JPH10100324A - Rubber composite - Google Patents

Rubber composite

Info

Publication number
JPH10100324A
JPH10100324A JP25442896A JP25442896A JPH10100324A JP H10100324 A JPH10100324 A JP H10100324A JP 25442896 A JP25442896 A JP 25442896A JP 25442896 A JP25442896 A JP 25442896A JP H10100324 A JPH10100324 A JP H10100324A
Authority
JP
Japan
Prior art keywords
rubber
nonwoven fabric
rubber composite
wet nonwoven
elastic recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25442896A
Other languages
Japanese (ja)
Inventor
Takeshi Motogami
健 本上
Tadahiko Takada
忠彦 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP25442896A priority Critical patent/JPH10100324A/en
Publication of JPH10100324A publication Critical patent/JPH10100324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rubber composite improved in elastic recovery and also excellent in use durability by laminating a non-crosslinked rubber layer to the single surface or both surfaces of a substrate composed of a wet nonwoven fabric to subject the same to crosslinking treatment. SOLUTION: A rubber composite is obtained by laminating a noncrosslinked rubber layer to the single surface or both surfaces of a wet nonwoven fabric to subject the same to crosslinking treatment. Fibers constituting the wet nonwoven fabric contains 80wt.% or more of meta type aromatic polyamide staple fibers and the single yarn fineness thereof is 0.3-6.0 denier and the fiber length thereof is set to 3-15 mm. In the wet nonwoven fabric, org. fibers having hot water adhesiveness are used as a binder along with fibers in a papermaking process. As uncrosslinked rubber to be laminated, silicone rubber, fluororubber or ethylene/propylene rubber is used. For example, a necessary number of sheet like non-crosslinked rubber layers and nonwoven fabrics are alternately laminated. A crosslinking treatment condition is different corresponding to the kind the crosslinked rubber layer and the size of the rubber composite but heat pressure molding is performed by using a general form.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プレス時の応力分
散性に優れ且つ弾性回復率も良好で、特にプリント基盤
の樹脂硬化工程で用いられるプレスクッション材やパッ
キング材として好適なゴム複合体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber composite which is excellent in stress dispersibility at the time of pressing and has a good elastic recovery rate, and is particularly suitable as a press cushion material or a packing material used in a resin curing process of a printed board. Things.

【0002】[0002]

【従来の技術】従来、ゴムシート複合体、特にプリント
基盤製造工程で用いられるクッション材用のゴム複合体
としては、ポリエステル繊維又は芳香族ポリアミド繊維
からなるウェブにニードルパンチ加工を施したフェルト
をゴムと複合したもの(特開昭55−101224号公
報)、前記ウェブに少量の金属繊維を配合して熱伝導性
を向上させたフェルトをゴムと複合したもの(特開平2
−154049号公報)などが提案されている。しか
し、これらはいずれも、基材としてフェルトを用いてい
るため、表面の平滑性はよいものの、プレス加工時に該
フェルトの地合ムラが影響して、得られるプリント基盤
に歪みが発生したり、クッション材の型がプリント基盤
に転写される等の問題が生じて、製品の歩留りを低下さ
せている。
2. Description of the Related Art Conventionally, as a rubber sheet composite, particularly a rubber composite for a cushioning material used in a manufacturing process of a printed board, a felt made by subjecting a web made of polyester fiber or aromatic polyamide fiber to needle punching is used. (Japanese Unexamined Patent Publication (Kokai) No. 55-101224), a composite obtained by compounding a felt with improved thermal conductivity by blending a small amount of metal fibers into the web (Japanese Unexamined Patent Application Publication No.
No. 154,049). However, since all of them use felt as a base material, the surface smoothness is good, but the formation of the felt influences at the time of press working, and distortion is generated in the obtained printed board, Problems such as the transfer of the mold of the cushion material to the print substrate occur, and the product yield is reduced.

【0003】また他のクッション材としては、メタ型芳
香族ポリアミド繊維の延伸糸と同繊維の未延伸糸との混
合ウェブを基体の表面部に積層し、該芳香族ポリアミド
繊維の未延伸糸を軟化させて平滑化したもの(特開平6
−91780号公報)が提案されている。しかしこのも
のは、フェルトの地合ムラに起因する、前記プレス加工
時の凹凸や厚み斑の発生を少なくすることができるもの
の、未だ不十分なレベルである。
As another cushioning material, a mixed web of a drawn yarn of a meta-type aromatic polyamide fiber and an undrawn yarn of the same fiber is laminated on the surface of a substrate, and the undrawn yarn of the aromatic polyamide fiber is used as a cushioning material. Softened and smoothed (Japanese Unexamined Patent Publication No.
No. 91780). However, this method can reduce the occurrence of unevenness and uneven thickness at the time of the press working caused by uneven formation of felt, but is still at an insufficient level.

【0004】さらに他の方法として、セルロース系のク
ラフト紙の厚紙をクッション材とする方法も提案されて
いる。しかしこのクッション材は、前述のフェルトを用
いた場合と比較して地合のムラが少なくなる結果、前記
のプレス加工時でのプリント基盤の歪みやクッション材
の型がプリント基盤に転写される等の問題は生じなくな
るものの、クッション材自身の弾性回復率が低くなるた
め、1回限りの使い捨てになり、特に地球環境の点から
好ましくない。
As another method, a method has been proposed in which cardboard made of cellulosic kraft paper is used as a cushion material. However, this cushioning material has less formation unevenness compared to the case where the above-mentioned felt is used, and as a result, the distortion of the print substrate at the time of the press working and the type of the cushioning material are transferred to the print substrate. Although the problem described above no longer occurs, the elastic recovery rate of the cushion material itself becomes low, so that the cushion material is disposable only once, which is not preferable in terms of the global environment.

