JPH0992331A - Polymer solid electrolyte lithium secondary battery - Google Patents

Polymer solid electrolyte lithium secondary battery

Info

Publication number
JPH0992331A
JPH0992331A JP7242787A JP24278795A JPH0992331A JP H0992331 A JPH0992331 A JP H0992331A JP 7242787 A JP7242787 A JP 7242787A JP 24278795 A JP24278795 A JP 24278795A JP H0992331 A JPH0992331 A JP H0992331A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer solid
hydrocarbon group
polymer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7242787A
Other languages
Japanese (ja)
Other versions
JP3524651B2 (en
Inventor
Koji Higashimoto
晃二 東本
Takumi Hayakawa
他▲く▼美 早川
Akio Komaki
昭夫 小牧
Michio Sasaoka
三千雄 笹岡
Takefumi Nakanaga
偉文 中長
Akiyoshi Inubushi
昭嘉 犬伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP24278795A priority Critical patent/JP3524651B2/en
Publication of JPH0992331A publication Critical patent/JPH0992331A/en
Application granted granted Critical
Publication of JP3524651B2 publication Critical patent/JP3524651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it easy for a negative electrode material to store lithium ion by using a polymer solid electrolyte having an aromatic hydrocarbon group, and provide a lithium secondary battery with high capacity and long charge and discharge cycle life. SOLUTION: In a polymer solid electrolytic lithium secondary battery using a carbon material as negative electrode material, a polymer solid electrolyte consisting of a polymer compound having at least one of aromatic hydrocarbon group and complex aromatic hydrocarbon group is used. When a one having aromatic hydrocarbon group in the side chain is used as the polymer compound, electrode reaction is smoothly advanced to improve the battery characteristic. When a one in which methyl group in the side chain of methoxyoligoethyleneoxy polyphosphazene is substituted by aromatic hydrocarbon group, for example, a polymer compound represented by the formula, is used as the polymer compound, the battery characteristic is significantly improved because of the high conductivity of the polyphosphazene in the main chain. This polymer solid electrolyte is high in close adhesion to the carbon material of the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高分子固体電解質
リチウム二次電池に関するものである。
TECHNICAL FIELD The present invention relates to a polymer solid electrolyte lithium secondary battery.

【0002】[0002]

【従来の技術】電解液の液漏れを防止できる電池とし
て、固体からなる電解質を用いた固体電解質電池が知ら
れている。特に高分子化合物からなる電解質を用いた高
分子固体電解質電池は、電池反応を行うためのイオンの
伝導性が高い上、電解質が柔軟性に富んでいるため電解
質の薄膜化が可能になり、電池の厚みを薄くできる。ま
た、高分子化合物の分子設計を行うことにより各種の機
能性を得ることができる等の長所を有している。
2. Description of the Related Art As a battery capable of preventing electrolyte leakage, a solid electrolyte battery using a solid electrolyte is known. In particular, a polymer solid electrolyte battery using an electrolyte composed of a polymer compound has high ion conductivity for carrying out a battery reaction, and since the electrolyte is flexible, it is possible to make the electrolyte into a thin film. Can be made thinner. Further, it has an advantage that various functionalities can be obtained by designing the molecule of the polymer compound.

【0003】高分子固体電解質電池において、負極活物
質としてリチウムを用いると、高いエネルギーを有する
二次電池(高分子固体電解質リチウム二次電池)を得る
ことができる。しかしながら、負極活物質として純リチ
ウムを用いると、リチウムの針状結晶が負極活物質上に
析出するいわゆるデンドライトが生じる。デンドライト
が正極板に達すると電池が短絡し、電池性能が著しく低
下する。またこのような短絡が生じると過大な電流が流
れて電池が発熱し、電池の封口部に不良が生じたり、電
解質が揮発するおそれがある。そのため、電池内圧が上
昇して、最悪の場合には、電池が破裂して爆発する。
When lithium is used as the negative electrode active material in the polymer solid electrolyte battery, a secondary battery having high energy (polymer solid electrolyte lithium secondary battery) can be obtained. However, when pure lithium is used as the negative electrode active material, so-called dendrite in which needle-like crystals of lithium are deposited on the negative electrode active material occurs. When the dendrite reaches the positive electrode plate, the battery is short-circuited and the battery performance is significantly reduced. Further, when such a short circuit occurs, an excessive current may flow and the battery may generate heat, which may cause a defect in the sealing portion of the battery or volatilize the electrolyte. Therefore, the internal pressure of the battery rises, and in the worst case, the battery bursts and explodes.

