JPH0997332A - Image processing method for microscope - Google Patents

Image processing method for microscope

Info

Publication number
JPH0997332A
JPH0997332A JP7252237A JP25223795A JPH0997332A JP H0997332 A JPH0997332 A JP H0997332A JP 7252237 A JP7252237 A JP 7252237A JP 25223795 A JP25223795 A JP 25223795A JP H0997332 A JPH0997332 A JP H0997332A
Authority
JP
Japan
Prior art keywords
image
microscope
harmonic
integrated
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7252237A
Other languages
Japanese (ja)
Inventor
Masatomo Kaino
正知 貝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7252237A priority Critical patent/JPH0997332A/en
Publication of JPH0997332A publication Critical patent/JPH0997332A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)
  • Complex Calculations (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the depth of focus by a sufficient increase in focal length and to obtain a sharp image of the whole sample by processing an integrated image of plural microscope images which differ from each other in focus position by Fourier transformation and finding a two-dimensional spectrum, and processing the two-dimensional spectrum after higher harmonic emphasis by inverse Fourier transformation and finding a microscope image subjected to higher harmonic emphasis. SOLUTION: The optical microscope consists of an optical microscope 1, an image pickup means 2, a sample stage 3, a sample stage control means 4, an image processing means 5, and a display means 6. The image processing means 5 outputs a stage driving signal to the sample stage control means 4 to control the movement of the sample stage 3 and the input of an image signal. And, the microscope images which differ from each other focus position are integrated by image processing to find the integrated image, which is processed by Fourier transformation to find the two-dimensional spectrum; and the higher harmonic components of the found two-dimensional spectrum are emphasized and the higher-harmonic-emphasized two-dimensional spectrum is processed by inverse Fourier transformation to find the higher-harmonic-emphasized microscope image.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学顕微鏡や電子
顕微鏡等において、長焦点による観察を行うための画像
処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image processing method for observing with a long focus in an optical microscope, an electron microscope or the like.

【0002】[0002]

【従来の技術】光学顕微鏡や電子顕微鏡等の顕微鏡は、
通常、焦点深度を有しており、このため観察試料の深度
方向について鮮明な像を得ることができないという問題
点がある。例えば、通常の光学顕微鏡を用いて生体観察
等の凹凸がある試料の観察を行う場合、高倍率となると
それに応じて焦点深度が浅くなるため、試料のある一部
分に焦点があっても他の部分では焦点が合わず、焦点が
ぼけた像となる。そのため、試料の全体について焦点の
合った像を得ることが困難となる。
2. Description of the Related Art Microscopes such as optical microscopes and electron microscopes
Usually, it has a depth of focus, which causes a problem that a clear image cannot be obtained in the depth direction of the observation sample. For example, when observing a sample with unevenness such as a biological observation using an ordinary optical microscope, the depth of focus becomes shallower at higher magnifications, so even if there is a focus on one part of the sample Then the image is out of focus and out of focus. Therefore, it is difficult to obtain a focused image of the entire sample.

【0003】この問題を解決するため、例えば、光学顕
微鏡のレンズの開口数を減らして長焦点化を行うこと
や、焦点位置を焦点深度方向へ移動させながら、フィル
ムや撮像管等の一つの受光面上に多数の像を重ねて露光
したものの画質を調整することによって長焦点像を求め
る方法が知られている。
In order to solve this problem, for example, the numerical aperture of the lens of the optical microscope is reduced to make the focal point longer, or while moving the focal position in the depth of focus direction, one of the light-receiving elements such as a film and an image pickup tube is received. A method is known in which a long-focus image is obtained by adjusting the image quality of a plurality of images that have been exposed by superimposing them on a surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
レンズの開口数の減少による長焦点化では、像が暗くな
ってしまい、同一受光面上へ複数像を多重露光したもの
の画質調整では、鮮明な像が得られない。
However, in the conventional case where the focal length is reduced by decreasing the numerical aperture of the lens, the image becomes dark, and when a plurality of images are multiple-exposed on the same light-receiving surface, the image quality becomes sharp. I can't get a statue.