【0005】一方、補強用繊維構造体(例えば不織布)
を用いないゴム単体のみからなるシートは、優れた弾性
回復率を有しているものの、圧縮に対する変形が大きく
なるため、クッション材としては適当でない。
On the other hand, a reinforcing fiber structure (for example, a nonwoven fabric)
Although a sheet made of only rubber without using a rubber has an excellent elastic recovery rate, it is not suitable as a cushioning material because of its large deformation due to compression.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑みなされたもので、その目的は応力の分
散性が良好で、例えばプレスクッション材として使用し
た場合には、凹凸や歪みを抑制してプリント基盤の歩留
りを向上させ、しかも弾性回復性が良好で使用耐久性に
も優れた新規なゴム複合体を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object a good dispersibility of stress. An object of the present invention is to provide a novel rubber composite which suppresses distortion, improves the yield of a printed board, and has good elastic recovery and excellent use durability.

【0007】[0007]

【課題を解決するための手段】本発明の上記課題は、
「湿式不織布からなる基体の片面又は両面に、未加橋ゴ
ム層を積層した後架橋処理してなるゴム複合体。」によ
り達成される。
Means for Solving the Problems The object of the present invention is to provide:
This is achieved by "a rubber composite obtained by laminating an unbridged rubber layer on one or both surfaces of a substrate made of a wet nonwoven fabric and then performing a crosslinking treatment."

【0008】[0008]

【発明の実施の形態】本発明においては、ゴムと複合さ
れる不織布として、湿式不織布を用いることが大切であ
る。乾式不織布では、地合ムラが大きいため応力が負荷
された時の応力分散性が不十分となり、樹脂硬化工程の
プレスクッション材として使用すると凹凸ムラが発生し
やすくなり、またパッキン材として使用するとシールム
ラ等が発生しやすくなるので好ましくない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, it is important to use a wet nonwoven fabric as a nonwoven fabric composited with rubber. In the case of dry nonwoven fabrics, the formation unevenness is so large that the stress dispersibility when stress is applied becomes insufficient, and unevenness tends to occur when used as a press cushion material in the resin curing process. Etc. are likely to occur, which is not preferable.

【0009】不織布を構成する繊維は特に限定する必要
はないが、なかでも、メタ型芳香族ポリアミド短繊維
が、不織布重量の80重量%以上、好ましくは90重量
%以上を占めていることが、クッション材として使用す
る際の圧縮応力や寸法安定性の点から好ましい。
The fibers constituting the nonwoven fabric need not be particularly limited, but among them, the meta-type aromatic polyamide short fiber accounts for at least 80% by weight, preferably at least 90% by weight of the weight of the nonwoven fabric. It is preferable in terms of compressive stress and dimensional stability when used as a cushion material.

【0010】好ましく用いられるメタ型芳香族ポリアミ
ド短繊維としては、延鎖結合の50モル%以上が非共軸
で非平行の芳香族ポリアミド、例えばジカルボン酸とし
てテレフタル酸、イソフタル酸等の一種又は二種以上
と、ジアミンとしてメタフェニレンジアミン、4,4−
ジアミノフェニルエーテル、4,4’−ジアミノジフェ
ニルメタン、キシリレンジアミン等の一種又は二種以上
を使用したホモポリマー又は共重合ポリマーからなる短
繊維をあげることができ、その代表的な例としては、ポ
リメタフェニレンイソフタルアミド、ポリメタキシレン
テレフタルアミド、あるいはイソフタル酸クロライド、
テレフタル酸クロライド及びメタフェニレンジアミン等
を共重合せしめたコポリアミドからなる短繊維がある。
これらの中では、繰り返し単位の80モル%以上、好ま
しくは90モル%以上がメタフェニレンイソフタルアミ
ドである芳香族ポリアミド短繊維が、前述のクッション
材として使用する際の圧縮応力や寸法安定性が良好とな
るので好ましい。
The meta-type aromatic polyamide short fibers preferably used are aromatic polyamides in which 50 mol% or more of the extended bonds are non-coaxial and non-parallel, such as one or two dicarboxylic acids such as terephthalic acid and isophthalic acid. Species or more, and as a diamine, metaphenylenediamine, 4,4-
Short fibers consisting of homopolymers or copolymers using one or more of diaminophenyl ether, 4,4'-diaminodiphenylmethane, xylylenediamine and the like can be given. Metaphenylene isophthalamide, polymethaxylene terephthalamide, or isophthalic chloride,
There is a short fiber made of a copolyamide obtained by copolymerizing terephthalic acid chloride and metaphenylenediamine.
Among them, the aromatic polyamide short fiber in which 80 mol% or more, preferably 90 mol% or more of the repeating unit is metaphenylene isophthalamide has good compressive stress and dimensional stability when used as the cushioning material described above. Is preferable.

【0011】また上述のメタ型芳香族ポリアミド短繊維
の単糸繊度は、通常0.3〜6デニール、好ましくは
0.5〜3.0デニールである。0.3デニール未満で
は、製糸技術上困難な点が多く、断糸や毛羽が発生して
良好な品質の繊維を安定に生産することが困難になるだ
けでなく、ゴムと複合する際に未加硫ゴムが不織布内に
浸透し難くなって、ゴムと不織布との間で層間剥離しや
すくなり、耐久性が低下する。一方、6デニールを越え
ると、湿式不織布においてもその地合の均一性が低下し
て、凹凸むらや歪み発生が増加してくる。
The single-filament fineness of the above-mentioned meta-type aromatic polyamide short fibers is usually 0.3 to 6 denier, preferably 0.5 to 3.0 denier. If the denier is less than 0.3 denier, there are many difficulties in the yarn-making technology, and not only is it difficult to stably produce fibers of good quality due to yarn breakage and fluffing, but also unsatisfactory when compounding with rubber. The vulcanized rubber hardly penetrates into the nonwoven fabric, so that delamination between the rubber and the nonwoven fabric becomes easy, and the durability is reduced. On the other hand, when the denier exceeds 6 denier, the uniformity of the formation of the wet nonwoven fabric also decreases, and uneven unevenness and distortion increase.