【0004】そこで、負極活物質としてLi−Al等の
リチウム合金を用いることが提案された。負極活物質と
してLi合金を用いると電池の充電時にLiの合金化反
応が起こり、デンドライトの成長が抑制される。しかし
ながら、リチウムは合金にすると堅くなるため、電池の
形状が制限されてしまう。またリチウム合金を用いて
も、短絡を十分に防止することはできなかった。
Therefore, it has been proposed to use a lithium alloy such as Li-Al as the negative electrode active material. When a Li alloy is used as the negative electrode active material, an Li alloying reaction occurs at the time of charging the battery, and dendrite growth is suppressed. However, lithium alloys harden, which limits the shape of the battery. Moreover, even if a lithium alloy is used, a short circuit cannot be sufficiently prevented.

【0005】そこで、このようなデンドライトによる短
絡を防止するために、リチウムイオンの吸蔵、放出が可
能な炭素材を負極材として用いることが提案された。
Therefore, in order to prevent such a short circuit due to dendrites, it has been proposed to use a carbon material capable of inserting and extracting lithium ions as a negative electrode material.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、高分子
固体電解質を用いた電池は、負極材である炭素材料にリ
チウムイオンが吸蔵されにくく、電解質に非水電解液を
用いた電池に比べて、容量が低く、充放電サイクル特性
も低い。これは、高分子電解質から炭素材料(負極材)
にリチウムイオンがスムーズに受け渡されないためであ
ると思われる。
However, the battery using the polymer solid electrolyte is less likely to occlude lithium ions in the carbon material as the negative electrode material, and has a higher capacity than the battery using the non-aqueous electrolyte solution as the electrolyte. Is low and the charge / discharge cycle characteristics are also low. This is from polymer electrolyte to carbon material (negative electrode material)
It seems that lithium ions are not delivered smoothly.

【0007】本発明の目的は、負極材である炭素材料に
リチウムイオンが吸蔵されやすく、高容量で、充放電サ
イクル寿命の長い高分子固体電解質リチウム二次電池を
提供することにある。
An object of the present invention is to provide a polymer solid electrolyte lithium secondary battery which has a high capacity and a long charge / discharge cycle life, in which lithium ions are easily occluded in a carbon material as a negative electrode material.

【0008】[0008]

【課題を解決するための手段】本発明は、炭素材料を負
極材として用いるリチウム二次電池を対象にする。本発
明では、芳香族炭化水素基及び複素芳香族炭化水素基の
少なくとも一つを有する高分子化合物からなる高分子固
体電解質を用いる。なお芳香族炭化水素基及び複素芳香
族炭化水素基は単環であってもよく、多環であってもよ
い。芳香族炭化水素基としては、スチリル基、フェニル
基、トリル基、ナフチル基、アントラニル基、ピレニル
基、ビフェニル基、フルオレニル基、フェナンスレニル
基、ビスフェノールA残基等がある。また複素芳香族炭
化水素基としては、ベンゾフラニル基、キノリニル基、
アクリジニル基等がある。またここでいう高分子固体電
解質とは、単に電解質層を形成する高分子固体電解質だ
けでなく、正極材層及び負極材層に含まれている高分子
固体電解質も含むものである。
The present invention is directed to a lithium secondary battery using a carbon material as a negative electrode material. In the present invention, a polymer solid electrolyte composed of a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group is used. The aromatic hydrocarbon group and the heteroaromatic hydrocarbon group may be monocyclic or polycyclic. Examples of the aromatic hydrocarbon group include styryl group, phenyl group, tolyl group, naphthyl group, anthranyl group, pyrenyl group, biphenyl group, fluorenyl group, phenanthrenyl group and bisphenol A residue. As the heteroaromatic hydrocarbon group, a benzofuranyl group, a quinolinyl group,
There is an acridinyl group and the like. Further, the polymer solid electrolyte referred to herein includes not only the polymer solid electrolyte forming the electrolyte layer but also the polymer solid electrolyte contained in the positive electrode material layer and the negative electrode material layer.

【0009】芳香族炭化水素基及び複素芳香族炭化水素
基のようにベンゼン環及びベンゼン環に類似した環を有
する基は、炭素材料(負極材)と分子構造が似ているた
め、炭素材料(負極材)と密着しやすい。そこで本発明
のように、芳香族炭化水素基及び複素芳香族炭化水素基
の少なくとも一つを有する高分子化合物からなる高分子
固体電解質を用いると、高分子固体電解質と炭素材料
(負極材)との密着性が高くなって、高分子固体電解質
と炭素材料(負極材)との間におけるリチウムイオンの
受け渡しがスムーズになる。
A group having a benzene ring or a ring similar to a benzene ring, such as an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, has a molecular structure similar to that of the carbon material (negative electrode material), and therefore the carbon material ( It is easy to adhere to the negative electrode material). Therefore, as in the present invention, when a polymer solid electrolyte composed of a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group is used, a polymer solid electrolyte and a carbon material (negative electrode material) are obtained. And the adhesion of lithium ions between the polymer solid electrolyte and the carbon material (negative electrode material) becomes smooth.

