JPH0995739A - Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production - Google Patents

Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production

Info

Publication number
JPH0995739A
JPH0995739A JP7255151A JP25515195A JPH0995739A JP H0995739 A JPH0995739 A JP H0995739A JP 7255151 A JP7255151 A JP 7255151A JP 25515195 A JP25515195 A JP 25515195A JP H0995739 A JPH0995739 A JP H0995739A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
less
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7255151A
Other languages
Japanese (ja)
Inventor
Noritaka Takahashi
紀隆 高橋
Nobuo Yamagami
伸夫 山上
Masakazu Niikura
正和 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7255151A priority Critical patent/JPH0995739A/en
Publication of JPH0995739A publication Critical patent/JPH0995739A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an extremely thin silicon steel sheet excellent in magnetic characteristics by subjecting a cold rolled steel sheet made of a high silicon steel to primary annealing under specified conditions, thereafter executing secondary cold rolling to regulate its sheet thickness into a final one and successibly subjecting the same to primary and secondary annealing under specified conditions. SOLUTION: A hot rolled sheet of a high silicon-low carbon steel contg., by weight, <0.01% C and 2.5 to 7% Si is descaled and is thereafter subjected to cold rolling for two times including process annealing at 70 to 90% draft. This cold rolled steel sheet is subjected to process annealing under the conditions of 700 to 950 deg.C annealing temp.×0.5 to 5min holding time×>1 deg.C/sec temp. rising rate in a nonoxidizing atmosphere of N>50vol.%. Then, the steel sheet is subjected to secondary cold rolling at 50 to 90% draft to form into a cold rolled sheet having <0.20mm sheet thickness, which is thereafter subjected to primary annealing of heating to the temp. range of 850 to 950 deg.C at a temp. rising rate of >=20 deg.C/sec in a nonoxidizing atmosphere of N>70vol.% and holding for >=3h and is subsequently subjected to secondary annealing of holding to 900 to 1,300 deg.C for >=30sec in a reducing atmosphere contg. no N, in a nonoxidizing atmosphere under <0.5Pa oxygen partial pressure or in a vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気特性にすぐれ
た極薄けい素鋼板の製造方法及び磁気特性に優れた極薄
けい素鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-thin silicon steel sheet having excellent magnetic properties and an ultra-thin silicon steel sheet having excellent magnetic properties.

【0002】[0002]

【従来の技術】変電器の鉄芯などに用いられる方向性け
い素鋼板は、特公昭46-23820号公報等に示されるよう
に、従来、2次再結晶のために、AlNやMnSなどの
析出物をインヒビタとして利用して製造されている。し
かしながらこのような方向性けい素鋼板は、AlNやM
nSなどの多量のインヒビタの固溶のための高温のスラ
ブ加熱工程、最終焼鈍までの脱炭焼鈍工程および2次再
結晶を完全に完了させ、磁気特性に影響をあたえる不純
物を純化するための高温長時間焼鈍工程を必須としてお
り、経済的な観点から問題を有していた。
2. Description of the Related Art Oriented silicon steel sheets used for iron cores of transformers have conventionally been made of AlN or MnS for secondary recrystallization as shown in Japanese Patent Publication No. 46-23820. It is manufactured using the precipitate as an inhibitor. However, such a grain-oriented silicon steel sheet is
High temperature slab heating process for solid solution of a large amount of inhibitor such as nS, decarburization annealing process until final annealing and high temperature for purifying impurities that affect magnetic properties completely by secondary recrystallization. It requires a long-time annealing process and has a problem from an economical point of view.

【0003】また、このような材料に要求される磁気特
性のなかでも特に重要視される鉄損値は、板厚が薄くな
るほど向上すると考えられているものの、従来のけい素
鋼板では、インヒビタの問題で0.2mm 以下の極薄材の製
造が困難であるとされてきた。
[0003] Among the magnetic properties required for such materials, the iron loss value, which is regarded as particularly important, is considered to increase as the sheet thickness becomes thinner. Due to problems, it has been said that it is difficult to produce ultra-thin materials of 0.2 mm or less.

【0004】このような問題に対して、特開昭62-83421
号公報および特開平1-212721号公報に示されるように、
極低炭素系であることを前提として、これにAlを微量
に添加した組成とすることによって問題を回避する手法
が考案されている。また特開平5-186829 号公報に代表
されるような表面エネルギーを用いた極薄方向性けい素
鋼板の製造方法が提案されている。
With respect to such a problem, Japanese Patent Laid-Open No. 62-83421
As shown in Japanese Patent Laid-Open No. 1-212721 and Japanese Patent Laid-Open No. 1-212721,
Assuming that it is an extremely low carbon type, a method has been devised to avoid the problem by forming a composition in which a trace amount of Al is added to this. Further, there has been proposed a method for manufacturing an ultrathin grain-oriented silicon steel sheet using surface energy as represented by Japanese Patent Laid-Open No. 5-186829.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開昭
62-83421号公報および特開平1-212721号公報に記載され
ている方法によれば、高温のスラブ加熱や高温長時間の
焼鈍プロセスを省略でき経済的効果が得られるものの、
0.2mm 以下の板厚では品質のバラツキが大きく工業的に
安定した2次再結晶挙動を得ることができないという問
題があった。
SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
According to the method described in JP-A 62-83421 and JP-A 1-212721, although high temperature slab heating and high temperature long time annealing process can be omitted, an economic effect can be obtained.
When the plate thickness is 0.2 mm or less, there is a problem that quality remarkably varies and industrially stable secondary recrystallization behavior cannot be obtained.