【0005】そこで、本発明は前記した従来の顕微鏡の
問題点を解決し、十分な長焦点化によって焦点深度を向
上させることができ、また、試料全体について鮮明な像
を得ることができる顕微鏡の画像処理方法を提供するこ
とを目的とする。
Therefore, the present invention solves the above-mentioned problems of the conventional microscopes, can improve the depth of focus by sufficiently increasing the focal length, and can provide a clear image of the entire sample. An object is to provide an image processing method.

【0006】[0006]

【課題を解決するための手段】本発明の顕微鏡の画像処
理方法は、焦点位置の異なる複数の顕微鏡像を積算して
積算像を求め、積算像をフーリエ変換して2次元のスペ
クトルを求め、この求めた2次元スペクトルの高調波成
分を強調し、高調波強調した2次元スペクトルをフーリ
エ逆変換して高調波強調した顕微鏡像を求めることによ
って、焦点深度を向上させることができ、また、試料全
体について鮮明な像を得る。
According to the image processing method of a microscope of the present invention, a plurality of microscope images having different focal positions are integrated to obtain an integrated image, and the integrated image is Fourier transformed to obtain a two-dimensional spectrum. It is possible to improve the depth of focus by emphasizing the higher harmonic component of the obtained two-dimensional spectrum, and inverse Fourier transforming the two-dimensional spectrum in which the harmonic is emphasized to obtain a microscopic image in which the harmonic is emphasized. Get a clear picture of the whole.

【0007】本発明の顕微鏡の画像処理方法は、試料に
対して焦点位置を異ならせ求めた複数の顕微鏡像の積算
像をフーリエ変換によって周波数領域のデータに変換
し、この周波数領域において高調波成分を強調すること
によって、焦点の合った高調波成分の割合を高め、焦点
の合っていない低調波成分の割合を低める高調波強調を
行い、この高調波強調した画像データをフーリエ逆変換
するものである。
According to the image processing method of the microscope of the present invention, the integrated image of a plurality of microscope images obtained by changing the focal position with respect to the sample is converted into the data of the frequency domain by Fourier transform, and the harmonic components in this frequency domain are converted. By enhancing the ratio of the focused harmonic component and lowering the ratio of the non-focused subharmonic component, the inverse Fourier transform of this harmonic-enhanced image data is performed. is there.

【0008】本発明の顕微鏡の画像処理方法において、
周波数領域における高調波強調は、顕微鏡像の積算によ
る焦点のぼけを解消して焦点深度を向上させる。また、
顕微鏡像の積算は、焦点位置の移動との同期を必要とし
ないため、長焦点の深さに制限はなく、十分な深さの長
焦点化を行うことができる。
In the image processing method of the microscope of the present invention,
Harmonic enhancement in the frequency domain eliminates defocusing due to the integration of microscope images and improves the depth of focus. Also,
Since the integration of the microscopic images does not need to be synchronized with the movement of the focus position, there is no limitation on the depth of the long focus, and it is possible to achieve the long focus with a sufficient depth.

【0009】本発明の実施態様は、2次元スペクトルか
ら求めたパワースペクトルの一次関数、あるいは二次関
数を重み係数とし、この重み係数を2次元スペクトルに
乗算するものであり、これによって、2次元スペクトル
の高調波強調を行うことができる。
In the embodiment of the present invention, a linear function or a quadratic function of the power spectrum obtained from the two-dimensional spectrum is used as a weighting coefficient, and the two-dimensional spectrum is multiplied by this weighting coefficient. It is possible to perform harmonic enhancement of the spectrum.

【0010】本発明の他の実施態様は、顕微鏡からの色
信号に対して、RGBの各色信号毎に画像処理を行うも
のであり、これによって、顕微鏡像のカラー表示を行う
ことができる。
According to another embodiment of the present invention, the color signal from the microscope is subjected to image processing for each of the RGB color signals, whereby a microscopic image can be displayed in color.

【0011】[0011]

【発明の実施の形態】以下、本発明の発明の実施の形態
ついて、図を用いて詳細に説明する。なお、以下では、
顕微鏡として光学顕微鏡を例として説明するが、光学顕
微鏡に限らず電子顕微鏡についても適用することができ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following,
An optical microscope will be described as an example of the microscope, but the present invention is not limited to the optical microscope and can be applied to an electron microscope.