【0012】またメタ型芳香族ポリアミド短繊維の繊維
長は、3〜15mmの範囲、特に5〜12mmの範囲が
適当である。繊維長が3mm未満になると、得られる湿
式不織布の機械的物性が不十分なものとなりやすい。一
方繊維長が15mmを越えると、繊維の分散性が悪化し
て得られる不織布の均一性が損なわれ、地合が不十分な
ものとなりやすい。
The fiber length of the meta-type aromatic polyamide short fibers is suitably in the range of 3 to 15 mm, particularly in the range of 5 to 12 mm. If the fiber length is less than 3 mm, the mechanical properties of the obtained wet nonwoven fabric tend to be insufficient. On the other hand, when the fiber length exceeds 15 mm, the dispersibility of the fibers deteriorates, the uniformity of the obtained nonwoven fabric is impaired, and the formation tends to be insufficient.

【0013】また本発明で用いる湿式不織布は、通常抄
造工程において上記の繊維と共にバインダーが併用され
る。該バインダーとしては、熱接着性あるいは熱水接着
性を有する有機繊維(バインダー繊維)でも、水に分散
させたラテックス等のバインダー樹脂であってもよい
が、特に前者の熱(水)接着性を有する繊維が、得られ
る不織布の機械的特性、物性の均一性の点より好まし
い。
In the wet nonwoven fabric used in the present invention, a binder is usually used together with the above fibers in the papermaking process. The binder may be an organic fiber (binder fiber) having a heat adhesive property or a hot water adhesive property, or a binder resin such as a latex dispersed in water. Fibers are preferred in view of the mechanical properties and uniformity of physical properties of the resulting nonwoven fabric.

【0014】好ましく用いられるバインダー繊維として
は、ポリエステル系繊維、ポリオレフィン系繊維、ポリ
ビニルアルコール系繊維等をあげることができ、またバ
インダー樹脂としては、フェノール系樹脂、エポキシ系
樹脂、アクリレート系樹脂等をあげることができ、その
他ラテックス等も用いることができる。
Preferred examples of the binder fiber include polyester fibers, polyolefin fibers, and polyvinyl alcohol fibers. Examples of the binder resin include phenol resins, epoxy resins, and acrylate resins. In addition, latex and the like can be used.

【0015】さらに本発明で用いる湿式不織布は、得ら
れるゴム複合体の弾性回復性能、機械的特性及び寸法安
定性といった特性が、湿式不織布の密度、引張強力等の
特性に影響され易いので、その密度は0.1〜0.8g
/cm3 、特に0.3〜0.6g/cm3 の範囲内にあ
ることが好ましく、また不織布の引張強力は0.5〜1
5Kg/15mmの範囲内にあることが望ましい。密度
が0.1g/cm3 未満になると不織布の機械的強力が
低下しやすく、一方、0.8g/cm3 を越えると密度
が高すぎて得られるゴム複合体のクッション性能が不十
分なものとなりやすい。また不織布の引張強力が0.5
Kg/15mm未満になると、安定に生産するための不
織布強力が不足してトラブルが発生しやすくなり、一
方、15Kg/15mmを越えると不織布のフレキシビ
リティが不十分となって、得られるゴム複合体のクッシ
ョン性能が低下する傾向にある。
In the wet nonwoven fabric used in the present invention, the properties such as elastic recovery performance, mechanical properties and dimensional stability of the obtained rubber composite are easily influenced by the properties such as density and tensile strength of the wet nonwoven fabric. Density is 0.1-0.8g
/ Cm 3 , particularly preferably in the range of 0.3 to 0.6 g / cm 3 , and the tensile strength of the nonwoven fabric is 0.5 to 1
It is desirable to be within the range of 5 kg / 15 mm. If the density is less than 0.1 g / cm 3, the mechanical strength of the nonwoven fabric tends to decrease, while if it exceeds 0.8 g / cm 3 , the cushioning performance of the rubber composite obtained is too high and the resulting rubber composite is insufficient. It is easy to be. Also, the tensile strength of the nonwoven fabric is 0.5
If the weight is less than 15 kg / 15 mm, the strength of the nonwoven fabric for stable production is insufficient, and troubles are likely to occur. Tends to decrease the cushion performance.

【0016】以上に述べた湿式不織布は、従来公知のい
かなる方法で製造してもよく、例えば、メタ型芳香族ポ
リアミド短繊維と必要に応じて通常のバインダー繊維と
を、定められた比率となるように秤量し、水中に投入し
て離解機で均一分散した後に繊維濃度が約0.15〜
0.40重量%になるように希釈・調整した水性スラリ
ー中に、必要に応じてバインダー成分、分散剤、粘度調
整剤等を加え、次いで長網式や丸網式等の抄紙機により
湿式抄造すればよい。得られた湿紙(湿った状態の不織
布)には、必要に応じてさらにバインダー樹脂をスプレ
ー方式等により所定の固形分比率の重量になるよう付与
した後、乾燥して得た乾燥紙をさらに加熱加圧加工する
ことにより、所望の厚さ、密度、引張強力を有する湿式
不織布を得ることができる。
The above-mentioned wet nonwoven fabric may be produced by any conventionally known method. For example, a predetermined ratio of meta-type aromatic polyamide short fiber and, if necessary, ordinary binder fiber is obtained. Weighed in the same manner, poured into water and evenly dispersed by a
If necessary, a binder component, a dispersant, a viscosity modifier, etc. are added to the aqueous slurry diluted and adjusted to 0.40% by weight, and then wet papermaking is performed using a long-mesh or round-mesh paper machine. do it. To the obtained wet paper (wet nonwoven fabric), a binder resin is further applied as needed to a weight of a predetermined solid content ratio by a spray method or the like, and then the dried paper obtained by drying is further applied. By performing the heat and pressure processing, a wet nonwoven fabric having a desired thickness, density, and tensile strength can be obtained.

