JPH0999293A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPH0999293A
JPH0999293A JP7260254A JP26025495A JPH0999293A JP H0999293 A JPH0999293 A JP H0999293A JP 7260254 A JP7260254 A JP 7260254A JP 26025495 A JP26025495 A JP 26025495A JP H0999293 A JPH0999293 A JP H0999293A
Authority
JP
Japan
Prior art keywords
sludge
activated carbon
tank
ozone
biological treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7260254A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP7260254A priority Critical patent/JPH0999293A/en
Publication of JPH0999293A publication Critical patent/JPH0999293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the amount of sludge with ozone oxidation without deteriorating the COD of treated water by adding ozone to sludge in the presence of activated carbon to subject the sludge to oxidation treatment and thereafter, returning the ozone-oxidized sludge to a biological treatment stage. SOLUTION: In this treatment, powdery activated carbon 4 is added to an aeration tank 1 to adsorb and remove hardly biodegradable COD in feed organic sewage 2 from which BOD is biologically removed, with the activated carbon 4. A slurry 3 which is in the aeration tank 1, or flows out from the tank 1 is subjected to solid-liquid separation in a sedimentation tank 5 to obtain a treated water 6 from which BOD, COD and SS (suspended solid) are removed to extremely low levels respectively. On the other hand, a major part 8 of settled sludge 7 which is obtained also through the solid-liquid separation in the sedimentation tank 5 and in which the activated carbon coexists, is returned to the aeration tank 1 and transfer sludge 9 consisting of the other part of the settled sludge 7 and withdrawn sludge 10 from the aeration tank 1 is transferred to an ozone-oxidation tank 11 to subject the transfer sludge 9 to ozone oxidation. At this time, the activated carbon 4 coexists in the transfer sludge 9 and accordingly, ozone-oxidized, solubilized sludge 12 in the presence of the activated carbon 4 is returned to the aeration tank 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下水等の有機性汚
水を生物処理する新技術に関するものであり、特に汚水
の生物処理にともなう余剰汚泥発生量を、処理水のCO
Dを悪化させるこなく著しく削減できる新技術に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a new technology for biological treatment of organic wastewater such as sewage, and in particular, the amount of surplus sludge generated by biological treatment of wastewater
The present invention relates to a new technology that can significantly reduce D without deteriorating it.

【0002】[0002]

【従来の技術】従来から、活性汚泥法などの生物処理に
ともなって発生する余剰汚泥量の削減法として特公昭5
7−19719号公報、特開平6−206088号公報
が公知である。この技術は、有機性汚水をオゾン酸化し
て可溶化した後、オゾン酸化汚泥を好気性微生物により
生物学的にCO2 、H2 Oに分解する技術である。
2. Description of the Related Art Conventionally, as a method for reducing the amount of excess sludge generated by biological treatment such as activated sludge method, Japanese Patent Publication No.
JP-A 7-19719 and JP-A 6-206088 are known. This technique is a technique in which organic wastewater is ozone-oxidized and solubilized, and then ozone-oxidized sludge is biologically decomposed into CO 2 and H 2 O by aerobic microorganisms.

【0003】しかし、これらの従来技術を本発明者が追
試したところ、有機性汚泥のオゾン酸化分解にともなっ
て難分解CODが汚泥から多量に発生し、処理水COD
を悪化させるという大きな問題が見出された。しかも、
オゾン酸化汚泥量を増加し汚泥減量率を高めようとする
ほど必然的に処理水CODがますます悪化することが判
明した。さらに、オゾン酸化槽で激しい発泡が起き、汚
泥が泡に付着して槽外に溢れ出すことが認められた。ま
た、汚泥のオゾンによる可溶化効果が小さく、オゾン添
加量が汚泥SSの重量あたり10〜20%と多量になる
欠点もあることが判明した。
However, when the inventors of the present invention supplemented these conventional techniques, a large amount of hardly decomposed COD was generated from the sludge along with the ozone oxidation decomposition of the organic sludge, and the treated water COD
A big problem was found to worsen. Moreover,
It was found that the treated water COD inevitably deteriorates as the amount of ozone-oxidizing sludge is increased and the sludge weight reduction rate is increased. Further, it was confirmed that violent foaming occurred in the ozone oxidation tank and sludge adhered to the foam and overflowed out of the tank. It was also found that there is a drawback that the effect of solubilizing sludge with ozone is small and the amount of ozone added is as large as 10 to 20% based on the weight of sludge SS.