【0012】図1は、本発明の光学顕微鏡の全体構成を
説明するためのブロック図である。なお、図1のブロッ
ク図は、本発明の光学顕微鏡の画像処理方法の説明に必
要な構成部分のみを示し、その他の光学顕微鏡の構成に
ついては省略している。
FIG. 1 is a block diagram for explaining the overall configuration of the optical microscope of the present invention. Note that the block diagram of FIG. 1 shows only the components necessary for explaining the image processing method of the optical microscope of the present invention, and omits the configurations of other optical microscopes.

【0013】図1において、1は光学顕微鏡、2は光学
顕微鏡1の顕微鏡像を画像信号として取り出すためのT
Vカメラ等の撮像手段、3は試料7を載置し、光学顕微
鏡1に対してX,Y方向およびZ方向に移動する試料ス
テージ、4は試料ステージの移動を制御するための試料
ステージ制御手段、5は撮像手段から入力した画像信号
に画像処理を施して表示信号を生成する画像処理手段、
6は表示手段である。また、画像処理手段5は試料ステ
ージ制御手段4に対してステージ駆動信号を出力し、試
料ステージ3の移動と画像信号の取込みとの制御を行っ
ている。
In FIG. 1, 1 is an optical microscope, 2 is a T for extracting a microscope image of the optical microscope 1 as an image signal.
An imaging means such as a V camera, a sample stage 3 on which a sample 7 is placed, and a sample stage which moves in the X, Y and Z directions with respect to the optical microscope 1, a sample stage control means for controlling the movement of the sample stage. Reference numeral 5 denotes an image processing unit that performs image processing on the image signal input from the image pickup unit to generate a display signal,
Reference numeral 6 is a display means. The image processing means 5 outputs a stage drive signal to the sample stage control means 4 to control the movement of the sample stage 3 and the acquisition of the image signal.

【0014】次に、上記構成を備える光学顕微鏡を適用
して顕微鏡像の画像処理を行う方法の動作について、図
2のフローチャートに従って説明する。
Next, the operation of the method of performing image processing of a microscope image by applying the optical microscope having the above configuration will be described with reference to the flowchart of FIG.

【0015】試料7を試料ステージ3上に載置し、X,
Y方向に移動して観察位置を定める。この試料7は光軸
方向に平坦でなく凹凸を有しているものとする。試料ス
テージ3を光学顕微鏡1の光軸方向(図中のZ方向)に
移動し、光学顕微鏡の観察あるいは自動焦点装置によっ
て試料7の最も凸の部位に焦点を合わせる(ステップS
1)。
The sample 7 is placed on the sample stage 3, and X,
Move in the Y direction to determine the observation position. This sample 7 is assumed to have irregularities in the optical axis direction instead of being flat. The sample stage 3 is moved in the optical axis direction of the optical microscope 1 (Z direction in the figure), and the most convex portion of the sample 7 is focused by observation of the optical microscope or an automatic focusing device (step S
1).

【0016】このZ方向位置において、撮像手段2によ
って光学顕微鏡1の顕微鏡像を撮像し画像信号を取り出
し、画像処理手段5中に取り込む。画像信号は画素単位
の画像データとして出力される。図3の画像データを説
明するための図において、(a)に示す試料7の最も凸
の部位である第1画像は(b)に示す画像データの形態
で求められ、図中(i,j)の画素の画像データは1D
ijで示している(ステップS2)。
At this Z-direction position, the image pickup means 2 picks up a microscope image of the optical microscope 1 to take out an image signal, which is taken into the image processing means 5. The image signal is output as image data in pixel units. In the diagram for explaining the image data in FIG. 3, the first image, which is the most convex portion of the sample 7 shown in (a), is obtained in the form of the image data shown in (b). ) The pixel image data is 1D
This is indicated by ij (step S2).

【0017】ステップS2で求めた画像データをフレー
ムメモリに画素単位で積算する。ここで、図4に示すフ
レームメモリはi方向にM画素、j方向にN画素のM×
N個の画素から構成することができる。各画素を16ビ
ットで構成する場合には、例えば8ビット分の階調の画
像データを最大256枚(8ビット分)積算することが
できる。なお、このフレームメモリでは、(i,j)の
画素に積算される画像データをΣDijで示している(ス
テップS3)。
The image data obtained in step S2 is integrated in the frame memory on a pixel-by-pixel basis. Here, the frame memory shown in FIG. 4 has M pixels of M pixels in the i direction and N pixels of the j direction.
It can be composed of N pixels. When each pixel is composed of 16 bits, a maximum of 256 pieces (8 bits) of image data of gradation of 8 bits can be integrated, for example. In this frame memory, the image data integrated in the pixel (i, j) is indicated by ΣDij (step S3).