【0017】また得られた湿紙は、水分含有量を50〜
95重量%とした後に数枚積層し、加熱加圧下に脱水・
乾燥・一体化する湿式プレス法、あるいは水分含有量を
45重量%未満にした後に急速に加熱・加圧して一体化
する乾式プレス法により複数枚を一体化してもよい。
The obtained wet paper has a water content of 50 to 50.
After 95% by weight, several sheets are laminated and dehydrated under heat and pressure.
A plurality of sheets may be integrated by a wet pressing method of drying and integrating, or a dry pressing method of rapidly heating and pressing after reducing the water content to less than 45% by weight to integrate.

【0018】ここで加熱加圧は、通常平板プレス又はロ
ールプレスにより行う。加熱温度及び加圧圧力は、使用
繊維の種類及び目的とする嵩密度により異なるが、ポリ
メタフェニレンイソフタラミド繊維の場合には、通常加
熱温度は230〜350℃、好ましくは250〜330
℃であり、加圧圧力は、平板プレスで30〜100kg
/cm2 、ロールプレスで20〜80kg/cm(線
圧)程度が好ましい。
Here, the heating and pressurizing are usually performed by a flat plate press or a roll press. The heating temperature and pressurizing pressure vary depending on the type of fiber used and the desired bulk density, but in the case of polymetaphenylene isophthalamide fiber, the heating temperature is usually from 230 to 350 ° C, preferably from 250 to 330 ° C.
° C and pressurizing pressure is 30 ~ 100kg by flat plate press
/ Cm 2 , about 20 to 80 kg / cm (linear pressure) by a roll press.

【0019】本発明のゴム複合体は、上述の湿式不織布
の片面又は両面に、未架橋ゴム層を積層した後に架橋処
理することにより得られる。ここで積層される未架橋ゴ
ムの種類は特に限定する必要はなく、天然ゴム、アクリ
ル系ゴム、シリコン系ゴム、フッ素系ゴム、エチレンプ
ロピレン系ゴム等いずれでもよいが、これらのなかでは
シリコン系ゴム、フッ素系ゴム、エチレンプロピレン系
ゴム等が、耐熱性に優れたゴム複合体が得られるので、
例えばプレスクッション材用、パッキング材用として特
に好ましい。またこれらの未架橋ゴム層を不織布に積層
するには、シート状の未架橋ゴムと不織布とを必要に応
じた枚数交互に積層してもよく、また粘度が調整された
液状のゴム液を例えばナイフコーターで不織布上に均一
に塗布し、これを必要に応じた枚数積層してもよい。な
お後者の場合には、塗布した面同士が重なり合わないよ
うに積層することが望ましい。
The rubber composite of the present invention can be obtained by laminating an uncrosslinked rubber layer on one or both sides of the above-mentioned wet nonwoven fabric and then performing a crosslinking treatment. The type of uncrosslinked rubber to be laminated here need not be particularly limited, and may be any of natural rubber, acrylic rubber, silicon rubber, fluorine rubber, ethylene propylene rubber, and the like. , Fluorine-based rubber, ethylene propylene-based rubber, etc., because a rubber composite with excellent heat resistance can be obtained,
For example, it is particularly preferable for a press cushion material and a packing material. Further, in order to laminate these uncrosslinked rubber layers on the nonwoven fabric, a sheet-like uncrosslinked rubber and the nonwoven fabric may be alternately laminated as needed, and a liquid rubber liquid whose viscosity has been adjusted may be used, for example. It may be evenly applied on the nonwoven fabric with a knife coater, and may be laminated as many as necessary. In the latter case, it is desirable to laminate the coated surfaces so that the surfaces do not overlap with each other.

【0020】次ぎに架橋処理条件は、用いる未架橋ゴム
の種類、得られるゴム複合体の大きさによっても異なっ
てくるが、通常は型枠にいれ、温度100〜180℃、
圧力30〜100Kg/cm2 で加熱加圧成形すればよ
い。用いるゴムの種類によっては常温架橋が可能なもの
もあるが、その場合には常温下加圧状態で架橋させれば
よい。
Next, the conditions for the crosslinking treatment vary depending on the type of uncrosslinked rubber used and the size of the obtained rubber composite.
What is necessary is just to heat-press and shape at a pressure of 30 to 100 kg / cm 2 . Depending on the type of rubber used, crosslinking at room temperature may be possible. In such a case, crosslinking may be performed under normal temperature under pressure.

【0021】[0021]

【実施例】以下、実施例をあげて本発明をさらに詳細に
説明する。なお、実施例における各評価項目は下記の方
法にしたがった。
The present invention will be described in more detail with reference to the following examples. In addition, each evaluation item in an Example followed the following method.

