JPH0995498A - 新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法 - Google Patents

新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法

Info

Publication number
JPH0995498A
JPH0995498A JP8193584A JP19358496A JPH0995498A JP H0995498 A JPH0995498 A JP H0995498A JP 8193584 A JP8193584 A JP 8193584A JP 19358496 A JP19358496 A JP 19358496A JP H0995498 A JPH0995498 A JP H0995498A
Authority
JP
Japan
Prior art keywords
protein
amino acid
sequence
activity
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8193584A
Other languages
English (en)
Other versions
JP3669062B2 (ja
Inventor
Takeshi Shimomura
猛 下村
Toshiya Kawaguchi
俊哉 川口
Naomi Kitamura
直実 喜多村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP19358496A priority Critical patent/JP3669062B2/ja
Publication of JPH0995498A publication Critical patent/JPH0995498A/ja
Application granted granted Critical
Publication of JP3669062B2 publication Critical patent/JP3669062B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

(57)【要約】 【構成】 肝細胞増殖因子(HGF)活性化因子のプロ
テアーゼ活性を阻害する活性を有する新規な蛋白質を精
製、単離した。さらに、分子量(30,000ダルトン
前後)及び部分アミノ酸配列を決定し、それをコードす
る遺伝子をクローニングし、塩基配列を決定した。さら
に、この遺伝子DNAをベクターに組込み、宿主細胞を
形質転換し、形質転換体を培養して目的とする蛋白質を
得た。 【効果】 本発明の蛋白質は、in vivoまたはin vitro
でのHGFやHGF活性化因子の活性調節因子として用
いることができる。また、本発明蛋白質の動態解析の手
段として用いることができる抗体を得るための抗原やそ
のアッセイ系での標準品として用いられる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は新規な蛋白質および
それをコードするDNAに関し、詳細には肝細胞増殖因
子活性化因子(HGF活性化因子)のプロテアーゼ活性
を阻害する活性を有する新規な蛋白質(以下、本蛋白質
を「HAI−II」と称することもある)およびそれを
コードする遺伝子、該遺伝子を含有してなる発現ベクタ
ー、該発現ベクターで形質転換された形質転換体、該形
質転換体を用いたHAI−IIの産生方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】HG
F活性化因子(特開平5-103670号、同6-141859号、同6-
153946号、および同6-153966号各号公報参照;肝細胞増
殖因子(HGF)を一本鎖から二本鎖へ変換する活性を
有する因子)の正の活性制御としてその前駆体の活性化
をトロンビンが担うことが既に報告されていたが、負の
制御因子としてその生理活性を阻害する生体由来のプロ
テアーゼインヒビターは知られていなかった。そのた
め、HGF活性化因子が生体内でどのように制御されて
いるかは不明であった。また、HGF活性化因子が作用
する肝細胞増殖因子(HGF)の活性をも間接的に影響
を及ぼす可能性があり、HGFのin vivoでの作用機構
解析のためにも生体由来のプロテアーゼインヒビターの
単離、同定が求められていた。
【0003】このプロテアーゼインヒビター、並びにプ
ロテアーゼインヒビターに対する抗体を用いることでH
GF活性化因子のin vivoでの生理作用とその作用解析
や、HGFの活性化の制御機構の解析等を従来と異なる
面から行うことが可能となる。
【0004】さらに、HAI−IIの生体における詳細
な機能、あるいは肝障害時におけるHAI−IIの働き
等を調べるためには多量のHAI−IIを必要とする。
しかしながら、現在に至るまでHAI−IIを取得する
方法としては、MKN45細胞、A549細胞等のヒト
癌細胞株の培養上清を材料として、その中に微量に存在
するHAI−IIを精製するしかなかった。この方法
は、人的、時間的、価格的に必ずしも最良の方法ではな
く、また、微量なHAI−IIのみを安定に取り出すこ
とは困難を極める。そこで、HAI−IIの安定かつ大
量取得のために、発現系の構築が望まれていた。
【0005】
【課題を解決するための手段】本願発明者らは、肝細胞
増殖因子活性化因子のプロテアーゼ活性を阻害する活性
を指標に種々の培養細胞株をスクリーニングし、ヒト癌
細胞株(MKN45細胞、A549細胞等の上皮様細胞
株)の培養上清中にその活性を持つ物質が存在すること
を見い出した。さらに、その阻害活性の本体を明らかに
すべく、MKN45細胞の培養上清から種々のカラムク
ロマトグラフィーを用いてその精製を試みた。その結
果、SDS(ドデシル硫酸ナトリウム)−ポリアクリル
アミドゲル電気泳動(PAGE)による分子量が約3
0,000ダルトン付近の新規の蛋白質を見い出し、こ
れをプロテインシークエンサーで分析することにより、
この蛋白質のアミノ末端アミノ酸配列を得た。またこの
蛋白質を蛋白質分解酵素で分解し生成するペプチドを分
離した後、各ペプチドを上記と同様にしてアミノ酸配列
分析することにより部分アミノ酸配列を決定した。更
に、この部分アミノ酸配列からDNA塩基配列を推定
し、そのオリゴヌクレオチドをプローブとしてcDNA
ライブラリーからスクリーニングすることにより、本蛋
白質をコードする遺伝子をクローニングすることに成功
し、本発明を完成するに至った。
【0006】また、本発明者らは、この蛋白質を組換え
DNA技術により安定かつ大量に取得するため種々の検
討をした結果、この目的に有用な、この蛋白質をコード
する発現ベクターを新たに構築し、この蛋白質の発現を
可能にした。すなわち、この蛋白質の一部または全部の
アミノ酸配列をコードするDNA断片を、例えば、動物
細胞発現ベクターpME18S等のプラスミドベクター
あるいは酵母、大腸菌等における発現ベクターのプロモ
ーターの下流に挿入した蛋白質発現用プラスミドを作製
し、該プラスミドで宿主細胞を形質転換することにより
得られる形質転換体が優れたHAI−II産生能を有す
ることを見いだし、本発明を完成するに至った。
【0007】即ち本発明の要旨は、下記の理化学的性質
(1)SDS−ポリアクリルアミドゲル電気泳動による
分子量が約30,000ダルトンであり、(2)肝細胞
増殖因子活性化因子のプロテアーゼ活性を阻害する活性
を有し、(3)配列表の配列番号1〜3のいずれかに記
載のアミノ酸配列またはこれと実質的に同一のアミノ酸
配列を有する蛋白質;配列表の配列番号1〜3に記載の
アミノ酸配列またはこれと実質的に同一のアミノ酸配列
を有し、肝細胞増殖因子活性化因子のプロテアーゼ活性
を阻害する活性を有する蛋白質;配列表の配列番号4に
記載のアミノ酸配列またはこれと実質的に同一のアミノ
酸配列を有する蛋白質;配列表の配列番号4に記載のア
ミノ酸配列において28番目のアラニンから252番目
のロイシンまでの配列またはこれと実質的に同一のアミ
