high-temperature and high-humidity atmosphere having a room temperature of 70 to 80 degrees and a humidity of 80 to 95% for 6 weeks.

【0022】なお、溝3の幅は30μmから40μmの
範囲とするのが好ましい。なぜなら、光導波路基板1の
クラックや光フィルタ2の多層膜内で発生する層間剥離
は、溝3の幅より溝3の深さのほうの影響が支配的であ
る。詳しく述べるなら、理論的には溝幅が40μmとし
たほうが光フィルタに印加される応力は、30μmの場
合に比較して低いので信頼性は向上するが、溝幅が広が
った分、回折損失が約0.1から0.2dB増加し、信
頼性と回折損失の間にトレードオフの関係がある。
The width of the groove 3 is preferably in the range of 30 μm to 40 μm. This is because cracks in the optical waveguide substrate 1 and delamination occurring in the multilayer film of the optical filter 2 are more influenced by the depth of the groove 3 than the width of the groove 3. More specifically, when the groove width is 40 μm, the stress applied to the optical filter is theoretically lower than that in the case of 30 μm, so that the reliability is improved. However, since the groove width is increased, the diffraction loss is reduced. There is a trade-off between reliability and diffraction loss, increasing by about 0.1 to 0.2 dB.

【0023】[0023]

【発明の効果】本発明によれば、光導波路の回路が平面
状に形成された光導波路基板表面に、光導波路のコアを
横切って溝を形成し、該溝の内に薄膜状の光フィルタを
挿入した光フィルタ付光導波路において、上記溝の深さ
を150μm以下とし、該溝に上記薄膜状の光フィルタ
を挿入し、該溝内の空間に硬化後の弾性率が1kgf/mm2
未満の熱硬化型接着材を流し込み、熱を印加して上記薄
膜状のフィルタを固定して得られる光フィルタ付光導波
路の製造方法を採用したことによって、光フィルタ付光
導波路の信頼性、特に低温から高温を履歴する温度サイ
クルや高温高湿の耐環境性が大幅に向上できる。
According to the present invention, a groove is formed across the core of an optical waveguide on the surface of an optical waveguide substrate on which a circuit of the optical waveguide is formed in a plane, and a thin-film optical filter is formed in the groove. In the optical waveguide provided with the optical filter, the depth of the groove is set to 150 μm or less, the thin-film optical filter is inserted into the groove, and the elastic modulus after curing is 1 kgf / mm 2 in the space in the groove.
Pouring less than a thermosetting adhesive, by applying a method of manufacturing an optical waveguide with an optical filter obtained by fixing the thin film filter by applying heat, the reliability of the optical waveguide with an optical filter, especially It is possible to greatly improve the temperature cycle of history from low temperature to high temperature and the environmental resistance of high temperature and high humidity.

【0024】従って、光フィルタ付光導波路の製品歩留
まりも向上し、本製品のコストを低減することができ
る。更に、本製品を使用した光通信システムの信頼性を
も向上することができ、工業上有用である。
Therefore, the product yield of the optical waveguide with an optical filter can be improved, and the cost of the product can be reduced. Further, the reliability of an optical communication system using this product can be improved, and this is industrially useful.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる一実施例を示したものであっ
て、(a)は斜視図、(b)はその3部の拡大説明図、
(c)は同じく2部の拡大説明図である。
FIG. 1 shows an embodiment according to the present invention, in which (a) is a perspective view, (b) is an enlarged explanatory view of three parts thereof,
(C) is an enlarged explanatory view of the same two parts.

【図2】従来技術に係わり、高弾性の接着剤を用いた時
の、基板のクラックの発生状況や光フィルタの層間剥離
の状況を示す一部断面説明図である。
FIG. 2 is a partial cross-sectional explanatory view showing a state of occurrence of cracks in a substrate and a state of delamination of an optical filter when a highly elastic adhesive is used according to the related art.

【図3】従来技術に係わり、低弾性の接着剤を用いた時
の、低温時に発生する気泡の状況を示す一部断面説明図
である。
FIG. 3 is a partial cross-sectional explanatory view showing a state of bubbles generated at a low temperature when a low-elasticity adhesive is used according to the related art.