【0022】<ゴム複合体の圧縮応力の均一性>ゴム複
合体を25×25cm角サンプリングし、その表面にフ
ジフィルム社製の感圧紙(プレスケール)を積層し、表
面が平滑で且つ上下のプレス面が水平なプレス機にて面
圧20kg/cm2 で2分間加圧処理した後、感圧紙の
色ムラの状態から評価判定した。 色ムラ無し:良好 色ムラ有り:不良
<Uniformity of Compressive Stress of Rubber Composite> The rubber composite was sampled in a 25 × 25 cm square, and pressure sensitive paper (Prescale) manufactured by Fuji Film Co., Ltd. was laminated on the surface thereof. After a pressing treatment with a horizontal pressing machine at a surface pressure of 20 kg / cm 2 for 2 minutes, the evaluation was judged from the color unevenness of the pressure-sensitive paper. No color unevenness: good Color unevenness: bad

【0023】<ゴム複合体の圧縮変形率及び弾性回復率
>ゴム複合体に20kg/cm2 の荷重を1時間負荷
し、初期厚み、加圧時厚み及び荷重を取り除いた直後の
厚みを測定して、圧縮変形率及び弾性回復率を下記式よ
り算出した。 圧縮変形率(%)=(初期厚み−加圧時厚み)/初期厚
み×100 弾性回復率(%)=(初期厚み−荷重を取り除いた直後
の厚み)/(初期厚み−加圧時厚み)×100
<Compression Deformation Rate and Elastic Recovery Rate of Rubber Composite> A load of 20 kg / cm 2 was applied to the rubber composite for 1 hour, and the initial thickness, the thickness under pressure and the thickness immediately after removing the load were measured. Then, the compressive deformation rate and the elastic recovery rate were calculated from the following equations. Compressive deformation rate (%) = (initial thickness-thickness under pressure) / initial thickness x 100 Elastic recovery rate (%) = (initial thickness-thickness immediately after removing load) / (initial thickness-thickness under pressure) × 100

【0024】<耐久弾性回復率>ゴム複合体に20kg
/cm2 の荷重を5分間負荷した後に除圧して5分間放
置する操作を1000回繰り返し、次いで上記の方法に
より測定した弾性回復率を耐久弾性回復率とする。
<Durability elastic recovery> 20 kg for rubber composite
The operation of applying a load of / cm 2 for 5 minutes, then depressurizing and allowing to stand for 5 minutes is repeated 1000 times, and the elastic recovery rate measured by the above method is defined as the durable elastic recovery rate.

【0025】[実施例1]単糸繊度が2.0デニール、
繊維長が6mmのポリメタフェニレンテレフタラミド
(メタ型芳香族ポリアミド)短繊維97重量部と、バイ
ンダー成分として単糸繊度が1.0デニール、繊維長が
4mmの熱水溶解性ポリビニルアルコール短繊維(株式
会社クラレ製:フィブリボンド)を3重量部とを、離解
機にて両者を同時に水中で離解して濃度0.2重量%の
スラリーとなし、これを角型TAPPIにて抄紙・脱水
し、ドラム型乾燥機にて乾燥して目付100g/m2
湿式不織布を得た。
Example 1 Single yarn fineness was 2.0 denier,
97 parts by weight of polymetaphenylene terephthalamide (meta-aromatic polyamide) short fiber having a fiber length of 6 mm, and hot water-soluble polyvinyl alcohol short fiber having a single fiber fineness of 1.0 denier and a fiber length of 4 mm as a binder component (Kuraray Co., Ltd .: Fibribond) and 3 parts by weight were simultaneously disintegrated in water using a disintegrator to form a slurry having a concentration of 0.2% by weight. The resultant was dried with a drum type drier to obtain a wet nonwoven fabric having a basis weight of 100 g / m 2 .

【0026】得られた湿式不織布を、厚さ5mmのシー
ト状フッ素系ゴム2枚の間に挟むように積層し、これを
架橋処理して厚さ8mmのゴム複合体を得た。得られた
ゴム複合体の圧縮応力の均一性、圧縮変形率及び弾性回
復率を以下に示す。 圧縮応力の均一性:良好 圧縮変形率 :30% 弾性回復率 :90% 耐久弾性回復率 :82%
The obtained wet nonwoven fabric was laminated so as to be sandwiched between two sheet-like fluororubbers having a thickness of 5 mm, and this was subjected to a crosslinking treatment to obtain a rubber composite having a thickness of 8 mm. The uniformity of the compressive stress, the compressive deformation rate and the elastic recovery rate of the obtained rubber composite are shown below. Uniformity of compressive stress: good Compressive deformation rate: 30% Elastic recovery rate: 90% Durable elastic recovery rate: 82%

【0027】[比較例1]単糸繊度が2.0デニール、
繊維長が51mmのポリメタフェニレンテレフタラミド
(メタ型芳香族ポリアミド)短繊維を、カードを通して
ウェブとなし、次いで1000パンチ/m2 の密度でニ
ードルパンチ処理を施し目付100g/m2 の乾式不織
布を得た。これを実施例1と同様にフッ素系ゴム積層し
て厚さ1.1mmのゴム複合体を得た。得られたゴム複
合体の圧縮応力の均一性、圧縮変形率及び弾性回復率を
以下に示す。 圧縮応力の均一性:不良 圧縮変形率 :30% 弾性回復率 :90% 圧縮弾性回復率 :63%
[Comparative Example 1] The single yarn fineness was 2.0 denier,
A short fiber of polymetaphenylene terephthalamide (meta-type aromatic polyamide) having a fiber length of 51 mm is formed into a web through a card, and then subjected to a needle punching treatment at a density of 1000 punches / m 2 to obtain a dry nonwoven fabric having a basis weight of 100 g / m 2 . I got This was laminated with a fluorine-based rubber in the same manner as in Example 1 to obtain a rubber composite having a thickness of 1.1 mm. The uniformity of the compressive stress, the compressive deformation rate and the elastic recovery rate of the obtained rubber composite are shown below. Uniformity of compressive stress: poor Compression deformation rate: 30% Elastic recovery rate: 90% Compressive elastic recovery rate: 63%

【0028】実施例1及び比較例1の結果から、ゴムと
複合する不織布として湿式不織布を用いることにより、
圧縮応力の均一性が良好になることがわかる。したがっ
て、これをプリント基盤のプレス工程クッション材とし
て用いた場合には、得られるプリント基盤に欠点となる
ような歪みが生じなくなる。
From the results of Example 1 and Comparative Example 1, the use of a wet non-woven fabric as the non-woven fabric to be composited with rubber allows
It can be seen that the uniformity of the compressive stress is improved. Therefore, when this is used as a cushioning material for a press step of a print board, the resulting print board does not suffer from distortion as a drawback.