【0004】[0004]

【発明が解決しようとする課題】本発明は、処理水CO
Dの悪化を引き起こすことなく、オゾン酸化による汚泥
の減量を行うことができること、およびオゾン酸化によ
る汚泥の可溶化効果を向上させることを課題とする。
SUMMARY OF THE INVENTION The present invention is directed to treated water CO
It is an object to reduce the amount of sludge due to ozone oxidation without causing deterioration of D and to improve the solubilization effect of sludge due to ozone oxidation.

【0005】[0005]

【課題を解決するための手段】本発明の上記課題は、
(1)生物処理工程において、有機性汚水に活性炭微粒
子を添加し、懸濁させた汚水を浄化処理した後、前記生
物処理工程を流出したスラリ状汚泥を固液分離し、該分
離汚泥の一部は生物処理工程に返送し、分離汚泥の他部
および/または生物処理槽から引き抜いた活性炭が共存
する汚泥にオゾンを添加して酸化処理した後、該オゾン
酸化汚泥を前記生物処理工程に返送することを特徴とす
る有機性汚水の処理方法。 (2)前記生物処理工程が活性汚泥法による処理工程で
あり、前記オゾン酸化後の汚泥を生物処理工程に返送す
ることを特徴とする前記(1)に記載の有機性汚水の処
理方法。 (3)前記生物処理工程が硝化脱窒素処理法による処理
工程であり、前記オゾン酸化後の汚泥を嫌気的脱窒素槽
に返送することを特徴とする前記(1)に記載の有機性
汚水の処理方法。
The above-mentioned problems of the present invention are as follows.
(1) In the biological treatment step, activated carbon fine particles are added to organic sewage to purify the suspended sewage, and the slurry sludge that has flowed out of the biological treatment step is subjected to solid-liquid separation to obtain one of the separated sludges. Part is returned to the biological treatment process, ozone is added to the other part of the separated sludge and / or sludge in which activated carbon extracted from the biological treatment tank coexists, and the ozone-oxidized sludge is returned to the biological treatment process. A method for treating organic sewage, which comprises: (2) The method for treating organic sewage according to (1), wherein the biological treatment step is a treatment step by an activated sludge method, and the sludge after ozone oxidation is returned to the biological treatment step. (3) The organic wastewater according to (1), wherein the biological treatment step is a treatment step by a nitrification denitrification treatment method, and the sludge after ozone oxidation is returned to an anaerobic denitrification tank. Processing method.

【0006】[0006]

【発明の実施の形態】前記(1)に記載の本発明の有機
性汚水の処理工程のフローを図1に示し、以下に図1を
用いて本発明を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A flow chart of the process for treating organic wastewater of the present invention described in (1) above is shown in FIG. 1, and the present invention will be described below with reference to FIG.

【0007】先ず、生物処理工程が標準的な活性汚泥法
による生物処理である場合について説明する。図1にお
いて、活性汚泥法の曝気槽1に下水などの有機性汚水を
原水2として供給し生物処理する。曝気槽1に粉末活性
炭4を添加し、原水2のBODを生物的に除去し、難生
物分解性CODを活性炭によって吸着除去する。なお前
記生物処理工程としては、標準的な活性汚泥法の他に生
物学的脱窒素法が採用できる。
First, the case where the biological treatment process is a biological treatment by a standard activated sludge method will be described. In FIG. 1, organic sewage such as sewage is supplied as raw water 2 to an aeration tank 1 of the activated sludge method for biological treatment. Powdered activated carbon 4 is added to aeration tank 1, BOD of raw water 2 is biologically removed, and hardly biodegradable COD is adsorbed and removed by activated carbon. As the biological treatment step, a biological denitrification method can be adopted in addition to the standard activated sludge method.