【0018】図3(a),(b)において、第1画像の
画像信号を取り込んで、画像データ1Dijをフレームメ
モリ中のΣDijに積算した後、試料ステージ3を移動し
て第2画像の画像信号の取込みを行い、画像データ2D
ijをフレームメモリ中のΣDijに積算する。そして、こ
の試料ステージ3の移動,画像信号の取込み,および画
像データの積算の処理を繰り返す。このステップS1,
2,3の処理の繰り返しは、試料7の深さ方向について
所定の画像データが得られるまで行う(ステップS
4)。
In FIGS. 3A and 3B, the image signal of the first image is taken in, the image data 1Dij is integrated into ΣDij in the frame memory, and then the sample stage 3 is moved to move the image of the second image. Signal acquisition and image data 2D
ij is added to ΣDij in the frame memory. Then, the process of moving the sample stage 3, capturing the image signal, and integrating the image data is repeated. This step S1,
The process of 2 and 3 is repeated until predetermined image data is obtained in the depth direction of the sample 7 (step S
4).

【0019】ここで、試料ステージ3の移動量と顕微鏡
の焦点深度と関係について、図5を用いて説明する。本
発明の積算像は、試料ステージ3のZ方向の移動毎に得
られる像を積算することにより求める。この試料ステー
ジ3のZ方向の移動量は、積算像中の画像データに中断
部分が生じないように設定する必要がある。
The relationship between the amount of movement of the sample stage 3 and the depth of focus of the microscope will be described with reference to FIG. The integrated image of the present invention is obtained by integrating the images obtained each time the sample stage 3 moves in the Z direction. The amount of movement of the sample stage 3 in the Z direction needs to be set so that no interruption occurs in the image data in the integrated image.

【0020】通常、顕微鏡は顕微鏡の持つ焦点の前後に
焦点深度を備え、該焦点深度内について明瞭な像が得ら
れる。図5(b),(c)は異なる焦点位置で求められ
る第p画像と第q画像の焦点深度範囲を斜線で示してお
り、この範囲内の像は明瞭な像となる。そこで、試料ス
テージ3のZ方向の移動量を、隣接する画像の焦点深度
範囲が重なるよう定める。これによって、積算像中の明
瞭な画像部分を断続することなく連続させることができ
る。図5(d)は第p画像と隣接する第q画像の積算画
像を示しており、また、図5(e)は隣接する画像の重
なり状態を模式的示している。
Usually, the microscope has depths of focus before and after the focus of the microscope, and a clear image can be obtained within the depth of focus. 5 (b) and 5 (c), the focal depth ranges of the p-th image and the q-th image obtained at different focal positions are indicated by diagonal lines, and the images within this range are clear images. Therefore, the amount of movement of the sample stage 3 in the Z direction is determined so that the focal depth ranges of adjacent images overlap. As a result, the clear image portion in the integrated image can be made continuous without interruption. FIG. 5D shows an integrated image of the qth image adjacent to the pth image, and FIG. 5E schematically shows the overlapping state of the adjacent images.

【0021】ステップS1からステップS4によって、
試料7について深さ方向の情報を含んだ積算画像データ
ΣDijをフレームメモリ中に格納する。
From step S1 to step S4,
The integrated image data ΣDij including the depth direction information of the sample 7 is stored in the frame memory.

【0022】次に、ステップS5からステップS8の工
程によって、積算画像データの高調波強調の処理を行
う。
Next, in steps S5 to S8, the process of emphasizing harmonics of the integrated image data is performed.

【0023】はじめに、積算画像データの高調波強調処
理を周波数領域で行うために、フレームメモリ中に格納
されている積算画像データΣDijを用いて2次元FFT
処理を行って2次元スペクトルを求め、パワースペクト
ルを求める(ステップS5,ステップS6)。
First, in order to perform harmonic enhancement processing of integrated image data in the frequency domain, a two-dimensional FFT is performed using integrated image data ΣDij stored in the frame memory.
Processing is performed to obtain a two-dimensional spectrum and a power spectrum (steps S5 and S6).