ノ酸配列を有する蛋白質;それらの蛋白質をコ−ドする
DNAおよび遺伝子;該DNAまたは遺伝子を含有して
なる発現ベクター;該発現ベクターで宿主細胞を形質転
換することにより得られる形質転換体;ならびに該形質
転換体を培養することによる肝細胞増殖因子活性化因子
のプロテアーゼ活性を阻害する活性を有する蛋白質の産
生方法に存する。
【0008】なお、配列表の配列番号4に示す塩基配列
は他の相補的な塩基配列を省略し一本鎖のみを記載し
た。この遺伝子より組み換えDNA技術により、例えば
配列表の配列番号4に示すアミノ酸配列を有する当該蛋
白質を発現することができる。この時、当該蛋白質をコ
ードするmRNAから翻訳される蛋白質はシグナル配列
を含んでいるが、細胞から分泌される場合にはシグナル
配列が切断され配列表の配列番号4に示すアミノ酸配列
の28番目のアラニン残基以降のアミノ酸配列を有する
当該蛋白質が産生される。シグナル配列として、他の蛋
白質のシグナル配列を利用することもできる。また、宿
主細胞内にシグナル配列のない成熟型蛋白質を発現させ
る場合は、当該蛋白質をコードする遺伝子として配列表
の配列番号4に示す塩基配列のうち82番目のグアニン
残基から以降の塩基配列を有する遺伝子をベクターのA
TGコドンにつなげて使用すればよい。さらに本発明に
おいては、HGF活性化因子のプロテアーゼ活性を阻害
する活性を損なわない範囲内で、一部のアミノ酸もしく
は核酸を除去、変更あるいは追加する等の改変を行った
もの、即ち「実質的に同一なアミノ酸配列」および「実
質的に同一な塩基配列」を有するものも本発明に含まれ
る。
【0009】
【発明の実施の形態】本発明をさらに詳細に説明する
に、本発明のプロテアーゼインヒビター活性を有する新
規な蛋白質は、以下のような精製段階を経ることにより
得られる。例えば、ヒト癌細胞株(MKN45細胞、A
549細胞(それぞれ財団法人がん研究振興財団(Japa
nese Cancer Research Resources Bank)に登録番号JCR
B0254、JCRB0076として登録)等の上皮様細胞株)を無
血清培地で数日培養して、その培養上清を回収して細胞
を除去後、濃縮して、ヘパリン−セファロースカラム
(ファルマシア社製等)に供する。その素通り画分をCo
nA−セファロースカラム(ファルマシア社製等)に供
し、吸着画分と素通り画分に分離する。素通り画分をP
henyl−5PW(東ソー社製等)等の疎水クロマト
グラフィーに供する。得られた当該タンパク質を含む画
分をDEAEイオン交換カラムクロマトグラフィー(ポ
リマーラボラトリー社製等)に供し、その後、ハイドロ
キシアパタイトカラム(三井東圧化学社、生化学工業社
等)に供す。その後、ゲル濾過カラムクロマトグラフィ
ー(旭化成社製GS520等)に供し、当該蛋白質を得
ることができる。必要に応じて、逆相カラムクロマトグ
ラフィー等を精製のステップに組み込むこともできる。
【0010】精製された本発明の蛋白質はSDS−ポリ
アクリルアミドゲル電気泳動による分子量が約30,0
00ダルトンで、糖鎖、アミノ酸残基の修飾、C末端側
の変異の相違と思われる数本のフラグメントもしくはス
メアーなバンドとして泳動する。当該蛋白質はHGF活
性化因子と反応させることで、HGF活性化因子のプロ
テアーゼ活性を阻害する活性を有する。また、本発明の
蛋白質は下記実施例2の表1に記載のアミノ酸配列を含
む。
【0011】本発明の新規蛋白質をコードする遺伝子の
DNA断片は次のようにして得ることができる。上記の
ようにして精製した新規蛋白質を気相プロテインシーケ
ンサー(アプライド・バイオシステムズ社製等)で分析
することにより、アミノ末端アミノ酸配列を決定するこ
とができる。更に、当該蛋白質をリジルエンドペプチダ
ーゼ(アクロモバクタープロテアーゼI等)で分解し、
生成するペプチド断片を逆相高速液体クロマトグラフィ
ー(YMC社製等)で分離した後、各ペプチド断片を上
記と同様にしてアミノ酸配列分析すれば、蛋白質内部の
アミノ酸配列を知ることができる。
【0012】こうして決定したアミノ酸配列からDNA
塩基配列を推定し、オリゴヌクレオチドを合成してプロ
ーブとして使用する。当該蛋白質をコードする遺伝子を
スクリーニングするcDNAライブラリーとしてはヒト
由来の肝臓cDNAライブラリー、脾臓cDNAライブ
ラリー、胎盤cDNAライブラリー等(クローンテック
社製等)が利用できる。その他当該蛋白質を発現してい
る細胞株および組織材料から常法に従ってcDNAライ
ブラリーを作成してもよい。
【0013】このようなcDNAが組み込まれたλファ
ージを大腸菌に感染させ(Maniatisらの方法:「モレキ
ュラークローニング」)、これを培養する。形成された
プラークを当該蛋白質の一部のアミノ酸配列から推定さ
れる塩基配列から作成したオリゴヌクレオチドをプロー
ブとしてプラークハイブリダイゼイション法に従って選
択することにより、容易に目的とする当該蛋白質のアミ
ノ酸配列を有し、なおかつ当該蛋白質のアミノ酸配列の
プローブ以外の領域に相当する塩基配列をも有する、異
なるλファージクローンをいくつか得ることができる。
【0014】更に、上記スクリーニング陽性のプラーク
からManiatisらの方法によりファージを増殖させ、その
ものからグリセロールグラディエント法に従ってDNA
を精製し適切な制限酵素で切断後、pUC18、pUC
19等のプラスミドベクターあるいはM13mp18、
M13mp19等の一本鎖ファージベクターにcDNA
をサブクローニングし、Sangerらのジデオキシ法に従っ
て目的cDNAフラグメントの塩基配列を決定すること
ができる。得られたクローンの塩基配列を解析し、それ
らを統合することにより当該蛋白質の一部をコードする
cDNA群によって配列表の配列番号4に示す当該蛋白
質の全アミノ酸配列のすべてに対応する遺伝子を得るこ
とができる。
【0015】また、本cDNAの塩基配列の一部をプロ
ーブとして使用し、PCR法を用いることにより、各種
cDNAライブラリーから、本cDNAの全てを含む遺
伝子、本cDNAの一部の塩基配列が欠失した遺伝子、
本cDNAに他の塩基配列が挿入された遺伝子もしくは
本cDNAの一部の塩基配列が他の塩基配列に置換され
た遺伝子なども得ることができる。このような塩基配列
の欠失、付加あるいは置換等の部位特異的変異は、Meth
od in Enzymol., 217, 218-227(1993)、同217, 270-2
79(1993)等に記載の方法により容易に行うことができ
る。
【0016】このようにして得られるcDNA群をその
塩基配列の順番が本蛋白質のアミノ酸配列に従う形でつ
なぎ、当該蛋白質の全領域を含むDNA断片とし、これ
をpCDL−SRα296等のプラスミドのプロモータ
ーの下流に翻訳開始コドンATGとフェーズを合わせ
て、蛋白質発現用プラスミドを構築し、当該プラスミド
で形質転換された動物細胞の宿主内等で当該蛋白質を発
現させることができる。続いて常法に従い精製し、発現
された当該蛋白質を得ることができる。
【0017】すなわち、上記のようにして得られる各種
cDNAをpME18S等のプラスミドのプロモーター
の下流に挿入して、蛋白質発現用プラスミドを構築し、
当該プラスミドで形質転換された動物細胞の宿主等で、
当該蛋白質、当該蛋白質の一部のアミノ酸配列が欠失し
た蛋白質、当該蛋白質に他のアミノ酸配列が挿入された
蛋白質もしくは当該蛋白質の一部のアミノ酸配列が他の
アミノ酸配列に置換された蛋白質を発現させることがで
きる。具体的には、動物細胞としてCHO細胞、COS
細胞、マウスL細胞、マウスC127細胞、マウスFM
3A細胞等を用いて発現させることが可能である。これ
らの動物細胞等を宿主とする場合は、シグナル配列とし
て、配列表の配列番号8に示すDNA塩基配列、すなわ
ち当該蛋白質の遺伝子の1から35番目の塩基配列もし
くは既存のシグナル配列を使用することにより、当該蛋
白質が細胞外に分泌生産、もしくは細胞膜表面上に生産
されることが期待される。
【0018】動物細胞を宿主とした発現用プラスミドは