【0008】曝気槽1中または曝気槽1から流出するス
ラリー3(スラリー状リン含有活性汚泥であり、以下ス
ラリーと呼ぶ。)は、沈殿槽5において固液分離され、
BOD、COD、SSが高度に除去された処理水6が得
られる。一方、沈殿槽5において固液分離され、活性炭
が共存している沈殿汚泥7の大部分8は曝気槽1に返送
される。この時曝気槽1内に常に所定濃度範囲のMLS
Sが維持されているように返送汚泥8の量を制御するこ
とが、生物処理を最も効率的なものにする上、次工程の
オゾン酸化処理の負荷を最も少なくするのに役立つ。沈
殿汚泥7と曝気槽からの引抜汚泥10から返送汚泥8を
引いたもの(移送汚泥9という。)は、オゾン酸化槽1
1に送られオゾン酸化する。本発明ではこの時移送汚泥
9中には活性炭が共存している。この結果次の作用が生
じる。すなわち、 活性炭の触媒効果のためと思われるが、生物汚泥の
可溶化が効果的にすすむ。 活性炭に吸着されたCODがオゾン酸化によって生
物分解性が向上する。 活性炭が共存しないと、オゾン酸化工程で激しく発
泡し、汚泥が槽外に溢れ出すが、活性炭が共存するとこ
のような発泡が起きない。
A slurry 3 (slurry phosphorus-containing activated sludge, hereinafter referred to as slurry) flowing into or out of the aeration tank 1 is subjected to solid-liquid separation in a settling tank 5,
The treated water 6 from which BOD, COD and SS are highly removed is obtained. On the other hand, most of the settled sludge 7 in which solid-liquid separation is performed in the settling tank 5 and activated carbon coexists is returned to the aeration tank 1. At this time, the MLS in the predetermined concentration range is always kept in the aeration tank 1.
Controlling the amount of the returned sludge 8 so that S is maintained helps to make the biological treatment most efficient and to minimize the load of the ozone oxidation treatment in the next step. The set sludge 7 and the drawn sludge 10 from the aeration tank minus the returned sludge 8 (referred to as transfer sludge 9) are the ozone oxidation tank 1
1 and sent to ozone oxidation. In the present invention, activated carbon coexists in the transferred sludge 9 at this time. As a result, the following action occurs. In other words, it seems that the catalytic effect of activated carbon is effective, but the solubilization of biological sludge effectively proceeds. Biodegradability of COD adsorbed on activated carbon is improved by ozone oxidation. If activated carbon does not coexist, the foaming occurs violently in the ozone oxidation process and the sludge overflows out of the tank, but if activated carbon coexists, such foaming does not occur.

【0009】移送汚泥9中の生物細胞は、オゾン酸化に
よって可溶化し、コロイド化し、生物分解性有機物(B
OD)を溶出する。オゾン酸化槽11において移送汚泥
9に添加されるオゾンの量は、汚泥SS重量当たり10
%〜20%が好適である。オゾン量が少なすぎると汚泥
可溶化が充分に進まず、また過剰であるとオゾンが無駄
になりコスト高になる。また、生物細胞のオゾン酸化反
応はpH9〜10のアルカリ条件下で効果的にすすむこ
とも判明した。
The biological cells in the transferred sludge 9 are solubilized by ozone oxidation and colloidalized to form biodegradable organic matter (B
OD) is eluted. The amount of ozone added to the transferred sludge 9 in the ozone oxidation tank 11 is 10 per weight of sludge SS.
% To 20% is preferable. If the amount of ozone is too small, sludge solubilization will not proceed sufficiently, and if it is excessive, ozone will be wasted and the cost will increase. It was also found that the ozone oxidation reaction of biological cells effectively proceeded under alkaline conditions of pH 9 to 10.