【0006】また、特開平5-186829 号公報の方法は、
インヒビタを用いないため、本発明が対象とする極薄鋼
板の製造に原理的に有利な手法であるが、微量の不純
物、雰囲気の微妙な変化などによって結晶粒成長が左右
されその結果として安定性に欠けるという問題を抱えて
いた。
The method disclosed in Japanese Patent Laid-Open No. 5-186829 is
Since it does not use an inhibitor, it is a method that is theoretically advantageous in the production of the ultra-thin steel sheet targeted by the present invention, but the crystal grain growth is influenced by a slight amount of impurities, subtle changes in the atmosphere, etc. I had a problem of lacking.

【0007】本発明は、そうした問題点を克服し、脱炭
焼鈍および高温長時間の焼鈍を施さずに、0.2mm 以下の
板厚で{110 }<001> 面方位が安定的に2次再結晶し、
これによって磁気特性に優れたけい素鋼板が製造可能と
なるような方法を提供することにある。
The present invention overcomes such problems, and the {110} <001> plane orientation is stably secondary-reformed at a plate thickness of 0.2 mm or less without performing decarburizing annealing and annealing at high temperature for a long time. Crystallize,
This is to provide a method by which a silicon steel sheet having excellent magnetic properties can be manufactured.

【0008】[0008]

【課題を解決するための手段】第1発明は、重量%で、
C:0.01%以下、Si:2.5 %以上7%以下、Mn:0.
005 %以上0.12%以下、P:0.02%以下、S:0.002 %
以上0.005 %以下、sol.Al:0.0015%以上0.006 %以
下、N:0.001 %以上0.008 %以下を含み、不純物とし
てのTi+Nbが0.003 %以下である熱延鋼板を準備す
る工程、上記熱延鋼板を脱スケール後、圧下率70〜90%
の一次冷間圧延を施す工程、上記冷間圧延鋼板を、窒素
50vol.%以上含む非酸化性雰囲気下、焼鈍温度700℃〜9
50 ℃、保持時間0.5 〜5分、昇温速度1℃/sec 以上
の条件で中間焼鈍を実施する工程、上記焼鈍板に圧下率
50〜90%の2次冷間圧延を実施し、板厚0.20mm以下の冷
間圧延鋼板とする工程、上記冷間圧延鋼板を、窒素70vo
l.%以上含む還元性雰囲気において、20℃/hour 以上の
昇温速度で850 ℃以上950 ℃以下の所定温度まで加熱
し、該温度に3時間以上保持する1段目の焼鈍工程、引
き続き上記冷間圧延鋼板を、窒素を含まない還元性雰囲
気もしくは酸素分圧が0.5Pa 以下で実質的に窒素を含ま
ない非酸化性雰囲気または酸素分圧が0.5Pa以下の真空
中において、900 ℃以上1300℃以下の範囲の所定温度で
30秒以上の保持を行う2段目の焼鈍工程を含む磁気特性
に優れた極薄けい素鋼板の製造方法および上記製法によ
って製造されることを一特定方法とする磁気特性に優れ
た極薄けい素鋼板である。
The first aspect of the present invention, in% by weight,
C: 0.01% or less, Si: 2.5% or more and 7% or less, Mn: 0.
005% or more and 0.12% or less, P: 0.02% or less, S: 0.002%
Of 0.005% or more, sol.Al: 0.0015% or more and 0.006% or less, N: 0.001% or more and 0.008% or less, and a step of preparing a hot rolled steel sheet in which Ti + Nb as an impurity is 0.003% or less, After descaling, the rolling reduction is 70 to 90%
The step of performing the primary cold rolling, the cold rolled steel sheet is
Annealing temperature 700 ℃ ~ 9 in non-oxidizing atmosphere containing 50vol.% Or more
Step of carrying out intermediate annealing under the conditions of 50 ° C, holding time of 0.5 to 5 minutes, and heating rate of 1 ° C / sec or more.
A step of carrying out secondary cold rolling of 50 to 90% to obtain a cold rolled steel sheet having a plate thickness of 0.20 mm or less.
In a reducing atmosphere containing l.% or more, the first annealing step of heating to a predetermined temperature of 850 ° C. or more and 950 ° C. or less at a temperature rising rate of 20 ° C./hour or more and holding at that temperature for 3 hours or more. Cold-rolled steel sheet shall be kept in a reducing atmosphere containing no nitrogen or in a non-oxidizing atmosphere containing oxygen at 0.5 Pa or less and a nitrogen content of substantially less than 0.5 Pa, or in a vacuum having an oxygen partial pressure of 0.5 Pa or less at 900 ° C or higher and 1300 ° C or higher. At a specified temperature within the range of ℃
Method for producing ultra-thin silicon steel sheet excellent in magnetic characteristics including second annealing step for holding for 30 seconds or more, and ultra-thin silicon excellent in magnetic characteristics, which is specified by the above-mentioned production method It is a bare steel plate.

【0009】以下、発明に至った経緯と発明の詳細を述
べる。本発明者らは、脱炭焼鈍および高温長時間の焼鈍
を施さずに、0.2mm 以下の板厚で{110 }<001> 面方位
が安定的に2次再結晶し、これによって磁気特性の優れ
たけい素鋼板が製造可能となるような鋼板の組成および
その製造方法を見出すべく実験・研究を行った。その結
果、下記の様な知見を得たのである。
The background of the invention and the details of the invention will be described below. The present inventors stably secondary recrystallize the {110} <001> plane orientation at a plate thickness of 0.2 mm or less without performing decarburization annealing and annealing at high temperature for a long time. Experiments and research were conducted to find out the composition of the steel sheet and the manufacturing method thereof that enable the production of excellent silicon steel sheets. As a result, we obtained the following findings.