次のように構築される。プロモーターとしては全ての既
存のプロモーターが使用可能であるが、例えばSRαプ
ロモーター、SV40プロモーター、またはメタルチオ
ネイン遺伝子のプロモーターが使用できる。このプロモ
ーター下流に上記シグナル様配列を含む当該蛋白質の遺
伝子の全てを含むDNA、本遺伝子の一部の塩基配列が
欠失したDNA、本遺伝子に塩基配列が挿入されたDN
Aもしくは本遺伝子の一部の塩基配列が別の塩基配列に
置換されたDNAを転写方向にしたがって挿入する。ま
た当該蛋白質の発現ベクター構築の際には該プロモータ
ーの下流に当該蛋白質をコードする遺伝子のDNA断片
を2〜3個結合したものを挿入してもよい。また当該蛋
白質をコードする遺伝子のDNA断片の5’上流側にS
V40などのプロモーターを結合したDNA断片を単位
としたものを転写方向を揃えて2〜3個結合してベクタ
ーに挿入してもよい。
【0019】この当該蛋白質をコードする遺伝子の下流
にはポリアデニル化部位を付加する。例えば、SV40
DNA、β−グロビン遺伝子またはメタルチオネイン
遺伝子由来のポリアデニル化部位が当該蛋白質をコード
する遺伝子の下流に付加することが可能である。またプ
ロモーターと当該蛋白質をコードする遺伝子を結合した
DNA断片を2〜3個結合する場合には、各単位の当該
蛋白質をコードする遺伝子の3’側にそれぞれポリアデ
ニル化部位を存在させることもできる。この発現ベクタ
ーを用いて動物細胞例えばCHO細胞を形質転換する際
に、薬剤耐性遺伝子を使用し、目的とする発現細胞を選
択することが可能である。
【0020】薬剤耐性遺伝子としては、メトトレキセー
ト耐性を与えるDHFR遺伝子(ジャーナルオブモレキ
ュラバイオロジー(J. Mol. Biol.)159巻601頁(198
2))、抗生物質G−418耐性を与えるNeo遺伝子
(ジャーナルオブモレキュラアプライドジェネティクス
(J. Mol. Appl. Genet.)1巻327頁(1982))、ミコフ
ェノール酸耐性を与える大腸菌由来のEcogpt遺伝
子(プロシーディングオブナショナルアカデミーオブサ
イエンス(Proc. Natl. Acad. Sci. U.S.A.)78巻2072
頁(1981))、抗生物質ハイグロマイシン耐性を与える
hph遺伝子(モレキュラセルバイオロジー(Mol. Cel
l. Biol.)5巻410頁(1985))等が挙げられ、各耐性遺
伝子の5’上流側にはプロモーター、例えば前述のSV
40由来のプロモーターが挿入されており、各耐性遺伝
子の3’下流側には、前述のポリアデニル化部位が含ま
れる。
【0021】当該蛋白質の発現ベクターにこれらの耐性
遺伝子を挿入する場合、当該蛋白質をコードする遺伝子
のポリアデニル化部位下流に順方向あるいは逆方向に挿
入すればよい。これらの発現ベクターは、形質転換体を
得る際に選択マーカー遺伝子を含む別のプラスミドを二
重形質転換する必要がない。また当該蛋白質の発現ベク
ターにこれらの選択マーカー遺伝子が挿入されていない
場合には、形質転換体の選択のマーカーを有するベクタ
ー例えばpSV2neo(ジャーナルオブモレキュラア
プライドジェネティクス(J. Mol. Appl. Genet.)1巻3
27頁(1982))、pMBG( ネイチャー(Nature)294
巻228頁(1981))pSV2gpt(プロシーディング
オブナショナルアカデミーオブサイエンス(Proc. Nat
l. Acad.Sci. U.S.A.)78巻2072頁(1981))、pAd-
D26-1(ジャーナルオブモレキュラバイオロジー
(J. Mol. Biol.)159巻601頁(1982))などを当該蛋
白質をコードする遺伝子の発現ベクターと共に形質転換
し、薬剤耐性遺伝子の表現形質により形質転換体を容易
に選択できる。
【0022】発現ベクターの動物細胞への導入は、リン
酸カルシウム法(ヴァイロロジー(Virology)52巻456
頁(1973))、エレクトロポレーション法(ジャーナル
オブメンブレンバイオロジー(J. Membr. Biol.)10巻2
79頁(1972))等により行うことができる。
【0023】形質転換された動物細胞の培養は、常法に
より浮遊培養または付着培養で行うことができる。培地
としては、MEM、RPMI1640などを用い、5〜
10%血清の存在下もしくは適当量のインシュリン、ト
ランスフェリン等の存在下、もしくは無血清下にて培養
する。さらに当該蛋白質を、酵母や大腸菌、例えば、Sa
ccharomyes cerevisiae株や Escherichia coli YA-21株
等の微生物を使用して生産することも出来る。
【0024】当該蛋白質を発現している細胞は、その培
養上清中、もしくは細胞表面上に当該蛋白質を発現する
ことから、この組換え体の培養上清もしくは細胞を用い
て当該蛋白質の分離精製を行うことが可能である。具体
的には、生産された当該蛋白質を含む培養上清もしくは
細胞抽出液を各種クロマトグラフィー、例えば、ヘパリ
ン−セファロース、ConA−セファロース、ハイドロ
キシアパタイト等を組み合わせたクロマトグラフィーに
て精製することにより当該蛋白質を単離精製することが
できる。
【0025】
【発明の効果】本発明に関わるプロテアーゼインヒビタ
ー活性を有する蛋白質はHGF活性化因子のプロテアー
ゼ活性を阻害する活性を持つため、in vivoまたはin vi
troでのHGF活性化因子の調節因子として、また、間
接的にはHGFの活性の調節因子として、さらにはそれ
ら因子の機能解析の道具、手段として、当該蛋白質に対
する抗体、当該蛋白質をコードする遺伝子も含めて使用
される。
【0026】また、当該蛋白質をコードする遺伝子が導
入された発現ベクターを動物細胞に導入することによ
り、今まで困難であった生物学的活性のある当該蛋白質
の一部または全部あるいは当該蛋白質様蛋白質を、大
量、安定かつ容易に生産することが可能となる。
【0027】
【実施例】以下の実施例により、本発明をさらにより詳
細に説明するが、本発明は、その要旨を越えない限り、
以下の実施例によって限定されるものではない。
【0028】実施例1 MKN45細胞の培養上清を用
いての当該蛋白質の精製 MKN45細胞[内藤ら、癌と化学療法、5、89(197
8);免疫生物研究所から入手]をローラーボトル85
0の5%FBSを含むeRDF培地中に播種して、コン
フルエントな状態になるまで増殖させた。増殖後、FB
Sを含む培養液を除去後、無血清eRDF培地で2度洗
浄した。洗浄用培地を除去後、無血清eRDF培地50
0mlを加えて3〜6日間37℃でインキュベーション
した。インキュベーション後、培養液を回収して、新し
い無血清eRDF培地500mlを加えて再度インキュ
ベーションした。これを数回繰り返して、回収した培養
上清をYM30限外濾過膜(アミコン社製)にて約20
倍にまで濃縮した。
【0029】この濃縮液をヘパリン−セファロースカラ
ム(PBSで平衡化)に供し、その素通り画分を回収し
た。このヘパリンカラム素通り画分を、ConA−セフ
ァロースカラム(PBSで平衡化)に供し、素通り画分
と、200mM α−メチルD−マンノシドを含むPB
S溶液での溶出画分に分離した。ConA素通り画分を
YM30を用いて濃縮、1M硫酸アンモニウムを含む1
0mMリン酸緩衝液(pH6.8)溶液へ緩衝液置換を
行い、Phenyl−5PW(東ソー社製;1M硫酸ア
ンモニウムを含む10mMリン酸緩衝液(pH6.8)
で平衡化)を用いたHPLCに供し、1M硫酸アンモニ
ウムから0Mへの直線濃度勾配溶出を行い、目的のプロ
テアーゼインヒビター活性が存在する画分を回収した。
【0030】当画分を0.05%CHAPSを含む20
mMトリス/塩酸緩衝液(pH8)に透析後、DEAE
(0.05%CHAPSを含む20mMトリス/塩酸緩
衝液(pH8)で平衡化)を用いたHPLCに供し、0
Mから500mM NaClへの直線濃度勾配溶出を行
い、目的のプロテアーゼインヒビター活性が存在する画
分を回収した。当画分を0.05%CHAPSを含む5
mMリン酸緩衝液(pH6.8)に透析して、HCA