【0010】しかして、オゾン酸化を受けた活性炭共存
可溶化汚泥12には生物分解性有機物が含まれているの
で、曝気槽1に返送し、可溶性有機物を微生物に資化さ
せ炭酸ガス、水に分解する。すなわち、オゾン酸化によ
って可溶化された活性炭共存可溶化汚泥12では、活性
炭に吸着されたCODの生物分解性が向上しているの
で、曝気槽1にリサイクルすると、このCODが生物分
解される。またこれと同時に、活性炭は生物学的に再生
され、新たに供給される有機性汚水中のCODの他汚泥
可溶化にともなって生成する難分解性CODを再び吸着
する。なお、前記オゾン酸化槽11における可溶化汚泥
中のCODの変化としては、生物分解性の向上以外に、
活性炭に吸着されたCODの一部はオゾン酸化によって
親水性が向上し、活性炭から脱着され易くなるようであ
る。すなわち、オゾン酸化槽内で活性炭の物理化学的な
再生が進行する模様である。
However, since the activated carbon coexisting solubilized sludge 12 that has undergone ozone oxidation contains biodegradable organic matter, it is returned to the aeration tank 1 and the soluble organic matter is assimilated by microorganisms into carbon dioxide gas and water. Disassemble. That is, in the activated carbon coexisting solubilized sludge 12 solubilized by ozone oxidation, the biodegradability of COD adsorbed on the activated carbon is improved, and therefore when recycled to the aeration tank 1, this COD is biodegraded. At the same time, the activated carbon is biologically regenerated and re-adsorbs the COD in the newly supplied organic wastewater as well as the persistent COD generated with the sludge solubilization. In addition, as a change of COD in the solubilized sludge in the ozone oxidation tank 11, in addition to improvement of biodegradability,
It seems that part of the COD adsorbed on the activated carbon is improved in hydrophilicity by ozone oxidation and is easily desorbed from the activated carbon. That is, it seems that the physicochemical regeneration of activated carbon proceeds in the ozone oxidation tank.

【0011】既に前記したように、オゾン酸化槽11に
供給される移送汚泥9の量は、生物処理工程1の曝気槽
内に常に所定濃度範囲のMLSSが維持されているよう
に返送汚泥8の量を制御された残りの量とされる。前記
曝気槽内に維持されるMLSSの濃度範囲は、有機性汚
水1リットルあたり4000〜5000mgが適当であ
る。曝気槽内のMLSSの濃度範囲を前記の値に維持す
ることは曝気槽内にMLSS自動測定器を設置すること
で容易に行うことができる。
As described above, the amount of the transfer sludge 9 supplied to the ozone oxidation tank 11 is such that the amount of the returned sludge 8 is always maintained in the aeration tank of the biological treatment step 1 so that the MLSS in the predetermined concentration range is maintained. The amount is the controlled remaining amount. The concentration range of MLSS maintained in the aeration tank is preferably 4000 to 5000 mg per liter of organic wastewater. Maintaining the concentration range of MLSS in the aeration tank at the above value can be easily performed by installing an MLSS automatic measuring device in the aeration tank.

【0012】前記したように、返送汚泥8と引抜汚泥1
0を沈澱槽5と曝気槽1の間に循環させ、移送汚泥9は
オゾン酸化槽11において可溶化し、移送汚泥9中の難
分解性のSSは可溶化し、CODも生物分解性が向上し
たものとし、なお難分解性CODは再生された活性炭に
再吸着させて、これらを曝気槽1に返送することによっ
てほとんどすべて微生物に資化させて炭酸ガスと水に分
解するため、本発明の活性汚泥法による有機性汚水の処
理方法では余剰生物汚泥の発生量をほぼゼロにすること
が可能であり、系外に排出される固形物はほとんどな
い。なお、他の生物処理法による有機性汚水の処理方法
でも同様の結果が得られる。また、本発明において添加
される活性炭は系外にはほとんどリークされないので、
新たに補給するのは非常に少なくてすむ。
As described above, the returned sludge 8 and the drawn sludge 1
0 is circulated between the settling tank 5 and the aeration tank 1, the transfer sludge 9 is solubilized in the ozone oxidation tank 11, the persistent SS in the transfer sludge 9 is solubilized, and COD is also biodegradable. Since the persistent COD is re-adsorbed on the regenerated activated carbon and returned to the aeration tank 1, almost all of it is assimilated by microorganisms and decomposed into carbon dioxide gas and water. With the method for treating organic wastewater by the activated sludge method, it is possible to reduce the amount of excess biological sludge generated to almost zero, and almost no solid matter is discharged outside the system. Similar results can be obtained by treating organic sewage by other biological treatment methods. Moreover, since the activated carbon added in the present invention is hardly leaked out of the system,
Very few new supplies are needed.