【0010】1)特開昭62-83421号公報および特開平1-
212721号公報に示されるような、通常の0.3mm の厚さの
鋼板を2次再結晶させる場合と比べて、本発明が対象と
する板厚0.2mm 以下の極薄鋼板の場合、1次および2次
再結晶を発現させる焼鈍工程における雰囲気からの窒化
の影響が極めて大きく、新たな問題を引き起こすこと。
たとえば特開昭62-83421号公報の実施例中の表2におけ
るY鋼相当の組成では、インヒビタとしてのAlNが多
くなりすぎるうえに、その分布が不適当となり、その結
果、2次再結晶が生じないこと。
1) JP-A-62-83421 and JP-A-1-
Compared to the case of secondary recrystallizing a normal steel plate having a thickness of 0.3 mm as shown in Japanese Patent No. 212721, in the case of an ultra-thin steel plate having a plate thickness of 0.2 mm or less, which is the object of the present invention, the primary and The effect of nitriding from the atmosphere in the annealing process that causes secondary recrystallization is extremely large and causes a new problem.
For example, in the composition corresponding to the Y steel in Table 2 in the examples of JP-A-62-83421, the amount of AlN as an inhibitor becomes too large and the distribution thereof becomes unsuitable, resulting in the secondary recrystallization. Do not happen.

【0011】2)このような過剰なAlNの形成を防ぐ
ために、同一の組成で、焼鈍雰囲気の窒素分圧を低減さ
せたり、焼鈍温度を低下させる検討を行ったが、0.2mm
以下の板厚の場合には、表面からの窒素の脱出も同時に
おこるため、鋼中の主要なインヒビタとなるAlNの2
次再結晶を発現させるために有効な量および形態の制御
が極めて困難であること。
2) In order to prevent the formation of such excessive AlN, the same composition was used to reduce the nitrogen partial pressure in the annealing atmosphere and to lower the annealing temperature.
In the case of the following plate thicknesses, nitrogen escapes from the surface at the same time, so AlN which is the main inhibitor in the steel
It is extremely difficult to control the amount and morphology effective for causing secondary recrystallization.

【0012】3)2次再結晶を発現させるために、焼鈍
中のAlNの形態、量の変化をみこした組成の最適化お
よび製造プロセスの検討を行ったところ、特定の成分範
囲に組成を限定した場合にインヒビタとなるAlNが2
次再結晶に有効に働くこと。
3) In order to develop the secondary recrystallization, optimization of the composition considering changes in the morphology and amount of AlN during annealing and examination of the manufacturing process were conducted, and the composition was limited to a specific range of components. If you do, the AlN that becomes an inhibitor is 2
To work effectively for the next recrystallization.

【0013】4)さらに、特定の成分範囲に調整された
熱延鋼板を、冷間圧延後、窒素を特定量含む雰囲気下
で、特定温度・特定時間焼鈍するとある程度の2次再結
晶が生ずること。冷間圧延は中間焼鈍を含む3回の冷延
でも可能であるが、冷間圧延を特定の圧下率とし、窒素
を特定量含む特定条件で中間焼鈍すると2回の冷間圧延
で済むこと。
4) Further, when the hot-rolled steel sheet adjusted to have a specific composition range is cold-rolled and then annealed at a specific temperature for a specific time in an atmosphere containing a specific amount of nitrogen, some degree of secondary recrystallization occurs. . Cold rolling can be performed by three times of cold rolling including intermediate annealing, but cold rolling is performed at a specific reduction ratio, and when intermediate annealing is performed under specific conditions including a specific amount of nitrogen, only two cold rolling processes are required.

【0014】5)ただし、1段目までの焼鈍では、2次
再結晶粒の被覆率が、最大でも約80%程度であり、残り
の20%程度は、2次再結晶粒に食い残された板厚程度の
粒径の領域となること。このような細粒部は、貫通粒と
なっているため、結晶粒の曲率に反比例する粒界エネル
ギが十分ではなく、長時間焼鈍しても殆ど2次再結晶粒
に蚕食されず、磁気特性的にも不充分であること。
5) However, in the annealing up to the first step, the coverage of the secondary recrystallized grains is about 80% at the maximum, and the remaining 20% is left behind in the secondary recrystallized grains. The area of the grain size is about the plate thickness. Since such a fine grain portion is a penetrating grain, the grain boundary energy inversely proportional to the curvature of the crystal grain is not sufficient, and even if it is annealed for a long time, the secondary recrystallized grain is scarcely eroded and the magnetic characteristics Is also insufficient.

【0015】6)このような細粒部を2次再結晶粒に蚕
食させるため、結晶粒径に依存せず、{110}面が優
先的に成長する表面エネルギを2次再結晶粒の進展のた
めの駆動力として用いると2次再結晶の被覆率が90%を
越えること。
6) Since the secondary recrystallized grains are made to erode by such a fine grain portion, the surface energy at which the {110} plane grows preferentially does not depend on the crystal grain size, and the secondary recrystallized grains develop. When used as a driving force for the secondary recrystallization, the coverage must exceed 90%.

【0016】7)そうして得られたけい素鋼板は極めて
良好な磁気特性を示すこと。
7) The silicon steel sheet thus obtained exhibits extremely good magnetic properties.

【0017】8)なお、特開平5-186829 号公報に示さ
れている、表面エネルギ法のみでGoss粒を異常粒成長さ
せる方法は、本発明鋼のようにSが0.0020wt%以上含有
されている鋼では、粒成長性がきわめて低下するため、
900 ℃以上1300℃以下、10分間の焼鈍でのGoss粒の被覆
率は最大でも40%程度であり、不満足な結果となるこ
と。そこで上記知見をもとにさらに検討を進め、本発明
を完成したのである。
8) The method of abnormally growing Goss grains by only the surface energy method, which is disclosed in Japanese Patent Laid-Open No. 5-186829, contains 0.0020 wt% or more of S as in the steel of the present invention. In steel, grain growth is extremely reduced,
The coverage of Goss grains during annealing for 10 minutes at 900 ℃ or more and 1300 ℃ or less is about 40% at the maximum, which is an unsatisfactory result. Therefore, the present invention was completed by further studying based on the above findings.