【0024】次に、パワースペクトルS(k,l)を用
いて高調波強調の処理を行う。ここで、kはi方向の周
波数、lはj方向の周波数を表し、S(k,l)はその
周波数成分の強度を表す。図6は高調波強調を説明する
ための図である。図6(a)のパワースペクトルS
(k,l)を示す図において、矢印は周波数(k,l)
におけるパワースペクトルの大きさを示している。この
パワースペクトルに重み係数を乗ずることによって高調
波成分を強調する。積算画像中には、鮮明な画像となる
高周波成分と画像を不鮮明とする低周波成分が含まれて
いる。そこで、低周波成分を抑制し、高周波成分を強調
することによって鮮明な画像を生成する。
Next, harmonic enhancement processing is performed using the power spectrum S (k, l). Here, k represents the frequency in the i direction, l represents the frequency in the j direction, and S (k, l) represents the intensity of the frequency component. FIG. 6 is a diagram for explaining harmonic emphasis. The power spectrum S of FIG.
In the figure showing (k, l), the arrow indicates the frequency (k, l).
It shows the magnitude of the power spectrum in. The harmonic component is emphasized by multiplying the power spectrum by a weighting coefficient. The integrated image contains a high-frequency component that makes a clear image and a low-frequency component that makes the image unclear. Therefore, a clear image is generated by suppressing the low frequency component and emphasizing the high frequency component.

【0025】図6(b)は高調波強調を行うための重み
係数の一例であり、ar+bであらわすことができる。
ここで、rはパワースペクトルの中心からの距離であ
り、a,bは重み係数の特性を定める係数である。な
お、この重み係数はar+bに限らず任意に設定するこ
とができ、例えばar2 +br+c等を用いることがで
きる。
FIG. 6B shows an example of a weighting coefficient for emphasizing harmonics, which can be represented by ar + b.
Here, r is the distance from the center of the power spectrum, and a and b are coefficients that determine the characteristics of the weighting coefficient. The weighting coefficient is not limited to ar + b but can be set arbitrarily, and for example, ar2 + br + c can be used.

【0026】図6(c)は高調波強調後のパワースペク
トルS(k,l)’およびスペクトルを示し、高調波強
調の処理によって高調波成分が強調される(ステップS
7)。
FIG. 6C shows the power spectrum S (k, l) 'and the spectrum after the harmonic enhancement, and the harmonic component is enhanced by the processing of the harmonic enhancement (step S).
7).

【0027】高調波強調の処理で得られるデータは、周
波数領域におけるスペクトルであるため、フーリエ逆変
換によって表示可能なデータ形式に変換する。図7は画
像データの高調波強調の処理状態を説明するための図で
あり、画像データは図7(a)の処理前から図7(b)
の処理後に変換され、例えば、iが3における画像が鮮
明に表示されることになる。
Since the data obtained by the harmonic enhancement processing is a spectrum in the frequency domain, it is converted into a displayable data format by inverse Fourier transform. FIG. 7 is a diagram for explaining the processing state of the harmonic enhancement of the image data. The image data is processed from before the processing of FIG. 7A to FIG. 7B.
Is converted after the processing of 1, and the image with i = 3 is displayed clearly.

【0028】変換された画像データは、しきい値との比
較等による輝度階調変換を行って出力バッファに格納し
た後(ステップS9)、表示手段6に表示信号として送
られて表示を行う(ステップS10)。
The converted image data is subjected to luminance gradation conversion by comparison with a threshold value and stored in the output buffer (step S9) and then sent to the display means 6 as a display signal for display (step S9). Step S10).

【0029】これによって、長焦点像を得ることができ
る。また、顕微鏡からの色信号に対して、RGBの各色
信号毎に同様の画像処理を行うことによって、顕微鏡像
のカラー表示を行うことができる。
As a result, a long focus image can be obtained. Further, by performing the same image processing on the color signals from the microscope for each of the RGB color signals, it is possible to perform color display of the microscope image.