【0013】なお、生物処理工程として前記説明した活
性汚泥法の他に生物学的硝化脱窒素法が採用できるが、
この場合には図2に示すように、原水2は脱窒素槽20
に供給され、脱窒素槽20において原水2中に粉末活性
炭を添加して、粉末活性炭を汚水中に懸濁させ、脱窒素
槽20の流出スラリ3は硝化槽21を経て沈澱槽22に
移送され、沈澱槽22で固液分離され、分離液は系外に
排出し、濃縮汚泥の1部は脱窒素槽20に還流され、他
の1部はオゾン酸化槽11で可溶化させ、可溶化された
汚泥は、オゾン酸化工程から脱窒素が行われる工程に返
送し、オゾン酸化により生成したBOD成分を脱窒素菌
のための有機炭素源として活用するという循環処理を行
って汚水の生物学的硝化脱窒素を行う。
In addition to the activated sludge method described above, a biological nitrification denitrification method can be adopted as the biological treatment step.
In this case, as shown in FIG.
Powdered activated carbon is added to the raw water 2 in the denitrification tank 20 to suspend the powdered activated carbon in wastewater, and the outflow slurry 3 of the denitrification tank 20 is transferred to the precipitation tank 22 via the nitrification tank 21. , Solid-liquid separation is performed in the settling tank 22, the separated liquid is discharged to the outside of the system, one part of the concentrated sludge is refluxed to the denitrification tank 20, and the other part is solubilized and solubilized in the ozone oxidation tank 11. The sludge is recycled from the ozone oxidation process to the process where denitrification is carried out, and the BOD component produced by ozone oxidation is used as an organic carbon source for denitrifying bacteria. Perform denitrification.

【0014】なおまた、従来活性汚泥法の曝気槽に粉末
活性炭を懸濁させて生物処理する技術自体は公知である
が、粉末活性炭が余剰汚泥に混入して系外に多量に逸出
してしまうために、常に多量の新鮮な粉末活性炭を補給
しなければならず、ランニングコストが高価につく方法
で、実用的でなかった。また従来の粉末活性炭を使用す
る前記方法では粉末活性炭の生物再生が起きないので原
水中のCODを吸着除去するために多量の新鮮な粉末活
性炭が必要であるという大きな欠点があった。これに対
して本発明の方法では、前記したように、ほとんど余剰
生物汚泥が発生せず、活性炭は系外にはほとんどリーク
されず、その上吸着性が再生されるので新たに補給する
のは非常に少なくてすむという効果がある。
Although the technique of suspending the powdered activated carbon in the aeration tank of the conventional activated sludge method for biological treatment is known, the powdered activated carbon is mixed with the excess sludge and escapes to the outside in a large amount. Therefore, a large amount of fresh powdered activated carbon must be constantly replenished, and the running cost is expensive, which is not practical. Further, the conventional method using powdered activated carbon has a big drawback that a large amount of fresh powdered activated carbon is required to adsorb and remove COD in raw water because biological regeneration of powdered activated carbon does not occur. On the other hand, in the method of the present invention, as described above, almost no excess biological sludge is generated, activated carbon is hardly leaked to the outside of the system, and since adsorptivity is regenerated, it is necessary to newly supply it. It has the effect of requiring very few.

【0015】[0015]

【実施例】図1の工程に基づいて、下水を対象として、
本発明の活性汚泥法による有機性汚水の処理を行った。 実施例1 処理に使用した下水の水質を第1表に示す。 第1表 水温 : 21 ℃ SS : 110 mg/リットル BOD : 95 mg/リットル COD : 58 mg/リットル 曝気槽の容積、MLSS及び下水の供給量、および粉末
活性炭の添加量と下水中の懸濁濃度は第2表の通りであ
る。 第2表 曝気槽容積 : 6 リットル 曝気槽MLSS : 15200 mg/リットル 下水供給量 : 24 リットル/日 粉末活性炭懸濁濃度: 12000 mg/リットル 新鮮な活性炭補給量: 20 mg/リットル 曝気槽内に新鮮な粉末活性炭を添加する。この粉末活性
炭の添加量は、運転開始当初は生物処理汚泥1リットル
あたり12000mgの割合で添加し、定常状態では生
物処理汚泥1リットルあたり20mgとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Based on the process of FIG.
The organic wastewater was treated by the activated sludge method of the present invention. Example 1 Table 1 shows the water quality of the sewage used for the treatment. Table 1 Water temperature: 21 ° C SS: 110 mg / liter BOD: 95 mg / liter COD: 58 mg / liter Volume of aeration tank, supply amount of MLSS and sewage, and addition amount of powdered activated carbon and suspension concentration in sewage Is as shown in Table 2. Table 2 Aeration tank volume: 6 liters Aeration tank MLSS: 15200 mg / liter Sewage supply rate: 24 liters / day Suspended concentration of powdered activated carbon: 12000 mg / liter Fresh activated carbon replenishment rate: 20 mg / liter Fresh in the aeration tank Powdered activated carbon is added. The powdered activated carbon is added at a rate of 12000 mg per liter of biologically treated sludge at the beginning of operation, and is 20 mg per liter of biologically treated sludge in a steady state.