【符号の説明】[Explanation of symbols]

1 光導波路基板 2 光フィルタ 3 溝 4,9 接着剤 5 クラック 6 層間剥離 7 気泡 8 コア Reference Signs List 1 optical waveguide substrate 2 optical filter 3 groove 4, 9 adhesive 5 crack 6 delamination 7 bubble 8 core

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺岡 達夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Tatsuo Teraoka 5-1-1 Hidakacho, Hitachi City, Ibaraki Prefecture, Hitachi Cable, Ltd. Opto-System Research Laboratories

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光導波路の回路が平面状に形成された光導
波路基板表面に、光導波路のコアを横切って溝を形成
し、該溝の内に薄膜状の光フィルタを挿入した光フィル
タ付光導波路において、上記溝の深さが150μm以下
であり、かつ硬化後の弾性率が1kgf/mm2 未満の熱硬化
型接着材を用いて上記薄膜状の光フィルタを固定して得
られる光フィルタ付光導波路。
An optical filter having a groove formed on a surface of an optical waveguide substrate on which a circuit of an optical waveguide is formed in a plane shape and extending across a core of the optical waveguide, and a thin-film optical filter inserted into the groove. In the optical waveguide, an optical filter obtained by fixing the thin-film optical filter using a thermosetting adhesive having a groove depth of 150 μm or less and an elastic modulus after curing of less than 1 kgf / mm 2. With optical waveguide.
【請求項2】光導波路の回路が平面状に形成された光導
波路基板表面に、光導波路のコアを横切って溝を形成
し、該溝の内に薄膜状の光フィルタを挿入した光フィル
タ付光導波路において、上記溝の深さを150μm以下
とし、該溝に上記薄膜状の光フィルタを挿入し、該溝内
の空間に硬化後の弾性率が1kgf/mm2 未満の熱硬化型接
着材を流し込み、熱を印加して上記薄膜状の光フィルタ
を固定して得られる光フィルタ付光導波路の製造方法。
2. An optical filter with a groove formed in a surface of an optical waveguide substrate on which a circuit of an optical waveguide is formed in a plane shape, across a core of the optical waveguide, and a thin-film optical filter inserted in the groove. In the optical waveguide, the depth of the groove is set to 150 μm or less, the thin-film optical filter is inserted into the groove, and the space inside the groove has a cured elastic modulus of less than 1 kgf / mm 2. And a method of manufacturing an optical waveguide with an optical filter obtained by fixing the thin-film optical filter by applying heat.
JP15718296A 1996-06-18 1996-06-18 Optical waveguide with optical filter and its production Pending JPH1010344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15718296A JPH1010344A (en) 1996-06-18 1996-06-18 Optical waveguide with optical filter and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15718296A JPH1010344A (en) 1996-06-18 1996-06-18 Optical waveguide with optical filter and its production

Publications (1)

Publication Number Publication Date
JPH1010344A true JPH1010344A (en) 1998-01-16

Family

ID=15643993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15718296A Pending JPH1010344A (en) 1996-06-18 1996-06-18 Optical waveguide with optical filter and its production

Country Status (1)

Country Link
JP (1) JPH1010344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086599A (en) * 2007-10-03 2009-04-23 Nec Corp Optical waveguide device and method of manufacturing the same
CN113885154A (en) * 2021-09-26 2022-01-04 武汉光迅科技股份有限公司 Optical filter assembly and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086599A (en) * 2007-10-03 2009-04-23 Nec Corp Optical waveguide device and method of manufacturing the same
JP4582136B2 (en) * 2007-10-03 2010-11-17 日本電気株式会社 Optical waveguide device and manufacturing method thereof
CN113885154A (en) * 2021-09-26 2022-01-04 武汉光迅科技股份有限公司 Optical filter assembly and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0293886B1 (en) Coated optical fiber tape
US7147384B2 (en) Small form factor optical connector with thermoplastic adhesive
JPS61503053A (en) Optical fiber connectors and articles connected with the optical fiber connectors
KR20020038675A (en) Material for temperature compensation, and optical communication device
JP3928331B2 (en) Optical waveguide device and manufacturing method thereof
JPH1010344A (en) Optical waveguide with optical filter and its production
WO2022018816A1 (en) Optical module
US20030230817A1 (en) Mold for UV curable adhesive and method of use therefor
JP2001512580A (en) Optical fiber flex foil lamination method
JP4513005B2 (en) Method for manufacturing flexible optical waveguide
TW536640B (en) Coated optical fiber
JPH1172641A (en) Mechanical splicing part
JP2002236238A (en) Coated optical fiber
JP2004354947A (en) Planar optical circuit component and its manufacturing method
JP3282106B2 (en) Plastic split sleeve for optical connector and method of manufacturing the same
JPH08220371A (en) Optical fiber coupler
JP4577559B2 (en) Method for manufacturing flexible optical waveguide
JPH10231131A (en) Preform for molding and molded product
JP2008076705A (en) Optical isolator chip, method for manufacturing the same, and optical isolator and its manufacturing method using the same
JPH08171029A (en) Waveguide type optical device
JPH0519131A (en) Optical parts
JP2001272556A (en) Optical device
JP2001033661A (en) Optical fiber array, and manufacture thereof
JPH07209547A (en) Optical fiber array
JP2001318242A (en) Temperature-compensating device for optical communication

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020806