【0010】また、高分子固体電解質を芳香族炭化水素
基及び複素芳香族炭化水素基を有さない高分子化合物で
形成し、炭素材料の表面のみを芳香族炭化水素基及び複
素芳香族炭化水素基の少なくとも一つを有する高分子化
合物で覆っても同じような効果を得られるが、この場
合、炭素材料の表面を芳香族炭化水素基及び複素芳香族
炭化水素基の少なくとも一つを有する高分子化合物で覆
う必要があり、電池の製造が繁雑になる。本発明では、
高分子固体電解質全体を芳香族炭化水素基及び複素芳香
族炭化水素基の少なくとも一つを有する高分子化合物で
形成することにより、このような繁雑さをなくして、電
池の製造を容易にしている。
Further, the polymer solid electrolyte is formed of a polymer compound having neither an aromatic hydrocarbon group nor a heteroaromatic hydrocarbon group, and only the surface of the carbon material is an aromatic hydrocarbon group or a heteroaromatic hydrocarbon. A similar effect can be obtained by covering with a polymer compound having at least one of the groups, but in this case, the surface of the carbon material has a high content of at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group. It needs to be covered with molecular compounds, which complicates battery manufacturing. In the present invention,
By forming the entire polymer solid electrolyte with a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, such complication can be eliminated and battery manufacturing is facilitated. .

【0011】芳香族炭化水素基は炭素材との親和性が良
好なため、炭素材に密着しやすい。そのため、高分子化
合物として芳香族炭化水素基を側鎖に有するものを用い
ると、電極反応がスムーズに進み、電池特性が向上する
利点がある。
Since the aromatic hydrocarbon group has a good affinity with the carbon material, it easily adheres to the carbon material. Therefore, when a polymer compound having an aromatic hydrocarbon group in its side chain is used, there is an advantage that the electrode reaction proceeds smoothly and the battery characteristics are improved.

【0012】高分子化合物として、メトキシオリゴエチ
レンオキシポリフォスファゼンの側鎖のメチル基を芳香
族炭化水素基に置換したものを用いると、電極反応がス
ムーズに進む上、主鎖のポリフォスファゼンがリチウム
イオンの伝導性が高いことから、電池特性が大きく向上
する利点がある。
When methoxy oligoethylene oxy polyphosphazene having a side chain methyl group substituted with an aromatic hydrocarbon group is used as the polymer compound, the electrode reaction proceeds smoothly and the main chain polyphosphazene is Since the lithium ion conductivity is high, there is an advantage that the battery characteristics are greatly improved.

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1は偏平形高分子固体電解質リチウム二
次電池に適用した本発明の実施例の断面図である。本実
施例の電池は正極集電体1の片面上に形成された正極活
物質層2と、負極集電体3の片面上に形成された負極活
物質層4とが高分子固体電解質層5を介して積層された
構造を有している。
(Example 1) FIG. 1 is a sectional view of an example of the present invention applied to a flat type polymer solid electrolyte lithium secondary battery. In the battery of the present embodiment, the positive electrode active material layer 2 formed on one surface of the positive electrode current collector 1 and the negative electrode active material layer 4 formed on one surface of the negative electrode current collector 3 have the solid polymer electrolyte layer 5 It has a structure of being laminated via.

【0014】本実施例の高分子固体電解質リチウム二次
電池は次のようにして製造した。
The polymer solid electrolyte lithium secondary battery of this example was manufactured as follows.