【0016】曝気槽における沈殿汚泥および沈殿槽にお
いて沈殿した汚泥の大部分は曝気槽に返送する。この返
送量は曝気槽に備えたMLSS自動測定器により、曝気
槽内のMLSS量を管理しながら行った。その結果オゾ
ン酸化処理を行わず、曝気槽に返送する返送汚泥量は2
0リットル/日であった。一方オゾン酸化を行うための
移送汚泥量は、本処理の場合1.3〜1.5g・ss/
日である。オゾン酸化の条件を第3表に示す。 第3表 オゾン酸化槽容積 : 1リットル オゾン酸化槽pH : 10 オゾン添加量 : 8%(流入SS当たり)
Most of the sludge settled in the aeration tank and the sludge settled in the settling tank are returned to the aeration tank. The amount returned was measured by controlling the amount of MLSS in the aeration tank with an MLSS automatic measuring device provided in the aeration tank. As a result, the amount of sludge returned to the aeration tank is 2 without ozone oxidation treatment.
It was 0 liter / day. On the other hand, the amount of sludge transferred for ozone oxidation is 1.3 to 1.5 g · ss /
Is the day. Table 3 shows the conditions of ozone oxidation. Table 3 Ozone oxidation tank volume: 1 liter Ozone oxidation tank pH: 10 Ozone addition amount: 8% (per inflow SS)

【0017】以上の条件で1年間処理を行った結果、処
理水の水質は第4表の通りである。 第4表 SS : 5 mg/リットル BOD : 6 mg/リットル COD : 7 mg/リットル また、余剰汚泥発生量は下水1m3 あたり12g・ss
と極めてすくなかった。
As a result of treatment for one year under the above conditions, the quality of treated water is as shown in Table 4. Table 4 SS: 5 mg / liter BOD: 6 mg / liter COD: 7 mg / liter The amount of excess sludge generated is 12 g · ss per 1 m 3 of sewage.
I was very sorry.

【0018】比較例1 処理に使用した下水の水質は、前記実施例の第1表に示
した水質と同じであり、曝気槽内の下水中への粉末活性
炭の懸濁を除去した以外は表2および表3の条件に基づ
き比較試験を行った。その結果処理水の水質はSSとB
ODの値は前記第4表に記載のものと同等であったが、
CODの値が22mg/リットルと悪化した。
Comparative Example 1 The water quality of the sewage used for the treatment was the same as that shown in Table 1 of the above-mentioned Example, except that the suspension of the powdered activated carbon in the sewage in the aeration tank was removed. Comparative tests were carried out based on the conditions of 2 and Table 3. As a result, the quality of treated water is SS and B.
The OD value was the same as that shown in Table 4 above,
The COD value deteriorated to 22 mg / liter.

【0019】[0019]