A−4007カラム(三井東圧化学社製)(0.05%
CHAPSを含む5mMリン酸緩衝液(pH6.8)で
平衡化)を用いたHPLCに供し、その素通り画分を回
収した。当画分をGS−520(0.05%CHAPS
を含むPBSで平衡化)に供し、活性画分(約40〜2
0kDa付近の画分)を回収した。マイナーバンドを除
去するため、当画分をYMC packC4カラム(Y
MC社製)に供し、0.1%TFAを含むアセトニトリ
ル/イソプロピルアルコール(3/7)濃度10%から
50%まで40分間の直線濃度勾配溶出を行い、活性画
分を1Mトリス/塩酸緩衝液(pH8)にて中和後、減
圧下で乾燥させた。乾燥後、0.05%CHAPSを含
むPBSに溶解して、精製蛋白質を得た。
【0031】実施例2 当該蛋白質のアミノ末端アミノ
酸配列および部分アミノ酸配列の決定 実施例1に従って精製し、逆相HPLCで溶出させたプ
ロテアーゼインヒビター活性を有する蛋白質を、中和せ
ずに減圧下で乾燥させた。これを、50%TFA(トリ
フルオロ酢酸)60μlに溶解し、ポリブレン処理した
グラスフィルターに添加し、Applied Biosystems社製4
70Aシークエンサーでエドマン分解し、N末端領域の
アミノ酸配列を決定した。フェニルヒダントイン(PT
H)アミノ酸の同定は、三菱化学社製MC gel O
DS IHU(0.46x15cm)カラムを用い、酢
酸緩衝液(10mM酢酸緩衝液(pH4.7)、0.0
1%SDS、38%アセトニトリル)による単一溶媒溶
出法を流速1.2ml/分、温度43℃で行い、PTH
アミノ酸の検出は269nmの吸光度で行った。
【0032】この結果、表1に示すN末端アミノ酸配列
を同定した。次に、同じく実施例1に従って精製し、逆
相HPLCで溶出させたプロテアーゼインヒビター活性
を有する蛋白質を、4M尿素を含む50mMトリス塩酸
(pH9.0)100μlに溶解し、これにリジルエン
ドペプチダーゼ(アクロモバクタープロテアーゼI)を
添加して37℃で8時間反応させた。生成したペプチド
混合物はYMC pack C8カラム(YMC社)を
用いた逆相HPLCにより分離して各ペプチド断片を得
た。2つのペプチドについて気相プロテインシークエン
サー(Applied Biosystems社製 model470A)を用いて
アミノ酸配列分析を行ったところ、表1に示す配列が見
い出された。
【0033】
【表1】表1 ペプチドのアミノ酸配列 N末端:Ala-Asp-Arg-Glu-Arg-Ser-Ile-His-Asp-Phe-Xa
a-Leu-Val-Ser-Lys(配列表の配列番号1) 部分アミノ酸配列 1:Lys-Val-Val-Gly-Arg-Xaa-Arg-Ala-Ser-Met-Pro-Ar
g-Trp-Trp-Tyr-Asn-Val-Thr-Asp-Gly-Ser-Xaa-Gln-Leu-
Phe-Val-Tyr-Gly-Gly(配列表の配列番号2) 2:Ala-Thr-Val-Thr-Glu-Asn-Ala-Thr-Gly-Asp-Leu-Al
a-Thr-Ser-Arg-Asn-Ala-Ala-Asp-Ser-Ser-Val-Pro-Ser-
Ala-Pro(配列表の配列番号3) (配列中、Xaaは未決定のアミノ酸を示す。)
【0034】実施例3 A549細胞の培養上清を用い
ての当該蛋白質の精製とアミノ酸配列解析 A549細胞[財団法人がん研究振興財団(Japanese C
ancer Research Resources Bank)」から入手]を実施例
1と同様に培養して培養上清を調製した。その培養上清
を用いて実施例1と同じ操作によって、HGF活性化因
子のプロテアーゼ活性を阻害する活性を持つ蛋白質を得
た。この蛋白質はSDS−PAGE上、MKN45細胞
由来のものと同じ分子量を示した。また、この蛋白質の
N末端領域のアミノ酸配列を実施例1と同様の方法で決
定した。この結果、その配列はMKN45細胞由来と同
じであった。このことより、当該蛋白質はMKN45由
来の蛋白質と同じである可能性が示された。
【0035】実施例4 当該蛋白質のHGF活性化因子
のプロテアーゼ活性を阻害する活性を測定する方法とそ
の活性 測定しようとするサンプル1〜10μlを、2〜5ng
血清由来HGF活性化因子を含むPBS、0.05%
CHAPS溶液30〜40μlに添加した。37℃で3
0分間インキュベーション後、5〜10μgの一本鎖H
GFを添加し、さらに2時間インキュベーションを継続
した。この混合液を、還元条件下でSDS−ポリアクリ
ルアミドゲル電気泳動に供した。電気泳動後、クマシー
ブリリアントブルーR250(CBB)で染色し、一本
鎖HGFと二本鎖HGFの割合を比較することで、活性
を検出した。
【0036】精製した当該蛋白質数10ngと5ng血
清由来HGF活性化因子をPBS、0.05%CHAP
S溶液30〜40μl中で37℃で30分間インキュベ
ーションした後、10μg一本鎖HGFを添加し、さら
に2時間インキュベーションを継続した。この混合液
を、還元条件下でSDS−ポリアクリルアミドゲル電気
泳動に供し、電気泳動後、CBBで染色した。結果を図
1に示す。図中、1はHGF活性化因子と当該蛋白質を
無添加の場合を、2はHGF活性化因子を添加、当該蛋
白質無添加の場合を、3はHGF活性化因子と当該蛋白
質を添加した場合の結果を表す。当該蛋白質の添加によ
り、HGF活性化因子のHGFを一本鎖から二本鎖に変
換する活性が抑制された。
【0037】実施例5 SDS−ポリアクリルアミドゲ
ル電気泳動 MKN45細胞の培養上清とA549細胞の培養上清よ
り実施例1と2に従って精製されたプロテアーゼインヒ
ビター活性を持つ当該蛋白質の見かけ上の分子量を求め
るため、SDS−ポリアクリルアミドゲル電気泳動を行
った。最終的に精製された当該蛋白質を12.5%のポ
リアクリルアミド・スラブゲルを用いたSDS−ポリア
クリルアミドゲル電気泳動に、非還元下で供した。分子
量マーカーとしては、分子量マーカー「第一」III Laem
mli法用(第一化学薬品社製)を用いた。電気泳動後、銀
染色試薬(関東化学社製)を用いて発色させた。当該蛋
白質と標準分子量マーカーの蛋白質との泳動距離の相対
的比較により、MKN45細胞の培養上清とA549細
胞の培養上清から得られた当該蛋白質は、SDS−ポリ
アクリルアミドゲル電気泳動上のみかけの分子量として
約30,000ダルトン前後に糖鎖、アミノ酸残基の修
飾または末端領域の相違によるものと思われる数本のフ
ラグメントもしくはスメアーなバンドを示した。
【0038】実施例6 当該蛋白質をコードする遺伝子
のクローニングおよび塩基配列の決定 実施例2によって得られた、当該蛋白質の部分アミノ酸
配列(配列表の配列番号2)に含まれる、Lys-Val-Val-
Gly-Arg-Xaa-Arg および Xaa-Gln-Leu-Phe-Val-Tyr-Gly
-Glyの配列をもとに、XaaがCysであろうとの予測をたて
て、以下に示す二種類のオリゴヌクレオチドプライマー
を設計した。 プライマー1:5'-AAGGTNGTNGGNMGNTGYMG-3'(配列表の
配列番号:5) プライマー2:5'-CNCCGTANACGAANARYTGRC-3'(配列表
の配列番号:6) (配列中、N=TまたはG、M=AまたはC、Y=TまたはC、R=A
またはGを示す。) 次に、MKN45細胞株よりトータルRNAをアナリテ
ィカルバイオケミストリー(Anal. Biochem.)162卷156
頁(1987)に記載の方法に従って調製し、これをオリゴ
(dT)セルロースカラムに供すことによりpoly−
(A)+RNAを取得した。
【0039】得られたpoly−(A)+RNAを鋳型
として用い、RT−PCR(reverse transcription-po
lymerase chain reaction、羊土社、林 件志 編、1995
年2月5日発刊「PCR法の最新技術」p44-p52参照)を
行った。このRT−PCRにて得られた反応液をポリア
クリルアミド電気泳動法にて解析した結果、約85bp