【0030】前記説明では、顕微鏡として光学顕微鏡を
用いたが、電子顕微鏡についても適用することができ
る。
In the above description, an optical microscope is used as the microscope, but an electron microscope can be applied.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
十分な長焦点化によって焦点深度を向上させることがで
き、また、試料全体について鮮明な像を得ることができ
る。
As described above, according to the present invention,
The depth of focus can be improved by sufficiently increasing the focal length, and a clear image can be obtained for the entire sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学顕微鏡の全体構成を説明するため
のブロック図である。
FIG. 1 is a block diagram for explaining an overall configuration of an optical microscope of the present invention.

【図2】顕微鏡像の画像処理を行う方法の動作を説明す
るためのフローチャートである。
FIG. 2 is a flowchart for explaining an operation of a method for performing image processing of a microscope image.

【図3】画像データを説明するための図である。FIG. 3 is a diagram for explaining image data.

【図4】フレームメモリを説明するための図である。FIG. 4 is a diagram for explaining a frame memory.

【図5】試料ステージの移動量と顕微鏡の焦点深度と関
係を説明するための図である。
FIG. 5 is a diagram for explaining the relationship between the amount of movement of the sample stage and the depth of focus of the microscope.

【図6】高調波強調を説明するための図である。FIG. 6 is a diagram for explaining harmonic emphasis.

【図7】画像データの高調波強調の処理状態を説明する
ための図である。
FIG. 7 is a diagram for explaining a processing state of harmonic enhancement of image data.

【符号の説明】[Explanation of symbols]

1…光学顕微鏡、2…撮像手段、3…試料ステージ、4
…試料ステージ制御手段、5…画像処理手段、6…表示
手段、7…試料、S…パワースペクトル、ΣDij…積算
画像データ。
1 ... Optical microscope, 2 ... Imaging means, 3 ... Sample stage, 4
... sample stage control means, 5 ... image processing means, 6 ... display means, 7 ... sample, S ... power spectrum, ΣDij ... integrated image data.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 焦点位置の異なる複数の顕微鏡像を積算
して積算像を求め、積算像をフーリエ変換して2次元の
スペクトルを求め、該2次元スペクトルの高調波成分を
強調し、高調波強調した2次元スペクトルをフーリエ逆
変換して高調波強調した顕微鏡像を求めることを特徴と
する顕微鏡の画像処理方法。
1. A plurality of microscopic images having different focal positions are integrated to obtain an integrated image, the integrated image is Fourier transformed to obtain a two-dimensional spectrum, and a harmonic component of the two-dimensional spectrum is emphasized to obtain a harmonic wave. An image processing method of a microscope, characterized in that the enhanced two-dimensional spectrum is inversely Fourier transformed to obtain a microscope image with harmonic enhancement.
JP7252237A 1995-09-29 1995-09-29 Image processing method for microscope Withdrawn JPH0997332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7252237A JPH0997332A (en) 1995-09-29 1995-09-29 Image processing method for microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7252237A JPH0997332A (en) 1995-09-29 1995-09-29 Image processing method for microscope

Publications (1)

Publication Number Publication Date
JPH0997332A true JPH0997332A (en) 1997-04-08

Family

ID=17234428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7252237A Withdrawn JPH0997332A (en) 1995-09-29 1995-09-29 Image processing method for microscope

Country Status (1)