【0018】まず、本発明において、熱延鋼板の化学成
分および製造方法を限定した理由について説明する。
First, the reason why the chemical composition and the manufacturing method of the hot rolled steel sheet are limited in the present invention will be explained.

【0019】C:インヒビタ法では、Cによる組織およ
び集合組織制御を行なうが、前述した本発明ではそうし
たことを行わないため、積極的なCの添加を行う必要は
ない。むしろ、Cは、0.01wt%をこえると磁気特性や加
工性を著しく低下させる。このため、Cは0.01wt%以
下、好ましくは0.005wt %以下とする。
C: In the inhibitor method, the control of the texture and texture by C is carried out, but in the present invention described above, this is not done, so it is not necessary to add C positively. Rather, if C exceeds 0.01 wt%, the magnetic properties and workability are significantly deteriorated. Therefore, C is 0.01 wt% or less, preferably 0.005 wt% or less.

【0020】Si:Siは、磁気特性や相変態を通じた
組織および集合組織制御を行うために極めて重要であ
る。Siが2.5wt %を下回ると、最終焼鈍の2段目の焼
鈍において、高温における相変態にともなう組織および
集合組織の変化が著しく、所定の特性を有する鋼板を製
造することが困難となる。また、Siが7wt%よりも高
い場合には加工性が著しく低下する。従って、Siは2.
5wt %以上7wt %以下とする。ただし加工性の点からS
iのより好ましい範囲を述べると4wt%以下である。
Si: Si is extremely important for controlling the structure and texture through magnetic properties and phase transformation. If the Si content is less than 2.5 wt%, in the second annealing of the final annealing, the changes in the structure and the texture due to the phase transformation at high temperature are remarkable, and it becomes difficult to manufacture a steel sheet having the predetermined properties. On the other hand, if the content of Si is higher than 7% by weight, the workability is significantly reduced. Therefore, Si is 2.
5 wt% or more and 7 wt% or less. However, in terms of workability, S
The more preferable range of i is 4% by weight or less.

【0021】Mn:Mnは、MnSの形成のために極め
て重要である。このMnSはAlNインヒビタの析出の
核となり、またAlNの固溶を遅らせる働きを有する。
ただし、0.12wt%を越えて過剰に含まれる場合は、その
完全固溶のために1250℃以上の著しい高温でのスラブ加
熱が必要となる。一方、0.005wt %未満では、このよう
な働きは認められず、2次再結晶が不完全となる。この
ため、Mnは0.005wt%以上0.12wt%以下である必要が
ある。
Mn: Mn is very important for the formation of MnS. This MnS acts as a nucleus for the precipitation of the AlN inhibitor and has a function of delaying the solid solution of AlN.
However, when it is contained in excess of 0.12 wt%, slab heating at a remarkably high temperature of 1250 ° C. or more is required for complete solid solution. On the other hand, if the content is less than 0.005 wt%, such a function is not recognized and secondary recrystallization is incomplete. For this reason, Mn needs to be 0.005 wt% or more and 0.12 wt% or less.

【0022】P:Pは粒成長速度および、加工性を低下
させるために有害である。このため、0.02wt%以下とす
る。
P: P is harmful because it lowers the grain growth rate and workability. Therefore, the content is set to 0.02 wt% or less.

【0023】S:Sは、MnSの形成のためにMnと同
様に極めて重要である。このためには、Sは0.002wt %
以上含有されなければならない。一方、0.005wt %を越
えて含有された場合には、著しく粒成長速度を低下させ
るため、2段目の焼鈍において所定の時間内で2次再結
晶を完了させることが困難となる。従って、Sは0.002w
t %以上0.005wt %以下とする。
S: S is as important as Mn for the formation of MnS. For this, S is 0.002wt%
Must be contained. On the other hand, when the content exceeds 0.005 wt%, the grain growth rate is remarkably reduced, and it becomes difficult to complete the secondary recrystallization within the predetermined time in the second annealing. Therefore, S is 0.002w
t% to 0.005 wt% or less.

【0024】sol.Al:sol.Alは、インヒビタとなる
AlN形成のために極めて重要である。sol.Alが、0.
0015wt%未満の場合は、インヒビタとしてのAlNが不
足しマトリックス粒の粗大化が生じてしまうために、2
次再結晶が困難となる。一方0.006wt %をこえると、焼
鈍中の吸窒のためにインヒビタとしてのAlNが多くな
りすぎるうえに、不適当な分布となり、その結果とし
て、2次再結晶が生じないまたは部分的に2次再結晶粒
が形成されるものの極めて低い被覆率となる。さらに、
このようなAlは、高温での粒成長性を著しく低下させ
るため、3段目の焼鈍において所定の時間内で2次再結
晶を完了させることが困難となる。従って、鋼中のsol.
Alは0.0015wt%以上0.006wt %以下とする。
Sol.Al: sol.Al is extremely important for forming AlN as an inhibitor. sol.Al is 0.
When the content is less than 15% by weight, the amount of AlN as an inhibitor is insufficient and the matrix grains are coarsened.
Next recrystallization becomes difficult. On the other hand, if it exceeds 0.006 wt%, the amount of AlN as an inhibitor becomes too large due to the absorption of nitrogen during annealing, and the distribution becomes improper, resulting in no secondary recrystallization or partial secondary recrystallization. Although recrystallized grains are formed, the coverage is extremely low. further,
Such Al remarkably deteriorates the grain growth property at high temperature, so that it becomes difficult to complete the secondary recrystallization within a predetermined time in the third annealing. Therefore, sol. In steel.
Al is 0.0015 wt% or more and 0.006 wt% or less.