のDNA断片が検出された。そこでこのDNA断片をポ
リアクリルアミドより抽出後、フェノールクロロホルム
処理およびエタノール沈殿を行いDNA断片を回収後、
ダイデオキシ法にて塩基配列を決定した。さらに、この
DNA断片はモレキュラークローニング(コールドスプ
リングハーバーラボラトリー、1982年)に記載の方法に
従って32P標識し、これをスクリーニング用プローブと
した。
【0040】スクリーニング用のライブラリーとして
は、MKN45細胞株のpoly−(A)+RNAをも
とに、cDNA合成キット(ファルマシア社製)を用い
てcDNAを合成し、ラムダZAPII(ストラテジー
ン社製)をベクターとしたファージライブラリーを作製
した。大腸菌はXL−Blue(ストラテジーン社製)
を用い、約10万プラークとなるように上記のファージ
を感染させた。
【0041】NZY培地で一晩生育させた後、ジーンス
クリーニングプラス(デュポン社製)にトランスファー
させた。そのメンブレンを0.1M水酸化ナトリウム/
0.5Mトリス塩酸バッファー(pH7.5)が染み込
んだ濾紙上に2分間静置し、続いて1.5M塩化ナトリ
ウム/0.5Mトリス塩酸バッファー(pH7.5)が
染み込んだ濾紙上で5分間静置した。この一連の処理を
更に2回繰り返した後、2xSSC(2倍SSC)で洗
浄し、乾いた濾紙上で風乾した。次にこのメンブレンに
120mJ/cm2のUV照射を行うことにより、メン
ブレンに移したDNAの固定を行った。こうして処理し
たメンブレンを50mMトリス塩酸バッファー(pH
7.5)、1M塩化ナトリウムおよび1%SDSよりな
る溶液50mlに浸漬し、65℃で2時間保持した。
【0042】次に、上記の32Pで標識したプローブ5n
g/ml、鮭***DNA100μg/ml、50mMト
リス塩酸バッファー(pH7.5)、1M塩化ナトリウ
ムおよび1%SDSよりなる溶液40mlに浸漬し、6
5℃で16時間保持した。その後、このメンブレンを2
xSSCで室温5分間、0.1xSSCで室温30分間
2回の順に洗浄した後、オートラジオグラフィーを行
い、当該蛋白質cDNAを含むと考えられる22個のポ
ジティブクローンを得た。各ポジティブクローンから、
東洋紡社ライフサイエンスカタログ(p114-115)および
ストラテジーン社製マニアルに従ってエキシジョン法
(東洋紡社ライフサイエンスカタログ、p114-115)を行
い、プラスミドの構築を行った。
【0043】次に、このプラスミドDNAを取得後、制
限酵素EcoRIにて切断し、アガロース電気泳動によ
り、最長の当該蛋白質cDNAが挿入されたクローンを
選択した。次にこのクローンが有するプラスミド(pH
AI−II)について塩基配列を解析することにより、
当該蛋白質をコードする遺伝子の全塩基配列を決定した
(配列表の配列番号4)。
【0044】施例7 当該蛋白質発現プラスミドの調製 実施例6によって得られた当該蛋白質cDNAを含むプ
ラスミド(pHAI−II)10μgを制限酵素Eco
RIで切断後、アガロースゲル電気泳動により当該蛋白
質cDNAを含む約1.4kbのEcoRI−Eco
IDNA断片を分離および抽出した。得られた当該蛋白
質cDNA断片の末端をT4DNAポリメラーゼにて平
滑末端にした後、フェノールクロロホルム抽出およびエ
タノール沈澱を行い、10μlの水に溶解した。
【0045】一方、発現ベクターpME18S(メディ
カルイミュノロジー、20卷27頁(1990))は制限酵素
hoIで切断後、末端をT4DNAポリメラーゼにて平
滑末端にした。この後、フェノールクロロホルム抽出お
よびエタノール沈澱を行い、400μlの50mM T
ris−HCl(pH8)、1mM MgCl2溶液に
溶解した。さらにバクテリアルアルカリホスファターゼ
(東洋紡、BAP−101)1unitを添加し、65
℃下30分の反応を施し脱燐酸化処理を行った。次にこ
の反応液からフェノールクロロホルム抽出とエタノール
沈澱により制限酵素XhoIで切断されたpME18S
ベクターを精製し、10μlの水に溶解した。
【0046】このpME18SベクターのDNA断片
0.01μgと前述の平滑末端化されたHAIcDNA
のEcoRI断片0.1μgを含む溶液20μl(66
mMTris−HCl(pH7.6)、6.6mM M
gCl2、10mMジチオトレイトール、66μM A
TP)をT4DNAリガーゼ(東洋紡LGA−101)
存在下で14℃で12時間反応させ、両DNA断片の結
合反応を行った。
【0047】次に、この反応液10μlを用いて大腸菌
HB101株(宝酒造)を形質転換し、アンピシリンを
50μg/mlの濃度で含む培地上で培養することによ
り数十個のアンピシリン耐性株を得た。これらの組換え
体をManiatisらの方法(「モレキュラークローニン
グ」、コールドスプリングハーバーラボラトリー、86頁
〜96頁(1982))に従い解析することにより、発現ベク
ターpME18Sのプロモーターとポリアデニレーショ
ン部位の中間に存在する制限酵素XhoI切断部位に当
該蛋白質をコードする遺伝子が挿入されたプラスミド、
pME18S−HAI−IIプラスミドを得ることが出
来た。その構造を図2に示す。
【0048】実施例8 当該蛋白質を発現する細胞株の
取得 実施例7で作製された発現ベクターpME18Sの制限
酵素XhoI切断部位に当該蛋白質cDNAが挿入され
たプラスミドpME18S−HAI−IIをManiatisら
の方法(「モレキュラークローニング」、コールドスプ
リングハーバーラボラトリー、86頁〜96頁(1982))に
従い組換え体の大腸菌から回収、精製し当該蛋白質発現
プラスミドDNAを大量に得た。
【0049】一方、COS細胞をFBS(牛胎児血清)
が10%入ったeRDF培地中でセミコンフルエントな
状態になるまで培養した。次にシャーレから培地を除き
そこにDNA溶液を滴加するが、DNA溶液は予め次に
示す手順に従って調製した。まず直径9cmのシャーレ
一枚につき300μlの2xHEBS溶液(2xHEB
S溶液;1.6%塩化ナトリウム、0.074%塩化カ
リウム、0.05%燐酸水素二ナトリウム12水塩、
0.2%デキストロース、1%HEPES(pH7.0
5))と10μgのプラスミドDNAを加え、滅菌水で
570μlに合わせた溶液を、エッペンドルフ遠心管中
に準備する。次に該DNA溶液に30μlの2.5Mの
塩化カルシウム溶液を滴加しながらボルテックスミキサ
ーを用い数秒間激しく混和する。これを室温で30分間
放置するが、その間およそ10分おきにボルテックスミ
キサーで混和する。
【0050】この様にしてできたDNA溶液を、前述の
細胞にかけて室温で30分間静置した。その後FBSが
10%入ったeRDF培地(極東製薬社製)9mlをシ
ャーレに入れて37℃、5%CO2存在下で4〜5時間
培養した。次にシャーレから培地を除き5mlの1xT
BS++溶液(1xTBS++溶液;25mMトリス−
塩酸(pH7.5)、140mM塩化ナトリウム、5m
M塩化カリウム、0.6mM燐酸水素二ナトリウム、
0.08mM塩化カルシウム、0.08mM塩化マグネ
シウム)で細胞を洗浄し、1xTBS++溶液を除去し
た後、DMSO(ジメチルスルホキサイド)を10%含
む1xHEBS溶液を5ml細胞にかけて室温で1〜2
分間静置した後上清を除去した。その後5mlの1xT
BS++溶液で細胞を再び洗浄しFBSが10%入った
eRDF培地10mlをシャーレに入れて37℃ 5%
CO2存在下で培養し、48時間が経過した時点で培地
を回収した。回収した培養上清を20倍に濃縮して、H
GF活性化因子に対する阻害活性を測定したところ、阻
害活性が確認された。
【0051】
【配列表】
配列列番号:1 配列の長さ:15 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:N末端フラグメント 起源 生物名:ホモ サピエンス(Homo sapiens) 株名:MKN45 他の情報 11番目のXaaは未同定のアミノ酸を示す 配列 Ala Asp Arg Glu Arg Ser Ile His Asp Phe Xaa Leu Val Ser Lys 1 5 10 15