【0029】[実施例2]単糸繊度が2.0デニール、
繊維長が6mmのポリメタフェニレンテレフタラミド
(メタ型芳香族ポリアミド)短繊維97重量部と、バイ
ンダー成分として単糸繊度が1.0デニール、繊維長が
4mmの熱水溶解性ポリビニルアルコール短繊維(株式
会社クラレ製:フィブリボンド)を3重量部とを、離解
機にて両者を同時に水中で離解して濃度0.2重量%の
スラリーとなし、これを角型TAPPIにて抄紙・脱水
し、ドラム型乾燥機にて乾燥して目付15g/m2 の湿
式不織布を得た。
Example 2 Single yarn fineness was 2.0 denier,
97 parts by weight of polymetaphenylene terephthalamide (meta-aromatic polyamide) short fiber having a fiber length of 6 mm, and hot water-soluble polyvinyl alcohol short fiber having a single fiber fineness of 1.0 denier and a fiber length of 4 mm as a binder component (Kuraray Co., Ltd .: Fibribond) and 3 parts by weight were simultaneously disintegrated in water using a disintegrator to form a slurry having a concentration of 0.2% by weight. The resultant was dried with a drum type drier to obtain a wet nonwoven fabric having a basis weight of 15 g / m 2 .

【0030】得られた不織布に、液状のシリコン系ゴム
を厚さ0.4mmになるようにナイフコーターにてコー
ティングし、これをコーティング面が重ならないように
5枚積層し、圧力50Kg/cm2 の加圧下室温でゴム
を反応・架橋させ、厚さ2mmのゴム複合体を得た。得
られたゴム複合体の圧縮応力の均一性、圧縮変形率及び
弾性回復率を以下に示す。 圧縮応力の均一性:良好 圧縮変形率 :25% 弾性回復率 :92% 耐久弾性回復率 :60%
The obtained nonwoven fabric was coated with a liquid silicon-based rubber by a knife coater so as to have a thickness of 0.4 mm, and five such layers were laminated so that the coated surfaces did not overlap, and the pressure was 50 kg / cm 2. The rubber was reacted and crosslinked at room temperature under pressure to obtain a rubber composite having a thickness of 2 mm. The uniformity of the compressive stress, the compressive deformation rate and the elastic recovery rate of the obtained rubber composite are shown below. Uniformity of compressive stress: good Compressive deformation: 25% Elastic recovery: 92% Durable elastic recovery: 60%

【0031】[比較例2]実施例2で用いた液状のシリ
コン系ゴムを離形紙上にナイフコーターにてコーティン
グし、厚さが0.4mmのゴムシートを得た。次いでこ
れを5枚積層し、ホットプレスで加熱架橋させて厚さが
2mmのゴムシートを得た。得られたゴムシートの圧縮
応力の均一性、圧縮変形率及び弾性回復率を、実施例1
と同様の方法で測定した結果を以下に示す。 圧縮応力の均一性:良好 圧縮変形率 :67% 弾性回復率 :87% 耐久弾性回復率 :83% また、実施例2及び比較例2については、20kg/c
2 の荷重を5分間負荷した後に除圧して5分間放置す
る操作を1000回繰り返した時の弾性回復率の変化を
表1に示す。
Comparative Example 2 The liquid silicone rubber used in Example 2 was coated on release paper with a knife coater to obtain a rubber sheet having a thickness of 0.4 mm. Next, five sheets were laminated and crosslinked by heating with a hot press to obtain a rubber sheet having a thickness of 2 mm. The uniformity of compressive stress, compressive deformation rate and elastic recovery rate of the obtained rubber sheet were measured in Example 1.
The results measured by the same method as described above are shown below. Uniformity of compressive stress: good Compressive deformation rate: 67% Elastic recovery rate: 87% Durable elastic recovery rate: 83% Also, in Example 2 and Comparative Example 2, 20 kg / c
Table 1 shows the change in the elastic recovery rate when the operation of applying the load of m 2 for 5 minutes, removing the pressure, and allowing to stand for 5 minutes was repeated 1,000 times.

【0032】[0032]

【表1】 [Table 1]

【0033】[実施例3]単糸繊度が1.0デニール、
繊維長が4mmのポリメタフェニレンテレフタラミド
(メタ型芳香族ポリアミド)短繊維85重量部と、バイ
ンダー成分として単糸繊度が1.0デニール、繊維長が
4mmの熱水溶解性ポリビニルアルコール短繊維(株式
会社クラレ製:フィブリボンド)を15重量部とを、離
解機にて両者を同時に水中で離解して濃度0.15重量
%のスラリーとなし、これを角型TAPPIにて抄紙・
脱水し、ドラム型乾燥機にて乾燥して目付70g/m2
の湿式不織布を得た。
Example 3 Single yarn fineness is 1.0 denier,
85 parts by weight of polymetaphenylene terephthalamide (meta-aromatic polyamide) short fiber having a fiber length of 4 mm, and a hot water-soluble polyvinyl alcohol short fiber having a denier of 1.0 denier and a fiber length of 4 mm as a binder component (Kuraray Co., Ltd .: fibribond) and 15 parts by weight were simultaneously disintegrated in water using a disintegrator to form a slurry having a concentration of 0.15% by weight.
Dehydrate and dry with a drum type drier to dry weight 70 g / m 2
Was obtained.