【0025】N:NもインヒビタとなるAlN形成のた
めに極めて重要である。Nが0.001wt %未満では、吸窒
が始まるまでの、インヒビタとしてのAlN量が少なす
ぎるためにマトリックス粒の粗大化し、その結果2次再
結晶が困難となる。一方、0.008wt %をこえるとスラブ
加熱中に析出したAlNが、熱間圧延の再加熱時にも一
部未固溶のまま残留する。これらは熱延中に粗大化し、
その結果、AlNの分布形態が変化し、2次再結晶が生
じにくくなる。このため、Nは0.001wt %以上0.008wt
%以下必要である。
N: N is also extremely important for the formation of inhibitory AlN. If N is less than 0.001 wt%, the amount of AlN as an inhibitor until the onset of nitrogen absorption is too small, so that the matrix grains become coarse, and as a result, secondary recrystallization becomes difficult. On the other hand, when the content exceeds 0.008 wt%, AlN precipitated during slab heating remains partially undissolved even during reheating during hot rolling. These coarsen during hot rolling,
As a result, the distribution form of AlN changes and secondary recrystallization hardly occurs. Therefore, N is 0.001wt% or more and 0.008wt%
% Or less is required.

【0026】Ti、Nb:鋼中に不純物として含まれる
Ti、Nbは、極めて安定な窒化物を形成するため、A
lNによる2次再結晶挙動を阻害する。このような影響
を避けるために、Ti+Nbを0.003wt %以下とする。
Ti, Nb: Ti and Nb contained as impurities in steel form an extremely stable nitride, so
Inhibits the secondary recrystallization behavior due to 1N. In order to avoid such an influence, Ti + Nb is set to 0.003 wt% or less.

【0027】続いて製造方法について述べる。 1)冷間圧延 中間焼鈍を含む2回の冷間圧延とする。Next, the manufacturing method will be described. 1) Cold rolling Two times of cold rolling including intermediate annealing.

【0028】最終焼鈍時に2次再結晶するGoss粒は、元
来熱延鋼板の表層直下にある板厚の約10%の層の熱間圧
延時に形成されたGoss組織が冷間圧延と中間焼鈍の過程
を経て継承されるものである。
The Goss grains that are secondarily recrystallized during the final annealing are the Goss microstructure originally formed immediately under the surface layer of the hot-rolled steel sheet and having a thickness of about 10% of the thickness when hot-rolling. It is inherited through the process of.

【0029】圧下率が90%を超えると、冷間圧延により
強い変形を受け圧延方向に<110 >方位がそろった組織
が著しく発達する。このような<110 >方位を有する加
工組織は粗大粒1次再結晶粒を形成する。そのため最終
焼鈍の1次再結晶に粗大泣Goss以外の面方位を有する結
晶粒が再結晶し2次再結晶粒のための駆動力が低下す
る。その結果鋼板全面をGoss粒で覆うことが出来なくな
り高い磁気特性を得られない。さらに安定して高い磁気
特性を有する鋼板を得るためには、<110 >方位を有す
る加工組織を発達させないという観点から2次冷間圧延
に関しては圧下率を80%以下とすることが望ましい。
When the rolling reduction is more than 90%, the structure is significantly deformed by cold rolling, and a structure having <110> orientation in the rolling direction is significantly developed. The texture having such a <110> orientation forms coarse primary recrystallized grains. As a result, the crystal grains having a plane orientation other than Goss are recrystallized in the primary recrystallization of the final annealing, and the driving force for the secondary recrystallized grains decreases. As a result, the entire steel sheet cannot be covered with Goss grains, and high magnetic properties cannot be obtained. In order to more stably obtain a steel sheet having high magnetic properties, it is desirable that the reduction ratio is 80% or less in the secondary cold rolling from the viewpoint of not developing a worked structure having a <110> orientation.

【0030】1次冷間圧延の圧下率が70%未満であると
熱延鋼板の板厚中央部にある、熱間圧延時に形成された
{100 }<011 >を有する伸張した結晶粒が変形される
ことなくそのまま継承される。その結果、圧下率が90%
を超えた時と同様に、最終焼鈍時にGoss粒以外の粗大粒
が形成され、Goss粒の2次再結晶を阻害する。
If the reduction ratio of the primary cold rolling is less than 70%, the elongated crystal grains having {100} <011> formed at the time of hot rolling at the center of the thickness of the hot rolled steel sheet are deformed. It is inherited without any change. As a result, the rolling reduction is 90%
As in the case of exceeding the value, coarse grains other than Goss grains are formed at the time of final annealing, and hinder secondary recrystallization of Goss grains.

【0031】2次冷間圧延の圧下率が50%未満である
と、歪エネルギーの蓄積が少ないために1次再結晶の核
生成サイトが減少する。その結果、最終焼鈍時の1次再
結晶粒が大きくなり、Goss粒の2次再結晶駆動力となる
粒界エネルギーが減少する。さらに安定して2次再結晶
を発現させるためには、細粒化という観点から圧下率を
60%以上とすることが望ましい。
If the reduction ratio of the secondary cold rolling is less than 50%, the nucleation sites of the primary recrystallization are reduced because the strain energy is less accumulated. As a result, the primary recrystallized grains at the time of final annealing become large, and the grain boundary energy, which is the driving force for secondary recrystallization of Goss grains, is reduced. In order to more stably develop the secondary recrystallization, the rolling reduction is required from the viewpoint of grain refinement.
It is desirable to be 60% or more.

【0032】以上の理由から、1次冷間圧延の圧下率を
70〜90%、2次冷間圧延のそれを50〜90%と規定する。
2次冷間圧延の圧下率のより好ましい範囲は60〜80%で
ある。
From the above reasons, the reduction ratio of the primary cold rolling is
70-90%, that of secondary cold rolling is defined as 50-90%.
The more preferable range of the rolling reduction in the secondary cold rolling is 60 to 80%.