【0052】配列番号:2 配列の長さ:29 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント 起源 生物名:ホモ サピエンス(Homo sapiens) 株名:MKN45 他の情報 6番目及び22番目のXaaは未同定のアミノ酸を示す 配列 Lys Val Val Gly Arg Xaa Arg Ala Ser Met Pro Arg Trp Trp Tyr Asn 5 10 15 Val Thr Asp Gly Ser Xaa Gln Leu Phe Val Tyr Gly Gly 20 25
【0053】配列番号:3 配列の長さ:26 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント 起源 生物名:ホモ サピエンス(Homo sapiens) 株名:MKN45 配列 Ala Thr Val Thr Glu Asn Ala Thr Gly Asp Leu Ala Thr Ser Arg Asn 1 5 10 15 Ala Ala Asp Ser Ser Val Pro Ser Ala Pro 20 25
【0054】配列番号:4 配列の長さ:759 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA アンチセンス:No 起源 生物名:ホモ サピエンス(Homo sapiens) 株名:MKN45 配列の特徴 特徴を表す記号:CDS 存在位置:1..759 特徴を決定した方法:E 特徴を表す記号:sig peptide 存在位置:1..81 特徴を決定した方法:E 特徴を表す記号:mat peptide 存在位置:82..759 特徴を決定した方法:E 配列 ATG GCG CAG CTG TGC GGG CTG AGG CGG AGC CGG GCG TTT CTC GCC CTG 48 Met Ala Gln Leu Cys Gly Leu Arg Arg Ser Arg Ala Phe Leu Ala Leu 1 5 10 15 CTG GGA TCG CTG CTC CTC TCT GGG GTC CTG GCG GCC GAC CGA GAA CGC 96 Leu Gly Ser Leu Leu Leu Ser Gly Val Leu Ala Ala Asp Arg Glu Arg 20 25 30 AGC ATC CAC GAC TTC TGC CTG GTG TCG AAG GTG GTG GGC AGA TGC CGG 144 Ser Ile His Asp Phe Cys Leu Val Ser Lys Val Val Gly Arg Cys Arg 35 40 45 GCC TCC ATG CCT AGG TGG TGG TAC AAT GTC ACT GAC GGA TCC TGC CAG 192 Ala Ser Met Pro Arg Trp Trp Tyr Asn Val Thr Asp Gly Ser Cys Gln 50 55 60 CTG TTT GTG TAT GGG GGC TGT GAC GGA AAC AGC AAT AAT TAC CTG ACC 240 Leu Phe Val Tyr Gly Gly Cys Asp Gly Asn Ser Asn Asn Tyr Leu Thr 65 70 75 80 AAG GAG GAG TGC CTC AAG AAA TGT GCC ACT GTC ACA GAG AAT GCC ACG 288 Lys Glu Glu Cys Leu Lys Lys Cys Ala Thr Val Thr Glu Asn Ala Thr 85 90 95 GGT GAC CTG GCC ACC AGC AGG AAT GCA GCG GAT TCC TCT GTC CCA AGT 336 Gly Asp Leu Ala Thr Ser Arg Asn Ala Ala Asp Ser Ser Val Pro Ser 100 105 110 GCT CCC AGA AGG CAG GAT TCT GAA GAC CAC TCC AGC GAT ATG TTC AAC 384 Ala Pro Arg Arg Gln Asp Ser Glu Asp His Ser Ser Asp Met Phe Asn 115 120 125 TAT GAA GAA TAC TGC ACC GCC AAC GCA GTC ACT GGG CCT TGC CGT GCA 432 Tyr Glu Glu Tyr Cys Thr Ala Asn Ala Val Thr Gly Pro Cys Arg Ala 130 135 140 TCC TTC CCA CGC TGG TAC TTT GAC GTG GAG AGG AAC TCC TGC AAT AAC 480 Ser Phe Pro Arg Trp Tyr Phe Asp Val Glu Arg Asn Ser Cys Asn Asn 145 150 155 160 TTC ATC TAT GGA GGC TGC CGG GGC AAT AAG AAC AGC TAC CGC TCT GAG 528 Phe Ile Tyr Gly Gly Cys Arg Gly Asn Lys Asn Ser Tyr Arg Ser Glu 165 170 175 GAG GCC TGC ATG CTC CGC TGC TTC CGC CAG CAG GAG AAT CCT CCC CTG 576 Glu Ala Cys Met Leu Arg Cys Phe Arg Gln Gln Glu Asn Pro Pro Leu 180 185 190 CCC CTT GGC TCA AAG GTG GTG GTT CTG GCG GGG CTG TTC GTG ATG GTG 624 Pro Leu Gly Ser Lys Val Val Val Leu Ala Gly Leu Phe Val Met Val 195 200 205 TTG ATC CTC TTC CTG GGA GCC TCC ATG GTC TAC CTG ATC CGG GTG GCA 672 Leu Ile Leu Phe Leu Gly Ala Ser Met Val Tyr Leu Ile Arg Val Ala 210 215 220 CGG AGG AAC CAG GAG CGT GCC CTG CGC ACC GTC TGG AGC TCC GGA GAT 720 Arg Arg Asn Gln Glu Arg Ala Leu Arg Thr Val Trp Ser Ser Gly Asp 225 230 235 240 GAC AAG GAG CAG CTG GTG AAG AAC ACA TAT GTC CTG TGA 760 Asp Lys Glu Gln Leu Val Lys Asn Thr Tyr Val Leu * 245 250
【0055】配列番号:5 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状: 配列の種類:他の核酸 合成DNA 他の情報 NはT又はGを示し、MはA又はCを示し、YはT又は
Cを示し、RはA又はGを示す。 配列 AAGGTNGTNG GNMGNTGYMG 20
【0056】配列番号:6 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状: 配列の種類:他の核酸 合成DNA 他の情報 NはT又はGを示し、YはT又はCを示し、RはA又は
Gを示す。 配列 CNCCGTANAC GAANARYTGR C 21
【0057】
【図面の簡単な説明】
【図1】本願蛋白質のHGF活性化因子のプロテアーゼ
活性を阻害する活性を測定した結果を表す図である。
【図2】プラスミドpME18S−HAI−IIの構造
を表す図である。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 21/02 C12R 1:91)