【0015】最初にメトキシオリゴエチレンオキシポリ
フォスファゼン(MEP)の側鎖のメチル基をスチリル
基に置換したものを1,2−ジメトキシエタン(DM
E)に溶解した溶液(以下、単にスチリル基含有MEP
/DMEと言う)からなる高分子固体電解質溶液を次の
ようにして作った。まずジクロロフォスファゼン3量体
をチッ素置換したガラス封管中で250℃で約8時間加
熱する熱開環重合を行った。これにより、重合率30%
のポリジクロロホスファゼンができる。次にこれをガラ
ス製昇華装置に入れ、110℃、5mmHgで約4時間昇華
して未重合のジクロロフォスファゼンを除去し、高純度
のポリジクロロホスファゼンを得た。次にオリゴエチレ
ングリコールモノメチルエーテル1モルと、スチレンに
オリゴエチレングリコールをマイケル付加させたオリゴ
エチレングリコールモノスチリルエーテル1モルとを混
合した混合物と、ナトリウム40gを裁断してTHF溶
液に分散させた分散溶液とを用意した。そしてこの分散
溶液中に前述の混合物を徐々に滴下し、室温において4
時間、55℃において2時間反応させてアルコラート溶
液を作った。
First, 1,2-dimethoxyethane (DM) was prepared by substituting the methyl group of the side chain of methoxyoligoethyleneoxypolyphosphazene (MEP) with a styryl group.
E) dissolved in solution (hereinafter, simply styryl group-containing MEP
/ DME) was prepared as follows. First, the dichlorophosphazene trimer was subjected to thermal ring-opening polymerization by heating at 250 ° C. for about 8 hours in a glass sealed tube substituted with nitrogen. This gives a polymerization rate of 30%
Polydichlorophosphazene can be obtained. Next, this was placed in a glass sublimation apparatus and sublimated at 110 ° C. and 5 mmHg for about 4 hours to remove unpolymerized dichlorophosphazene to obtain high-purity polydichlorophosphazene. Next, a mixture of 1 mol of oligoethylene glycol monomethyl ether and 1 mol of oligoethylene glycol monostyryl ether obtained by Michael-adding oligoethylene glycol to styrene, and a dispersion solution in which 40 g of sodium was cut and dispersed in a THF solution. And prepared. Then, the above mixture was gradually added dropwise to this dispersion solution, and the mixture was mixed at room temperature with 4
The alcoholate solution was prepared by reacting at 55 ° C. for 2 hours.

【0016】次に前述のポリジクロロホスファゼン10
0gを2リットルのトルエンに溶解した。その後、この
溶解中に20〜30℃において、前述のアルコラート溶
液を滴下した後、約60℃で8時間の置換反応を行っ
た。置換反応完了後、希塩酸により中和してから、減圧
濃縮後、水を加えて限外ろ過装置により脱塩及び未反応
原料の除去を行った。次に水を濃縮除去してから、DM
Eを加えて、共沸脱水により水を50〜100ppmま
で更に除去した。その後、脱水したDMEとLiClO
4 を溶解したDMEとを加えてスチリル基含有MEP/
DMEを完成した。スチリル基含有MEP/DMEに含
まれるスチリル基含有MEP(高分子固体電解質)は次
の式を有している。
Next, the above-mentioned polydichlorophosphazene 10
0 g was dissolved in 2 liters of toluene. Then, after adding the above-mentioned alcoholate solution at 20-30 degreeC during this melt | dissolution, the substitution reaction was performed at about 60 degreeC for 8 hours. After the substitution reaction was completed, the reaction mixture was neutralized with dilute hydrochloric acid, concentrated under reduced pressure, water was added, and desalting and removal of unreacted raw materials were performed by an ultrafiltration device. Next, water is concentrated and removed, and then DM
E was added to further remove water to 50-100 ppm by azeotropic dehydration. Then dehydrated DME and LiClO
DME in which 4 was dissolved and styryl group-containing MEP /
DME completed. The styryl group-containing MEP (polymer solid electrolyte) contained in the styryl group-containing MEP / DME has the following formula.

【0017】[0017]

【化1】 このようにスチリル基含有MEPは、MEPの側鎖のメ
チル基がスチリル基に置換された構造を有している。
Embedded image As described above, the styryl group-containing MEP has a structure in which the methyl group on the side chain of the MEP is substituted with the styryl group.

【0018】次に正極板を作った。まず、LiCoO2
粉末とカーボンブラックとを18:15の重量比で混合
してから真空乾燥した。次にこれとスチリル基含有ME
P/DME(高分子固体電解質溶液)とをドライボック
ス中で混合してからDMEを揮発させた。その後、これ
を混練したものをロールプレスでステンレス箔からなる
正極集電体1に、該正極集電体1の周縁部を残すように
正極集電体シ−ト状に貼り付けて正極材層2を形成した
正極板(15mAh)を完成した。
Next, a positive electrode plate was prepared. First, LiCoO 2
The powder and carbon black were mixed in a weight ratio of 18:15 and then vacuum dried. Next, this and styryl group-containing ME
P / DME (polymer solid electrolyte solution) was mixed in a dry box, and then DME was volatilized. Then, the kneaded product is roll-pressed to a positive electrode current collector 1 made of stainless steel foil and attached in a positive electrode current collector sheet shape so as to leave a peripheral portion of the positive electrode current collector 1, and a positive electrode material layer. The positive electrode plate (15 mAh) on which No. 2 was formed was completed.