【0033】中間焼鈍は50vol.%以上の窒素を含む非酸
化性雰囲気で行なう。雰囲気を窒素雰囲気とすることに
よって、鋼板の窒化と脱窒が同時におこり、その結果Al
N が微細化される。窒素が50vol.%未満であると鋼板の
窒化よりも脱窒が進み、AlNが適性量より減少し、十分
な2次再結晶が進展しない。酸素分圧は規定しない。著
しい酸化が防止されればそれで足りる。
The intermediate annealing is performed in a non-oxidizing atmosphere containing 50 vol.% Or more nitrogen. By setting the atmosphere to a nitrogen atmosphere, nitriding and denitrification of the steel sheet occur at the same time.
N is refined. If the nitrogen content is less than 50 vol.%, Denitrification proceeds more than nitriding of the steel sheet, AlN decreases below the appropriate amount, and sufficient secondary recrystallization does not proceed. Oxygen partial pressure is not specified. That is enough if significant oxidation is prevented.

【0034】また焼鈍過程における析出物の粗大化を避
けるために、1℃/sec 以上の昇温速度で5分以内の保
持とする。ただし0.5 分未満の保持では十分な効果が得
られず、2次再結晶の進展にばらつきが生じる。このた
め昇温速度を1℃/sec 、保持時間を0.5 〜5分と規定
する。
Further, in order to avoid coarsening of precipitates in the annealing process, the temperature is kept at 5 ° C./sec or more for 5 minutes or less. However, if the holding time is less than 0.5 minutes, a sufficient effect cannot be obtained, and the progress of the secondary recrystallization varies. For this reason, the heating rate is defined as 1 ° C./sec, and the holding time is defined as 0.5 to 5 minutes.

【0035】さらに焼鈍温度を700 〜950 ℃と規定す
る。焼鈍温度が700 ℃未満では再結晶に伴う軟化および
析出物の形態制御、集合組織制御が不十分となる。一方
950 ℃を超えると析出物の粗大化が始まり、正常粒成長
が進展し再結晶粒も板厚に較べ大きくなる。このため最
終焼鈍時の2次再結晶粒成長が抑制される。
Further, the annealing temperature is defined as 700 to 950 ° C. If the annealing temperature is lower than 700 ° C., softening due to recrystallization, morphological control of precipitates, and texture control are insufficient. on the other hand
When the temperature exceeds 950 ° C., coarsening of precipitates starts, normal grain growth progresses, and recrystallized grains become larger than the sheet thickness. For this reason, secondary recrystallized grain growth during final annealing is suppressed.

【0036】2)冷間圧延後の焼鈍 安定した2次再結晶を発現させ、なおかつこの2次再結
晶粒の被覆率が90%以上となるためには、インヒビタと
なるAlNの焼鈍中の最適な形態、分量を制御しなくて
はならない。これを実現するのが、冷間圧延後の2回の
焼鈍である。
2) Annealing after Cold Rolling In order to develop stable secondary recrystallization and to obtain a coverage of the secondary recrystallized grains of 90% or more, it is optimum to anneal AlN as an inhibitor. You have to control the form and quantity. This is achieved by annealing twice after cold rolling.

【0037】○1段目の焼鈍:1段目の焼鈍は、材料の
1次再結晶と、2次再結晶の進展のために重要である。
焼鈍温度が、850 ℃未満では、インヒビタが強力に作用
して結晶粒成長が妨げられGoss粒の異常粒成長が進行し
ないため2次再結晶が生じない。一方、950 ℃超の場合
には、正常粒成長しているGoss粒以外の結晶粒が粗大化
し始め2次再結晶が生じない。このため焼鈍温度は850
〜950 ℃とする。
First stage annealing: The first stage annealing is important for the progress of primary recrystallization and secondary recrystallization of the material.
If the annealing temperature is less than 850 ° C, the inhibitor acts strongly to prevent the crystal grain growth and the abnormal grain growth of Goss grains does not proceed, so that secondary recrystallization does not occur. On the other hand, if the temperature exceeds 950 ° C., the crystal grains other than the normally grown Goss grains start to coarsen and secondary recrystallization does not occur. Therefore, the annealing temperature is 850
~ 950 ° C.

【0038】また、昇温速度が20℃/hour 未満の場合、
インヒビタとなるAlN の粗大化が顕著となり、{110 }
<001> 面方位以外の面方位の粒成長を十分に抑止するこ
とができず、その結果、{110 }<001> 面方位の2次再
結晶を選択的に起こすことが難しくなる。そのため昇温
速度を20℃/hour 以上とする。
When the heating rate is less than 20 ° C./hour,
The coarsening of AlN, which becomes an inhibitor, becomes remarkable, and {110}
Grain growth in a plane orientation other than the <001> plane orientation cannot be sufficiently suppressed, and as a result, it becomes difficult to selectively cause secondary recrystallization in the {110} <001> plane orientation. Therefore, the heating rate should be 20 ° C / hour or more.

【0039】さらに、焼鈍雰囲気は、鋼中から窒素が著
しく脱離せず、雰囲気より十分にNが供給されるような
窒素を含む還元性雰囲気とする。ただし、鋼板の酸化を
防ぐため、1vol.%以上の水素を含むことが好ましい。
また、窒素が70vol.%未満では、鋼中からの窒素の脱離
が顕著となる。このため、窒素の比率は70vol.%以上と
する。
Further, the annealing atmosphere is a reducing atmosphere containing nitrogen such that nitrogen is not significantly desorbed from the steel and N is sufficiently supplied from the atmosphere. However, in order to prevent oxidation of the steel sheet, it is preferable to contain hydrogen of 1 vol.% Or more.
If the nitrogen content is less than 70 vol.%, The desorption of nitrogen from the steel becomes significant. Therefore, the ratio of nitrogen is 70 vol.% Or more.