【0034】得られた不織布に、厚さが0.4mmのエ
チレンプロピレン系未架橋ゴムシート2枚の間に挟むよ
うに積層し、これを型枠にいれ温度180℃、圧力10
0Kg/cm2 の条件下で30分間架橋処理して厚さ
0.7mmのゴム複合体を得た。得られたゴム複合体の
圧縮応力の均一性、圧縮変形率、弾性回復率及び耐久弾
性回復率を以下に示す。 圧縮応力の均一性:良好 圧縮変形率 :32% 弾性回復率 :90% 耐久弾性回復率 :75%
The obtained nonwoven fabric was laminated so as to be sandwiched between two ethylene-propylene-based uncrosslinked rubber sheets each having a thickness of 0.4 mm, and this was placed in a mold, placed at a temperature of 180 ° C and a pressure of 10 ° C.
Crosslinking treatment was performed for 30 minutes under the condition of 0 Kg / cm 2 to obtain a rubber composite having a thickness of 0.7 mm. The uniformity of the compressive stress, the compressive deformation rate, the elastic recovery rate, and the durability elastic recovery rate of the obtained rubber composite are shown below. Uniformity of compressive stress: good Compressive deformation: 32% Elastic recovery: 90% Durable elastic recovery: 75%

【0035】[実施例4]実施例3においてポリメタフ
ェニレンテレフタラミド(メタ型芳香族ポリアミド)短
繊維とポリビニルアルコール短繊維との混合割合を75
重量部対25重量部に変更する以外は実施例3と同様に
してゴム複合体を得た。得られたゴム複合体の圧縮応力
の均一性、圧縮変形率、弾性回復率及び耐久弾性回復率
を以下に示す。 圧縮応力の均一性:良好 圧縮変形率 :40% 弾性回復率 :70% 耐久弾性回復率 :63%
Example 4 In Example 3, the mixing ratio of the short fibers of polymetaphenylene terephthalamide (meta-aromatic polyamide) and the short fibers of polyvinyl alcohol was 75.
A rubber composite was obtained in the same manner as in Example 3, except that the weight ratio was changed to 25 parts by weight. The uniformity of the compressive stress, the compressive deformation rate, the elastic recovery rate, and the durability elastic recovery rate of the obtained rubber composite are shown below. Uniformity of compressive stress: good Compressive deformation rate: 40% Elastic recovery rate: 70% Durable elastic recovery rate: 63%

【0036】[実施例5]単糸繊度が3.0デニール、
繊維長が10mmのポリメタフェニレンテレフタラミド
(メタ型芳香族ポリアミド)短繊維95重量部と、バイ
ンダー成分として単糸繊度が1.0デニール、繊維長が
4mmの熱水溶解性ポリビニルアルコール短繊維(株式
会社クラレ製:フィブリボンド)を5重量部とを、離解
機にて両者を同時に水中で離解して濃度0.3重量%の
スラリーとなし、これを角型TAPPIにて抄紙・脱水
し、ドラム型乾燥機にて乾燥して目付100g/m2
湿式不織布を得た。
Example 5 Single yarn fineness was 3.0 denier,
95 parts by weight of polymetaphenylene terephthalamide (meta-aromatic polyamide) short fiber having a fiber length of 10 mm, and hot water-soluble polyvinyl alcohol short fiber having a denier of 1.0 denier and a fiber length of 4 mm as a binder component 5 parts by weight (made by Kuraray Co., Ltd .: fibribond) were simultaneously disintegrated in water using a disintegrator to form a slurry having a concentration of 0.3% by weight, and the slurry was made and dewatered using a square TAPPI. The resultant was dried with a drum type drier to obtain a wet nonwoven fabric having a basis weight of 100 g / m 2 .

【0037】得られた不織布に、厚さが0.8mmのエ
チレンプロピレン系未架橋ゴムシート2枚の間に挟むよ
うに積層し、これを型枠にいれ温度180℃、圧力80
Kg/cm2 の条件下で30分間架橋処理して厚さ1.
5mmのゴム複合体を得た。得られたゴム複合体の圧縮
応力の均一性、圧縮変形率、弾性回復率及び耐久弾性回
復率を以下に示す。 圧縮応力の均一性:良好 圧縮変形率 :22% 弾性回復率 :90% 耐久弾性回復率 :79%
The obtained nonwoven fabric was laminated so as to be sandwiched between two ethylene-propylene-based uncrosslinked rubber sheets each having a thickness of 0.8 mm.
Crosslinking treatment was performed for 30 minutes under the condition of Kg / cm 2 to obtain a thickness of 1.
A 5 mm rubber composite was obtained. The uniformity of the compressive stress, the compressive deformation rate, the elastic recovery rate, and the durability elastic recovery rate of the obtained rubber composite are shown below. Uniformity of compressive stress: good Compressive deformation rate: 22% Elastic recovery rate: 90% Durable elastic recovery rate: 79%

【0038】[0038]