【0019】次に負極板を作った。まず、日本黒鉛製の
黒鉛粉末(JSP)とスチリル基含有MEP/DME
(高分子固体電解質溶液)とを70:30の重量比で混
合してからDMEを揮発させた。その後、これを混練し
たものをロールプレスでステンレス箔からなる負極集電
体3に、該負極集電体3の周縁部を残すようにシ−ト状
に貼り付けて負極材層4を形成した負極板(15mA
h)を完成した。
Next, a negative electrode plate was prepared. First, graphite powder (JSP) made by Nippon Graphite and styryl group-containing MEP / DME
(Polymer solid electrolyte solution) was mixed at a weight ratio of 70:30, and then DME was volatilized. Then, the kneaded material was roll-pressed to a negative electrode current collector 3 made of stainless steel foil and attached in a sheet shape so as to leave a peripheral portion of the negative electrode current collector 3 to form a negative electrode material layer 4. Negative electrode plate (15 mA
h) was completed.

【0020】次に正極板の正極材層の上に前述のスチリ
ル基含有MEP/DME(高分子固体電解質溶液)を塗
布してからDMEを揮発させて高分子固体電解質半部を
形成すると共に、正極集電体1の周縁部にポリオレフィ
ン系樹脂からなる封止材半部を熱溶着して電池の正極板
側半部を作った。次に負極板の負極材層4の上にもスチ
リル基含有MEP/DMEを塗布してからDMEを揮発
させて高分子固体電解質半部を形成すると共に、負極集
電体の周縁部にポリオレフィン系樹脂からなる封止材半
部を熱溶着して電池の負極板側半部を作った。
Next, the aforementioned styryl group-containing MEP / DME (polymer solid electrolyte solution) is applied onto the positive electrode material layer of the positive electrode plate, and then DME is volatilized to form a polymer solid electrolyte half portion. Half of the sealing material made of polyolefin resin was heat-welded to the peripheral portion of the positive electrode current collector 1 to form the half of the positive electrode plate side of the battery. Next, the styryl group-containing MEP / DME is also applied on the negative electrode material layer 4 of the negative electrode plate, and then DME is volatilized to form a polymer solid electrolyte half part, and at the same time, a polyolefin-based material is applied to the peripheral part of the negative electrode current collector. Half of the sealing material made of resin was heat-welded to form the half of the battery on the negative electrode plate side.

【0021】次に電池の正極板側半部と電池の負極板側
半部とを接合して封止材半部を相互に溶着させて本実施
例の高分子固体電解質リチウム二次電池を完成した。
Next, the positive electrode plate side half of the battery and the negative electrode plate side half of the battery are joined and the sealing material half is welded to each other to complete the solid polymer electrolyte lithium secondary battery of this embodiment. did.

【0022】(実施例2)本実施例の電池は、下記の式
に示すようにスチリル基の代りにフェニル基でMEPの
側鎖のメチル基を置換した高分子化合物で高分子固体電
解質を形成したもので、その他は、実施例1と同じ構造
を有している。
(Example 2) In the battery of this example, a polymer solid electrolyte is formed by a polymer compound in which a methyl group on the side chain of MEP is substituted with a phenyl group instead of a styryl group as shown in the following formula. Other than that, it has the same structure as the first embodiment.

【0023】[0023]

【化2】 本実施例の電池は、「スチレンにオリゴエチレングリコ
ールをマイケル付加させたオリゴエチレングリコールモ
ノスチリルエーテル」の代りに「フェノールにエチレン
オキシドを付加させたオリゴエチレングリコールモノフ
ェニルエーテル」を用い、その他は実施例1と同様にし
て製造した。
Embedded image In the battery of this example, "oligoethylene glycol monophenyl ether obtained by adding ethylene oxide to phenol" was used in place of "oligoethylene glycol monostyryl ether obtained by Michael addition of oligoethylene glycol to styrene". It was produced in the same manner as 1.

【0024】(実施例3)本実施例の電池は、下記の式
に示すようにスチリル基の代りにナフチル基でMEPの
側鎖のメチル基を置換した高分子化合物で高分子固体電
解質を形成したもので、その他は、実施例1と同じ構造
を有している。
(Embodiment 3) In the battery of this embodiment, a polymer solid electrolyte is formed by a polymer compound in which a methyl group on the side chain of MEP is replaced with a naphthyl group instead of a styryl group as shown in the following formula. Other than that, it has the same structure as the first embodiment.