Claims (21)

    【特許請求の範囲】
  1. 【請求項1】 下記の理化学的性質を有する蛋白質。 (1)SDS−ポリアクリルアミドゲル電気泳動による
    分子量が約30,000ダルトンであり、(2)肝細胞
    増殖因子活性化因子のプロテアーゼ活性を阻害する活性
    を有し、(3)配列表の配列番号1〜3のいずれかに記
    載のアミノ酸配列またはこれと実質的に同一のアミノ酸
    配列を有する。
  2. 【請求項2】 配列表の配列番号1〜3に記載のアミノ
    酸配列またはこれと実質的に同一のアミノ酸配列を有
    し、肝細胞増殖因子活性化因子のプロテアーゼ活性を阻
    害する活性を有する蛋白質。
  3. 【請求項3】 配列表の配列番号4に記載のアミノ酸配
    列またはこれと実質的に同一のアミノ酸配列を有する蛋
    白質。
  4. 【請求項4】 配列表の配列番号4に記載のアミノ酸配
    列において28番目のアラニンから252番目のロイシ
    ンまでの配列またはこれと実質的に同一のアミノ酸配列
    を有する蛋白質。
  5. 【請求項5】 請求項1記載の蛋白質をコードするDN
    A。
  6. 【請求項6】 請求項2記載の蛋白質をコードするDN
    A。
  7. 【請求項7】 請求項3記載の蛋白質をコードするDN
    A。
  8. 【請求項8】 配列表の配列番号4に記載の塩基配列ま
    たはこれと実質的に同一の塩基配列で表わされることを
    特徴とする請求項7記載のDNA。
  9. 【請求項9】 請求項4記載の蛋白質をコードするDN
    A。
  10. 【請求項10】 配列表の配列番号4に記載の塩基配列
    において82番目のグアニンから759番目のアデニン
    までの塩基配列またはこれと実質的に同一の塩基配列で
    表わされることを特徴とする請求項10記載のDNA。
  11. 【請求項11】 請求項1記載の蛋白質をコードする遺
    伝子。
  12. 【請求項12】 請求項2記載の蛋白質をコードする遺
    伝子。
  13. 【請求項13】 請求項3記載の蛋白質をコードする遺
    伝子。
  14. 【請求項14】 配列表の配列番号4に記載の塩基配列
    またはこれと実質的に同一の塩基配列で表わされること
    を特徴とする請求項15記載の遺伝子。
  15. 【請求項15】 請求項4記載の蛋白質をコードする遺
    伝子。
  16. 【請求項16】 配列表の配列番号4に記載の塩基配列
    において82番目のグアニンから759番目のアデニン
    までの塩基配列またはこれと実質的に同一の塩基配列で
    表わされることを特徴とする請求項17記載の遺伝子。
  17. 【請求項17】 請求項5から16のいずれかに記載の
    DNAまたは遺伝子を含有してなる発現ベクター。
  18. 【請求項18】 請求項17記載の発現ベクターで宿主
    細胞を形質転換することにより得られる形質転換体。
  19. 【請求項19】 宿主細胞が動物細胞であることを特徴
    とする請求項18記載の形質転換体。
  20. 【請求項20】 請求項18または19に記載の形質転
    換体を培養して肝細胞増殖因子活性化因子のプロテアー
    ゼ活性を阻害する活性を有する蛋白質を産生することを
    特徴とする肝細胞増殖因子活性化因子のプロテアーゼ活
    性を阻害する活性を有する蛋白質の産生方法。
  21. 【請求項21】 蛋白質が請求項1から4のいずれかに
    記載の蛋白質であることを特徴とする請求項20記載の
    蛋白質の産生方法。
JP19358496A 1995-07-24 1996-07-23 新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法 Expired - Lifetime JP3669062B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19358496A JP3669062B2 (ja) 1995-07-24 1996-07-23 新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18713495 1995-07-24
JP7-187134 1995-07-24
JP19358496A JP3669062B2 (ja) 1995-07-24 1996-07-23 新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法