【発明の効果】本発明により下水など有機性汚水を対象
とし、生物処理法例えば活性汚泥法あるいは硝化脱窒素
法を適用して生物処理するにあたり、活性汚泥法では
曝気槽に粉末活性炭を懸濁させ生物処理し、固液分離し
た後、分離汚泥の一部は曝気槽に還流し、他の一部をオ
ゾン酸化可溶化処理を行う。硝化脱窒素法では脱窒素
槽に粉末活性炭を懸濁させ生物処理し、硝化処理した後
固液分離し、分離汚泥の一部は硝化脱窒素槽に還流し、
他の一部をオゾン酸化可溶化処理を行う。およびの
場合とも、オゾン酸化可溶化された汚泥は粉末活性炭と
共にの場合は曝気槽に、では脱窒素槽に還流する。
前記処理を行った結果、 (1)処理工程から余剰生物汚泥が殆ど発生しない。 (2)処理中、処理水CODの悪化がない。 (3)新鮮な粉末活性炭の補給所要量が著しく少ない。 (4)オゾンの所要添加量が少なくてすむ。 (5)オゾン酸化槽での発泡を確実に防止できる。 (6)生物学的脱窒素のための有機炭素源を可溶化汚泥
から供給できる。 という従来の方法では得られない効果が得られた。
INDUSTRIAL APPLICABILITY According to the present invention, when subjecting organic wastewater such as sewage to biological treatment by applying a biological treatment method such as an activated sludge method or a nitrification denitrification method, the activated sludge method suspends powdered activated carbon in an aeration tank. After biological treatment and solid-liquid separation, part of the separated sludge is returned to the aeration tank and the other part is subjected to ozone oxidation solubilization treatment. In the nitrification denitrification method, powdered activated carbon is suspended in a denitrification tank for biological treatment, nitrification is performed, and then solid-liquid separation is performed, and part of the separated sludge is returned to the nitrification denitrification tank,
The other part is subjected to ozone oxidation solubilization treatment. In both cases (1) and (2), the sludge solubilized by ozone oxidation is returned to the aeration tank in the case of powdered activated carbon, and to the denitrification tank in the case of.
As a result of performing the above treatment, (1) almost no excess biological sludge is generated from the treatment process. (2) There is no deterioration of the treated water COD during the treatment. (3) The replenishment requirement of fresh powdered activated carbon is extremely small. (4) The required addition amount of ozone is small. (5) It is possible to reliably prevent foaming in the ozone oxidation tank. (6) An organic carbon source for biological denitrification can be supplied from solubilized sludge. The effect that cannot be obtained by the conventional method is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機性汚水の活性汚泥法のフローの1
例を示す説明図である。
FIG. 1 is a flow chart 1 of the activated sludge method of organic wastewater of the present invention.
It is explanatory drawing which shows an example.

【図2】本発明の有機性汚水の硝化脱窒素法のフローの
1例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a flow of a nitrification denitrification method of organic wastewater of the present invention.

【符号の説明】[Explanation of symbols]

1 生物処理槽 2 原水 3 スラリー 4 粉末活性炭 5 沈殿槽 6 処理水 7 沈殿汚泥 8 返送汚泥 9 移送汚泥 10 引抜汚泥 11 オゾン酸化槽 12 可溶化汚泥 20 脱窒素槽 21 硝化槽 22 沈澱槽 1 Biological treatment tank 2 Raw water 3 Slurry 4 Powdered activated carbon 5 Precipitation tank 6 Treated water 7 Precipitation sludge 8 Return sludge 9 Transfer sludge 10 Extraction sludge 11 Ozone oxidation tank 12 Solubilization sludge 20 Denitrification tank 21 Nitrification tank 22 Precipitation tank

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 生物処理工程において、有機性汚水に活
性炭微粒子を添加し、懸濁させた汚水を浄化処理した
後、前記生物処理工程を流出したスラリ状汚泥を固液分
離し、該分離汚泥の一部は生物処理工程に返送し、分離
汚泥の他部および/または生物処理槽から引き抜いた活
性炭が共存する汚泥にオゾンを添加して酸化処理した
後、該オゾン酸化汚泥を前記生物処理工程に返送するこ
とを特徴とする有機性汚水の処理方法。
1. In the biological treatment process, fine particles of activated carbon are added to organic sewage to purify suspended sewage, and then slurry sludge that has flowed out of the biological treatment process is subjected to solid-liquid separation, and the separated sludge is separated. Part of the sludge is returned to the biological treatment step, ozone is added to the sludge in which the activated carbon coexisted with the other part of the separated sludge and / or the biological treatment tank coexists, and then the ozone-oxidized sludge is subjected to the biological treatment step. A method for treating organic wastewater, which comprises returning the wastewater to
【請求項2】 前記生物処理工程が活性汚泥法による処
理工程であり、前記オゾン酸化後の汚泥を生物処理工程
に返送することを特徴とする請求項1に記載の有機性汚
水の処理方法。
2. The method for treating organic wastewater according to claim 1, wherein the biological treatment step is a treatment step by an activated sludge method, and the sludge after ozone oxidation is returned to the biological treatment step.
【請求項3】 前記生物処理工程が硝化脱窒素処理法に
よる処理工程であり、前記オゾン酸化後の汚泥を嫌気的
脱窒素槽に返送することを特徴とする請求項1に記載の
有機性汚水の処理方法。
3. The organic wastewater according to claim 1, wherein the biological treatment step is a treatment step by a nitrification denitrification treatment method, and the sludge after ozone oxidation is returned to an anaerobic denitrification tank. Processing method.
JP7260254A 1995-10-06 1995-10-06 Treatment of organic sewage Pending JPH0999293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7260254A JPH0999293A (en) 1995-10-06 1995-10-06 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7260254A JPH0999293A (en) 1995-10-06 1995-10-06 Treatment of organic sewage