【0025】[0025]

【化3】 本実施例の電池は、フェノールの代りにナフトールを用
い、その他は実施例2と同様にして製造した。
Embedded image The battery of this example was manufactured in the same manner as in Example 2 except that naphthol was used instead of phenol.

【0026】(実施例4)本実施例の電池は、下記の
(A)の式と(B)の式の共重合体からなる高分子化合
物で高分子固体電解質を形成したもので、その他は、実
施例1と同じ構造を有している。
(Example 4) The battery of this example is one in which a polymer solid electrolyte is formed from a polymer compound composed of the copolymers of the formulas (A) and (B) below. , Has the same structure as that of the first embodiment.

【0027】[0027]

【化4】 本実施例で用いる高分子固体電解質は次のようにして作
った。まずオリゴエチレングリコールモノフェニルエー
テル[HO(CH2 CH2 O)m 6 5 ]0.1モル
とオリゴエチレングリコールモノメチルエーテル[HO
(CH2 CH2O)CH3 ]0.1モルとトリエチル
アミン2.2モルとの混合物をトルエンに溶解した。こ
れに、氷冷下において、メタクリル酸クロリド2.2モ
ルのトルエン溶液を滴下した。滴下後、徐々に昇温して
光を遮った状態でハイドロキノンモノメチルエーテルを
1重量%添加して50℃で6時間反応を行った。反応
後、水洗、脱水、濃縮を行い、これに約0.5%のベン
ゾイルパーオキシドを添加してから、80〜100℃で
5〜15分加熱重合して高分子固体電解質を完成した。
Embedded image The polymer solid electrolyte used in this example was prepared as follows. First, 0.1 mol of oligoethylene glycol monophenyl ether [HO (CH 2 CH 2 O) m C 6 H 5 ] and oligoethylene glycol monomethyl ether [HO
A mixture of 0.1 mol of (CH 2 CH 2 O) 1 CH 3 ] and 2.2 mol of triethylamine was dissolved in toluene. To this, a toluene solution of 2.2 mol of methacrylic acid chloride was added dropwise under ice cooling. After the dropping, 1% by weight of hydroquinone monomethyl ether was added while the temperature was gradually raised and the light was shielded, and the reaction was carried out at 50 ° C. for 6 hours. After the reaction, the product was washed with water, dehydrated and concentrated, and about 0.5% of benzoyl peroxide was added thereto, followed by heat polymerization at 80 to 100 ° C. for 5 to 15 minutes to complete a solid polymer electrolyte.

【0028】(実施例5)本実施例の電池は、下記の
(A)の式と(B)の式の共重合体からなる高分子化合
物で高分子固体電解質を形成したもので、その他は、実
施例1と同じ構造を有している。
(Embodiment 5) The battery of this embodiment is one in which a polymer solid electrolyte is formed of a polymer compound composed of the copolymers of the formulas (A) and (B) below. , Has the same structure as that of the first embodiment.

【0029】[0029]

【化5】 本実施例で用いる高分子固体電解質は、オリゴエチレン
グリコールモノフェニルエーテルの代りにオリゴエチレ
ングリコールモノ(N−メチル−N−フェニルアミノエ
チル)エーテルを用い、その他は、実施例4と同様にし
て作った。
Embedded image The solid polymer electrolyte used in this example was prepared in the same manner as in Example 4, except that oligoethylene glycol mono (N-methyl-N-phenylaminoethyl) ether was used instead of oligoethylene glycol monophenyl ether. It was

【0030】(実施例6)本実施例の電池は、下記の
(A)の式と(B)の式の共重合体からなる高分子化合
物で高分子固体電解質を形成したもので、その他は、実
施例1と同じ構造を有している。
(Example 6) The battery of this example is one in which a polymer solid electrolyte is formed from a polymer compound composed of the copolymers of the formulas (A) and (B) below. , Has the same structure as that of the first embodiment.

【0031】[0031]

【化6】 本実施例で用いる高分子固体電解質は、4−(エンドメ
トキシ−オリゴエチレンオキシ)スチレンとメタクリル
酸エンドメトキシオリゴエチレングリコールエステルと
を共重合させて作った。
[Chemical 6] The polymer solid electrolyte used in this example was produced by copolymerizing 4- (endomethoxy-oligoethyleneoxy) styrene and methacrylic acid endomethoxyoligoethylene glycol ester.