Publications (2)

Publication Number Publication Date
JPH0995498A true JPH0995498A (ja) 1997-04-08
JP3669062B2 JP3669062B2 (ja) 2005-07-06

Family

ID=26504163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19358496A Expired - Lifetime JP3669062B2 (ja) 1995-07-24 1996-07-23 新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法

Country Status (1)

Country Link
JP (1) JP3669062B2 (ja)

Also Published As

Publication number Publication date
JP3669062B2 (ja) 2005-07-06

Similar Documents

Publication Publication Date Title
KR960002874B1 (ko) 재조합된 사람의 내피 세포 성장 인자의 제조방법
JP2001509029A (ja) ヒトタンパク質
CA2260365C (en) Differentiation-suppressive polypeptide
JPS63301791A (ja) ヒトトロンボモジユリンのdnaクローン
WO1996004396A1 (en) Neural cell adhesion molecules, nucleotide sequences encoding the molecules, and methods of use thereof
US5731412A (en) Protein, DNA coding for same and method of producing the protein
US5543303A (en) Recombinant myelomonocytic differentiation antigen CD14
US6465622B2 (en) Protein, DNA coding for same and method of producing the protein
Lambris et al. The third component of Xenopus complement: cDNA cloning, structural and functional analysis, and evidence for an alternate C3 transcript
JPH04500603A (ja) クローン化腎炎抗原
JPH0995498A (ja) 新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法
JP3896608B2 (ja) 新規蛋白質およびそれをコードするdna並びに該蛋白質の産生方法
JPH093099A (ja) マクロファージ刺激蛋白質改変体およびその製造法
US6831151B1 (en) Mast cell-specific signal transducing molecules and cDNAs thereof
CA2360530C (en) A human nuclear protein having a ww domain and a polynucleotide encoding the protein
JP3144097B2 (ja) 新規なタンパク質およびそれをコードする遺伝子
JPH1118777A (ja) 新規スリット様ポリペプチド
JP2000262290A (ja) 細菌に対する感染防御反応を制御する新規タンパク質及びこれをコードするdna
CA2509508C (en) Tcf mutant
JP3292873B2 (ja) 組換肝実質細胞増殖因子
JP3318323B2 (ja) 組換肝実質細胞増殖因子
JP4042923B2 (ja) 免疫関連因子
JP2839837B2 (ja) 顆粒球コロニー刺激因子受容体のリガンド結合領域蛋白質をコードしているdna
US20040005658A1 (en) Novel polypeptide-human an1-like protein 16 and the polynucleotide encoding the same
JP2007222001A (ja) 疎水性ドメインを有するヒトタンパク質及びそれをコードするdna

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

EXPY Cancellation because of completion of term