Publications (1)

Publication Number Publication Date
JPH0999293A true JPH0999293A (en) 1997-04-15

Family

ID=17345498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7260254A Pending JPH0999293A (en) 1995-10-06 1995-10-06 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPH0999293A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047989A (en) * 2001-08-06 2003-02-18 Nisshin Steel Co Ltd Denitrification method and apparatus
JP2007253004A (en) * 2006-03-22 2007-10-04 Petroleum Energy Center Organic wastewater treatment method
JP2011507682A (en) * 2007-12-19 2011-03-10 サウジ アラビアン オイル カンパニー Suspended solvent granular activated carbon membrane bioreactor system and process
JP2011212513A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Microbial treatment system
CN105712468A (en) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 Method for treating waste water difficult to biodegrade
JP2019502548A (en) * 2016-01-21 2019-01-31 スエズ インテルナシオナール Wastewater treatment methods and facilities

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047989A (en) * 2001-08-06 2003-02-18 Nisshin Steel Co Ltd Denitrification method and apparatus
JP2007253004A (en) * 2006-03-22 2007-10-04 Petroleum Energy Center Organic wastewater treatment method
JP2011507682A (en) * 2007-12-19 2011-03-10 サウジ アラビアン オイル カンパニー Suspended solvent granular activated carbon membrane bioreactor system and process
JP2011212513A (en) * 2010-03-31 2011-10-27 Mitsui Eng & Shipbuild Co Ltd Microbial treatment system
CN105712468A (en) * 2014-12-04 2016-06-29 中国石油化工股份有限公司 Method for treating waste water difficult to biodegrade
CN105712468B (en) * 2014-12-04 2019-03-19 中国石油化工股份有限公司 A method of processing waste water difficult for biological degradation
JP2019502548A (en) * 2016-01-21 2019-01-31 スエズ インテルナシオナール Wastewater treatment methods and facilities
JP2022050606A (en) * 2016-01-21 2022-03-30 スエズ インテルナシオナール Wastewater treatment method and facility

Similar Documents

Publication Publication Date Title
WO2007120934A2 (en) Method and system for nitrifying and denitrifying wastewater
JPH09122682A (en) Method for treating waste water
JPH0999293A (en) Treatment of organic sewage
JP3383504B2 (en) Organic wastewater treatment method and treatment device
JP3449862B2 (en) Advanced purification method for organic wastewater
JP3483081B2 (en) Organic wastewater treatment method and treatment device
JP3221168B2 (en) Wastewater nitrogen removal method and apparatus
JP3449868B2 (en) How to reduce organic sludge
JP3377346B2 (en) Organic wastewater treatment method and apparatus
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JP3496789B2 (en) Organic wastewater treatment method and treatment device
JP4747567B2 (en) Nitrogen-containing wastewater treatment method and treatment equipment
JPH09122679A (en) Method for processing organic waste water and its apparatus
JP3449855B2 (en) Biological phosphorus removal method and apparatus for organic wastewater
JPH0994596A (en) Removal and recovery of phosphorus from organic sewage
JPH05154495A (en) Method for nitrifying and denitrifying organic waste water
JP3346690B2 (en) Method for removing nitrogen and phosphorus from organic wastewater
JPH09122680A (en) Method for treating organic waste water
JPH06182377A (en) Method for treating sewage
JPH09174098A (en) Weight reducing method for organic sludge
JPH1015585A (en) Biological dephosphorization of organic sewage and apparatus therefor
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JPS62225296A (en) Biological nitrification and denitrification device
JP2003080298A (en) Method of treating surplus sludge in wastewater treatment process
JPH06170388A (en) Treatment of sewage