【0032】(比較例1)本比較例の電池は、下記の式
に示すようにMEP(スチリル基を含有しないもの)で
高分子固体電解質を形成したもので、その他は、実施例
1と同じ構造を有している。
(Comparative Example 1) The battery of this comparative example is the same as that of Example 1 except that the polymer solid electrolyte is formed of MEP (containing no styryl group) as shown in the following formula. It has a structure.

【0033】[0033]

【化7】 次に上記各電池に25μA/cm2 の電流密度で4.2Vま
で行う充電と、同じ電流密度で2.8Vまで行う放電と
を繰り返し、各電池の充放電特性を調べた。図2はその
測定結果を示している。本図より上記実施例1〜6の電
池は、比較例1の電池に比べて容量が高く、しかも充放
電サイクル寿命を延ばせることが分る。なお、上記実施
例では、側鎖に芳香族炭化水素基を有する高分子化合物
からなる高分子固体電解質を用いた電池の例を示した
が、本発明はこれに限定されるものではなく、下記式に
示すように主鎖に芳香族炭化水素基を有する高分子化合
物からなる高分子固体電解質を用いても構わない。
[Chemical 7] Next, the charging and discharging characteristics of each battery were examined by repeating charging to each battery at a current density of 25 μA / cm 2 up to 4.2 V and discharging at the same current density up to 2.8 V. FIG. 2 shows the measurement results. It can be seen from this figure that the batteries of Examples 1 to 6 have higher capacities than the batteries of Comparative Example 1 and can extend the charge / discharge cycle life. In the above examples, an example of a battery using a polymer solid electrolyte made of a polymer compound having an aromatic hydrocarbon group in the side chain is shown, but the present invention is not limited to this, and A solid polymer electrolyte composed of a polymer compound having an aromatic hydrocarbon group in the main chain as shown in the formula may be used.

【0034】[0034]

【化8】 Embedded image

【化9】 また本発明は、下記式に示すエンド−2−ピリジルオキ
シ−オリゴエチレンオキシメタクリレートように複素芳
香族炭化水素基を有する高分子化合物からなる高分子固
体電解質を用いても構わない。
Embedded image Further, in the present invention, a polymer solid electrolyte composed of a polymer compound having a heteroaromatic hydrocarbon group such as endo-2-pyridyloxy-oligoethyleneoxymethacrylate represented by the following formula may be used.

【0035】[0035]

【化10】 また本発明は、下記(A)の式と(B)の式の共重合体
に示すように芳香族炭化水素基と複素芳香族炭化水素基
の両方を有する高分子化合物からなる高分子固体電解質
を用いても構わない。
Embedded image The present invention also provides a solid polymer electrolyte comprising a polymer compound having both an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group as shown in the copolymers of the following formulas (A) and (B). May be used.

【0036】[0036]

【化11】 なお本実施例では、負極材の炭素材料として黒鉛を用い
たが、炭素材料はリチウムイオンを吸蔵、放出できるも
のえあれば、他のものを用いても構わない。
Embedded image In this example, graphite was used as the carbon material of the negative electrode material, but other carbon materials may be used as long as they can store and release lithium ions.

【0037】以下、明細書に記載した複数の発明の中で
いくつかの発明についてその構成を示す。
The structure of some of the inventions described in the specification will be shown below.

【0038】(1) 炭素材料を負極材として用いる高
分子固体電解質リチウム二次電池において、メトキシオ
リゴエチレンオキシポリフォスファゼンの側鎖にあるメ
チル基をスチリル基に置換したものを高分子固体電解質
として用いることを特徴とする高分子固体電解質リチウ
ム二次電池。
(1) Polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material, wherein a methyl group in the side chain of methoxyoligoethyleneoxypolyphosphazene is replaced with a styryl group as a polymer solid electrolyte. A polymer solid electrolyte lithium secondary battery characterized by being used.

【0039】(2) 炭素材料を負極材として用いる高
分子固体電解質リチウム二次電池において、メトキシオ
リゴエチレンオキシポリフォスファゼンの側鎖にあるメ
チル基をフェニル基に置換したものを高分子固体電解質
として用いることを特徴とする高分子固体電解質リチウ
ム二次電池。
(2) A polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material, in which a methyl group in the side chain of methoxyoligoethyleneoxypolyphosphazene is replaced with a phenyl group as a polymer solid electrolyte. A polymer solid electrolyte lithium secondary battery characterized by being used.