【0040】さらにまた、保持時間は2次再結晶を行な
わせるために十分な時間が必要であり、3時間以上とす
る。一方20時間をこえても、2次再結晶粒の被覆率にお
いて殆ど変化が見られないため、経済面から20時間以内
とすることが好ましい。
Furthermore, the holding time is required to be sufficient for carrying out the secondary recrystallization, and is set to 3 hours or more. On the other hand, even if it exceeds 20 hours, there is almost no change in the coverage of the secondary recrystallized grains.

【0041】○2段目の焼鈍:2段目の焼鈍は、2次再
結晶粒で鋼板表面を90%以上被覆するために必要な焼鈍
である。
Second-stage annealing: The second-stage annealing is an annealing necessary to cover the surface of the steel sheet with secondary recrystallized grains in an amount of 90% or more.

【0042】1段目の焼鈍では、2次再結晶粒の被覆率
は、最大でも80%程度であり、残りの20%程度は、2次
再結晶粒に食い残された板厚程度の粒径の領域となる。
このような、細粒部は、貫通粒となっているため、結晶
粒の曲率に反比例する粒界エネルギが不十分であり、長
時間焼鈍しても殆ど2次再結晶粒に蚕食されず、磁気特
性的にも不充分である。
In the first-stage annealing, the coverage of the secondary recrystallized grains is about 80% at the maximum, and the remaining 20% is about the grain thickness of the plate left unetched by the secondary recrystallized grains. It becomes the area of the diameter.
Since such fine grains are penetrating grains, the grain boundary energy inversely proportional to the curvature of the crystal grains is insufficient, and even after annealing for a long time, almost no secondary recrystallized grains are consumed by silkworms. The magnetic properties are also insufficient.

【0043】このため、2段目においては、非酸化囲気
中で焼鈍を施すことによって{110}面が優先的に成
長する表面エネルギを2次再結晶の駆動力として用い細
粒部を2次再結晶粒に蚕食させることを狙いとする。た
だし、この場合、加熱温度は表面エネルギを働かせるた
めに、900 ℃以上が必要である。また、1300℃以上に加
熱した場合には、鋼板のクリープ等によって安定して鋼
板を焼鈍することが困難である。また、いずれの温度に
おいても保持時間は30秒以上必要であり、一方30分でそ
の効果が飽和する。従って、加熱の温度範囲は900 ℃以
上1300℃以下、保持時間は30秒以上、好ましくは30分以
下とする。また、その雰囲気は、還元性雰囲気もしくは
酸素分圧が0.5Pa 以下で実質的に窒素を含まない非酸化
雰囲気または酸素分圧が0.5Pa 以下の真空中とする。窒
素が雰囲気に含まれると、鋼中に窒素が残留して磁気特
性を劣化させるためである。
Therefore, in the second stage, the surface energy at which the {110} plane preferentially grows by annealing in the non-oxidizing atmosphere is used as the driving force for the secondary recrystallization, and the fine grain portion is secondary. The aim is to cause recrystallized grains to eclipse. However, in this case, the heating temperature needs to be 900 ° C. or higher to use the surface energy. In addition, when the steel sheet is heated to 1300 ° C. or more, it is difficult to stably anneal the steel sheet due to creep or the like of the steel sheet. Further, at any temperature, the holding time is required to be 30 seconds or longer, while the effect is saturated in 30 minutes. Therefore, the heating temperature range is 900 ° C. or more and 1300 ° C. or less, and the holding time is 30 seconds or more, preferably 30 minutes or less. The atmosphere is a reducing atmosphere, a non-oxidizing atmosphere having an oxygen partial pressure of 0.5 Pa or less and containing substantially no nitrogen, or a vacuum having an oxygen partial pressure of 0.5 Pa or less. This is because if nitrogen is contained in the atmosphere, nitrogen remains in the steel and deteriorates magnetic properties.

【0044】[0044]