【発明の効果】本発明のゴム複合体は、不織布とゴムと
が複合されたものであるのでその表面は極めて平滑であ
り、また用いられている基材の不織布が湿式不織布で地
合ムラが少ないため、ゴム複合体を圧縮させた場合に発
生する圧縮応力の均一に優れている。しかもゴム単体と
比較すると、複合されている湿式不織布がゴムの変形を
拘束しているため、圧縮させた場合に発生する変形は小
さく、一方圧縮応力は大きい。また除圧後(圧縮解放
後)のゴム複合体全体としての弾性回復率は、ゴム部分
の良好な弾性回復性能が発現されるため、優れた弾性回
復率を示す。したがって、これらの特性を生かして、耐
久性に優れたプレスクッション材、パッキング材として
好適に用いることができる。
The rubber composite of the present invention is a composite of non-woven fabric and rubber, so that its surface is extremely smooth, and the non-woven fabric used as the base material is a wet non-woven fabric, and uneven formation may occur. Since it is small, the compression stress generated when the rubber composite is compressed is excellent in uniformity. Moreover, as compared to the rubber alone, the composite wet nonwoven fabric restricts the deformation of the rubber, so that the deformation generated when compressed is small, while the compression stress is large. The elastic recovery rate of the entire rubber composite after depressurization (after compression release) shows an excellent elastic recovery rate because good elastic recovery performance of the rubber portion is exhibited. Therefore, by utilizing these characteristics, it can be suitably used as a press cushion material and a packing material having excellent durability.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 湿式不織布からなる基体の片面又は両面
に、未架橋ゴム層を積層した後架橋処理してなるゴム複
合体。
1. A rubber composite obtained by laminating an uncrosslinked rubber layer on one or both sides of a substrate made of a wet nonwoven fabric and then performing a crosslinking treatment.
【請求項2】 湿式不織布を構成する繊維の80重量%
以上がメタ型芳香族ポリアミド短繊維であり、該メタ型
芳香族ポリアミド短繊維の単糸繊度が0.3〜6.0デ
ニール、繊維長が3〜15mmである請求項1記載のゴ
ム複合体。
2. 80% by weight of fibers constituting the wet nonwoven fabric
The rubber composite according to claim 1, wherein the above-mentioned is a meta-type aromatic polyamide short fiber, and the single-fiber fineness of the meta-type aromatic polyamide short fiber is 0.3 to 6.0 denier and the fiber length is 3 to 15 mm. .
【請求項3】 湿式不織布のバインダー成分が熱融着性
の有機繊維である請求項1記載のゴム複合体。
3. The rubber composite according to claim 1, wherein the binder component of the wet nonwoven fabric is a heat-fusible organic fiber.
【請求項4】 ゴムが、シリコン系ゴム、フッ素系ゴム
又はエチレンプロピレン系である請求項1記載のゴム複
合体。
4. The rubber composite according to claim 1, wherein the rubber is a silicone rubber, a fluorine rubber or an ethylene propylene rubber.
JP25442896A 1996-09-26 1996-09-26 Rubber composite Pending JPH10100324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25442896A JPH10100324A (en) 1996-09-26 1996-09-26 Rubber composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25442896A JPH10100324A (en) 1996-09-26 1996-09-26 Rubber composite

Publications (1)

Publication Number Publication Date
JPH10100324A true JPH10100324A (en) 1998-04-21

Family

ID=17264855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25442896A Pending JPH10100324A (en) 1996-09-26 1996-09-26 Rubber composite

Country Status (1)

Country Link
JP (1) JPH10100324A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323953A (en) * 1997-05-02 1998-12-08 Huels Ag Composite material comprising forming material with base of polyamide on one side, and vulcanizable fluorine-elastomer on other side
JP2008023749A (en) * 2006-07-18 2008-02-07 Yamauchi Corp Cushioning material for heat press and its manufacturing method
JPWO2018117188A1 (en) * 2016-12-22 2019-10-31 東レ株式会社 Structure
JP2021059688A (en) * 2019-10-09 2021-04-15 株式会社バルカー Complex, packing and production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323953A (en) * 1997-05-02 1998-12-08 Huels Ag Composite material comprising forming material with base of polyamide on one side, and vulcanizable fluorine-elastomer on other side
JP2008023749A (en) * 2006-07-18 2008-02-07 Yamauchi Corp Cushioning material for heat press and its manufacturing method
JPWO2018117188A1 (en) * 2016-12-22 2019-10-31 東レ株式会社 Structure
US11312825B2 (en) 2016-12-22 2022-04-26 Toray Industries, Inc. Structure
JP2021059688A (en) * 2019-10-09 2021-04-15 株式会社バルカー Complex, packing and production method

Similar Documents

Publication Publication Date Title
EP1756360B1 (en) Aramid paper blend
KR930003396B1 (en) High density para-aramid paper and process for preparation of the same
EP0488071B1 (en) Press-cushion sheet
US4698267A (en) High density para-aramid papers
EP1354095A2 (en) Non-woven sheet of aramid floc
US20100122769A1 (en) Processes for Making Sheet Structures having Improved Compression Performance
EP0994215B1 (en) Wholly aromatic polyamide fiber synthetic paper sheet
CA2017556C (en) Thin, resin-saturable aromatic polyamide paper and process for making same
JP2003510823A (en) Substrate web for printed circuit board manufacturing using foaming process and acrylic fiber
JPH10100324A (en) Rubber composite
JPS59192795A (en) Heat resistant cushion material for molding press
JP3378121B2 (en) Heat resistant board
JPH068016B2 (en) Heat resistant cushion material for molding press
JP3179285B2 (en) Aramid non-woven fabric
JP2000273788A (en) Para-aromatic polyamide fiber paper and its production
US8431213B2 (en) Sheet structures having improved compression performance
JPH03174086A (en) Production of glass fiber paper
JPH06342609A (en) Aramid nonwoven fabric and manufacture thereof
JP2004149990A (en) Para-oriented aromatic polyamide pulp and para-oriented aromatic polyamide fiber paper containing the same
JP2603555B2 (en) Paper with improved dimensional stability
JPH0921089A (en) Heat-resistant paper and its production
JPH03899A (en) Production of base paper for laminated board