Country Link
JP (1) JPH0997332A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037902A (en) * 2003-07-01 2005-02-10 Olympus Corp Microscope system, microscope image display system, object image display method, and program
JP2006039048A (en) * 2004-07-23 2006-02-09 Olympus Corp Microscopic apparatus
JP2006208632A (en) * 2005-01-27 2006-08-10 Nikon Corp Optical measuring instrument
JP2008147629A (en) * 2006-12-05 2008-06-26 Korea Electronics Telecommun Optical microscope system for detecting nanowire using polarizing plate and high speed fourier transform
JP2010008492A (en) * 2008-06-24 2010-01-14 Olympus Corp Living sample observation apparatus
US7719760B2 (en) 2006-12-05 2010-05-18 Electronics And Telecommunications Research Institute Optical microscope system for detecting nanowires using polarizer and fast fourier transform
JP2011107669A (en) * 2009-06-23 2011-06-02 Sony Corp Biological sample image acquiring apparatus, biological sample image acquiring method, and biological sample image acquiring program
JP2018116309A (en) * 2018-04-12 2018-07-26 ソニー株式会社 Image acquisition device, image acquisition method, and microscope
DE102018217786A1 (en) 2017-10-17 2019-04-18 Keyence Corporation Magnification observation device
DE102018217782A1 (en) 2017-10-17 2019-04-18 Keyence Corporation Magnification observation device
JPWO2020152826A1 (en) * 2019-01-24 2021-03-18 三菱電機株式会社 Fourier transform device and Fourier transform method
WO2023105839A1 (en) * 2021-12-10 2023-06-15 株式会社Jvcケンウッド High frequency emphasis amount control device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005037902A (en) * 2003-07-01 2005-02-10 Olympus Corp Microscope system, microscope image display system, object image display method, and program
JP4716686B2 (en) * 2004-07-23 2011-07-06 オリンパス株式会社 Microscope equipment
JP2006039048A (en) * 2004-07-23 2006-02-09 Olympus Corp Microscopic apparatus
JP2006208632A (en) * 2005-01-27 2006-08-10 Nikon Corp Optical measuring instrument
JP2008147629A (en) * 2006-12-05 2008-06-26 Korea Electronics Telecommun Optical microscope system for detecting nanowire using polarizing plate and high speed fourier transform
US7719760B2 (en) 2006-12-05 2010-05-18 Electronics And Telecommunications Research Institute Optical microscope system for detecting nanowires using polarizer and fast fourier transform
JP4690379B2 (en) * 2006-12-05 2011-06-01 韓國電子通信研究院 Optical microscope system for nano-line sensing using polarizing plate and fast Fourier transform
JP2010008492A (en) * 2008-06-24 2010-01-14 Olympus Corp Living sample observation apparatus
JP2011107669A (en) * 2009-06-23 2011-06-02 Sony Corp Biological sample image acquiring apparatus, biological sample image acquiring method, and biological sample image acquiring program
US9235040B2 (en) 2009-06-23 2016-01-12 Sony Corporation Biological sample image acquiring apparatus, biological sample image acquiring method, and biological sample image acquiring program
DE102018217786A1 (en) 2017-10-17 2019-04-18 Keyence Corporation Magnification observation device
DE102018217782A1 (en) 2017-10-17 2019-04-18 Keyence Corporation Magnification observation device
US10816783B2 (en) 2017-10-17 2020-10-27 Keyence Corporation Magnifying observation apparatus
JP2018116309A (en) * 2018-04-12 2018-07-26 ソニー株式会社 Image acquisition device, image acquisition method, and microscope
JPWO2020152826A1 (en) * 2019-01-24 2021-03-18 三菱電機株式会社 Fourier transform device and Fourier transform method
WO2023105839A1 (en) * 2021-12-10 2023-06-15 株式会社Jvcケンウッド High frequency emphasis amount control device

Similar Documents

Publication Publication Date Title
JP3191928B2 (en) Image input / output device
DE3905619C2 (en) Image input / output device
RU2523028C2 (en) Image processing device, image capturing device and image processing method
CN101685534B (en) Image processing device and image processing method
CN102045506B (en) Image processing apparatus and image processing method
JPH0997332A (en) Image processing method for microscope
KR20140103171A (en) Image processing device, image processing system, image processing method, and image processing program
US6337474B1 (en) Scanning microscope
US11282176B2 (en) Image refocusing
JPH08508092A (en) Imaging system
CN1696815A (en) Imaging apparatus, auto focus device, and auto focus method
KR20140107469A (en) Image processing device, image processing system, image processing method, and image processing program
US8212865B2 (en) Microscope image pickup apparatus, microscope image pickup program product, microscope image pickup program transmission medium and microscope image pickup method
JPH05313068A (en) Image input device
US20030071909A1 (en) Generating images of objects at different focal lengths
US6229928B1 (en) Image processing system for removing blur using a spatial filter which performs a convolution of image data with a matrix of no-neighbor algorithm based coefficients
JP3783813B2 (en) Confocal microscope
CN116489513A (en) Automatic focusing method and device, electronic equipment and storage medium
JPH1132251A (en) Image-processing unit
JP2006293372A (en) Method for focusing film scanner and film scanner for carrying out method
JPH0796007B2 (en) Electronic endoscope system
JP3627020B2 (en) Three-dimensional transmission microscope system and image display method
Qian et al. Extending depth of field and dynamic range from differently focused and exposed images
JP2883648B2 (en) Image input / output device
JPH10243289A (en) Image adder

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040203