【実施例】表1に示される鋼種を真空溶解し、30mmまで
スラブ圧延を行った後に、1150℃加熱にて1.7 〜2.5mm
まで熱間圧延を施した。つづいて、これを酸洗してから
表2、表3および表4に示される工程で最終焼鈍までを
行い、得られた薄鋼板の組織として板厚の10倍以上の粒
径を有する結晶粒の被覆率と圧延方向の磁束密度B8[T]
、 保持力Hc[A/m] を測定した。この結果を、表2、表
3および表4に示す。この表からも明らかなように、本
発明の成分範囲でなおかつ本発明の製造方法を施した場
合にのみ、板厚の10倍以上の結晶粒径を有する粗大粒が
90%以上を被覆する磁気特性に優れた極薄けい素鋼板を
得ることができた。
[Examples] The steel grades shown in Table 1 were vacuum melted, slab-rolled to 30 mm, and then heated at 1150 ° C to 1.7-2.5 mm.
Hot rolling was performed. Subsequently, after pickling, this was subjected to the final annealing in the steps shown in Table 2, Table 3 and Table 4 to obtain a crystal grain having a grain size of 10 times or more the sheet thickness as the microstructure of the obtained thin steel sheet. Coverage and magnetic flux density in rolling direction B8 [T]
The holding power Hc [A / m] was measured. The results are shown in Tables 2, 3 and 4. As is clear from this table, only when the production method of the present invention is applied in the component range of the present invention, coarse grains having a crystal grain size 10 times or more the plate thickness are
It was possible to obtain an ultra-thin silicon steel plate that covers 90% or more and has excellent magnetic properties.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【発明の効果】本発明によってインヒビターと表面エネ
ルギーを併用することにより、2次再結晶粒が鋼板表面
の面積率で90%以上の極薄珪素鋼板を、工業的に安定し
て得ることが可能となった。
INDUSTRIAL APPLICABILITY By using an inhibitor and surface energy in combination according to the present invention, it is possible to industrially stably obtain an ultra-thin silicon steel sheet in which the secondary recrystallized grains have an area ratio of the steel sheet surface of 90% or more. Became.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.01%以下、Si:2.5
%以上7%以下、Mn:0.005 %以上0.12%以下、P:
0.02%以下、S:0.002 %以上0.005 %以下、sol.A
l:0.0015%以上0.006 %以下、N:0.001 %以上0.00
8 %以下を含み、不純物としてのTi+Nbが0.003 %
以下である熱延鋼板を準備する工程、 上記熱延鋼板を脱スケール後、圧下率70〜90%の一次冷
間圧延を施す工程、 上記冷間圧延鋼板を、窒素50vol.%以上を含む非酸化性
雰囲気下、焼鈍温度700 ℃〜950 ℃、保持時間0.5 〜5
分、昇温速度1℃/sec 以上の条件で一次焼鈍を実施す
る工程、 上記焼鈍板に圧下率50〜90%の2次冷間圧延を実施し、
板厚0.20mm以下の冷間圧延鋼板とする工程、 上記冷間圧延鋼板を、窒素70vol.%以上含む還元性雰囲
気において、20℃/hour 以上の昇温速度で850 ℃以上95
0 ℃以下の所定温度まで加熱し、該温度に3時間以上保
持する1段目の焼鈍工程、 引き続き上記冷間圧延鋼板を、窒素を含まない還元性雰
囲気もしくは酸素分圧が0.5Pa 以下で実質的に窒素を含
まない非酸化性雰囲気または酸素分圧が0.5Pa以下の真
空中において、900 ℃以上1300℃以下の範囲の所定温度
で30秒以上の保持を行う2段目の焼鈍工程を含む磁気特
性に優れた極薄けい素鋼板の製造方法。
1. By weight%, C: 0.01% or less, Si: 2.5
% To 7%, Mn: 0.005% to 0.12%, P:
0.02% or less, S: 0.002% or more and 0.005% or less, sol.A
l: 0.0015% to 0.006%, N: 0.001% to 0.00
Including 8% or less, 0.003% of Ti + Nb as impurities
A step of preparing a hot-rolled steel sheet which is the following, a step of descaling the hot-rolled steel sheet, and a step of performing primary cold rolling with a rolling reduction of 70 to 90%, the cold-rolled steel sheet containing a nitrogen content of 50 vol.% Or more. Annealing temperature 700 ° C to 950 ° C, holding time 0.5 to 5 in oxidizing atmosphere
Min., A step of carrying out primary annealing under conditions of a heating rate of 1 ° C./sec or more;
A step of forming a cold-rolled steel sheet having a plate thickness of 0.20 mm or less in the reducing atmosphere containing 70 vol.% Or more of nitrogen in the cold-rolled steel sheet at a heating rate of 20 ° C./hour or more and 850 ° C. or more 95
The first stage annealing step of heating to a predetermined temperature of 0 ° C. or lower and maintaining the temperature at that temperature for 3 hours or longer, and subsequently, the cold-rolled steel sheet is subjected to a nitrogen-free reducing atmosphere or an oxygen partial pressure of 0.5 Pa or less. Includes a second-stage annealing step in which a non-oxidizing atmosphere that does not contain nitrogen or a vacuum with an oxygen partial pressure of 0.5 Pa or less is held at a predetermined temperature in the range of 900 ° C or more and 1300 ° C or less for 30 seconds or more A method for manufacturing an ultra-thin silicon steel sheet having excellent magnetic properties.
【請求項2】 請求項1記載の製法によって製造される
磁気特性に優れた極薄けい素鋼板。
2. An ultra-thin silicon steel sheet having excellent magnetic properties produced by the method of claim 1.
JP7255151A 1995-10-02 1995-10-02 Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production Withdrawn JPH0995739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7255151A JPH0995739A (en) 1995-10-02 1995-10-02 Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7255151A JPH0995739A (en) 1995-10-02 1995-10-02 Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production

Publications (1)

Publication Number Publication Date
JPH0995739A true JPH0995739A (en) 1997-04-08

Family

ID=17274789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7255151A Withdrawn JPH0995739A (en) 1995-10-02 1995-10-02 Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production

Country Status (1)

Country Link
JP (1) JPH0995739A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203520A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2012001741A (en) * 2010-06-14 2012-01-05 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
EP2832866A4 (en) * 2012-03-27 2015-11-11 Nam-Hoe Heo (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203520A (en) * 2008-02-27 2009-09-10 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
JP2012001741A (en) * 2010-06-14 2012-01-05 Jfe Steel Corp Method for manufacturing grain-oriented electrical steel sheet
EP2832866A4 (en) * 2012-03-27 2015-11-11 Nam-Hoe Heo (100 [ovw]non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2017002356A (en) Oriented magnetic steel sheet and manufacturing method therefor
JP2014508858A (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
EP1390550A1 (en) Method for producing a high permeability grain oriented electrical steel
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH0121851B2 (en)
JP3271654B2 (en) Manufacturing method of ultra-thin silicon steel sheet and ultra-thin silicon steel sheet
JPH0995739A (en) Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production
JP3390109B2 (en) Low iron loss high magnetic flux density
JP2787776B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP3271655B2 (en) Method for producing silicon steel sheet and silicon steel sheet
JP2713028B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium
JPH0971818A (en) Production of extra thin silicon steel sheet excellent in magnetic property and extra thin silicon steel sheet excellent in magnetic property
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JP2758543B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JP3271651B2 (en) Ultra-thin silicon steel sheet with excellent magnetic properties and manufacturing method
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2671717B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2819993B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP6228956B2 (en) Low iron loss high magnetic flux density grained electrical steel sheet and manufacturing method thereof
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JP3443150B2 (en) Method for producing grain-oriented silicon steel sheet
JPH07310124A (en) Production of thick grain-oriented silicon steel plate excellent in magnetic characteristic and film coating characteristic
JPH0649607A (en) Grain-oriented silicon steel sheet and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021203