【0040】(3) 炭素材料を負極材として用いる高
分子固体電解質リチウム二次電池において、メトキシオ
リゴエチレンオキシポリフォスファゼンの側鎖にあるメ
チル基をナフチル基に置換したものを高分子固体電解質
として用いることを特徴とする高分子固体電解質リチウ
ム二次電池。
(3) Polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material. A polymer solid electrolyte obtained by substituting a methyl group in the side chain of methoxyoligoethyleneoxypolyphosphazene with a naphthyl group. A polymer solid electrolyte lithium secondary battery characterized by being used.

【0041】(4) 炭素材料を負極材として用いる高
分子固体電解質リチウム二次電池において、式(A)と
式(B)との共重合体からなる高分子化合物を高分子固
体電解質として用いることを特徴とする高分子固体電解
質リチウム二次電池。
(4) Polymer solid electrolyte using a carbon material as a negative electrode material In a lithium secondary battery, a polymer compound comprising a copolymer of formula (A) and formula (B) is used as a polymer solid electrolyte. Polymer solid electrolyte lithium secondary battery characterized by:

【0042】[0042]

【化12】 (5) 炭素材料を負極材として用いる高分子固体電解
質リチウム二次電池において、式(A)と式(B)との
共重合体からなる高分子化合物を高分子固体電解質とし
て用いることを特徴とする高分子固体電解質リチウム二
次電池。
[Chemical 12] (5) In a polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material, a polymer compound comprising a copolymer of formula (A) and formula (B) is used as a polymer solid electrolyte. Polymer solid electrolyte lithium secondary battery.

【0043】[0043]

【化13】 (6) 炭素材料を負極材として用いる高分子固体電解
質リチウム二次電池において、式(A)と式(B)との
共重合体からなる高分子化合物を高分子固体電解質とし
て用いることを特徴とする高分子固体電解質リチウム二
次電池。
Embedded image (6) In a polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material, a polymer compound comprising a copolymer of formula (A) and formula (B) is used as a polymer solid electrolyte. Polymer solid electrolyte lithium secondary battery.

【0044】[0044]

【化14】 Embedded image

【0045】[0045]

【発明の効果】芳香族炭化水素基及び複素芳香族炭化水
素基のようにベンゼン環及びベンゼン環に類似した環を
有する基は、炭素材料(負極材)と分子構造が似ている
ため、炭素材料(負極材)と密着しやすい。本発明によ
れば、芳香族炭化水素基及び複素芳香族炭化水素基の少
なくとも一つを有する高分子化合物からなる高分子固体
電解質を用いるので、高分子固体電解質と炭素材料(負
極材)と密着性が高くなって、高分子固体電解質と炭素
材料(負極材)との間におけるリチウムイオンの受け渡
しがスムーズになる。そのため、本発明によれば、高容
量で、サイクル寿命の長い電池を得ることができる。
EFFECTS OF THE INVENTION A group having a benzene ring or a ring similar to a benzene ring, such as an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group, has a molecular structure similar to that of a carbon material (negative electrode material), and therefore has a carbon Easily adheres to the material (negative electrode material). According to the present invention, since the solid polymer electrolyte composed of the polymer compound having at least one of the aromatic hydrocarbon group and the heteroaromatic hydrocarbon group is used, the solid polymer electrolyte and the carbon material (negative electrode material) are adhered to each other. As a result, the lithium ion is smoothly transferred between the polymer solid electrolyte and the carbon material (negative electrode material). Therefore, according to the present invention, a battery having a high capacity and a long cycle life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の高分子固体電解質リチウム
二次電池の断面図である。
FIG. 1 is a cross-sectional view of a polymer solid electrolyte lithium secondary battery of an example of the present invention.

【図2】 試験に用いた電池のサイクル寿命特性を示す
図である。
FIG. 2 is a diagram showing cycle life characteristics of a battery used in a test.

【符号の説明】[Explanation of symbols]

1 正極集電体 2 正極活物質層 3 負極集電体 4 負極活物質層 5 高分子固体電解質層 1 Positive Electrode Current Collector 2 Positive Electrode Active Material Layer 3 Negative Electrode Current Collector 4 Negative Electrode Active Material Layer 5 Polymer Solid Electrolyte Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 笹岡 三千雄 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 犬伏 昭嘉 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Akio Komaki 2-1-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo Within Shinjin Todenki Co., Ltd. (72) Inventor Michio Sasaoka 463 Kagasuno, Kawauchi-cho, Tokushima, Tokushima Prefecture Otsuka Chemical Co., Ltd.Tokushima Research Institute (72) Inventor Weibun Nakano 463, Kagasuno, Kawauchi-cho, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd. Tokushima Research Institute (72) Inventor, Akiyoshi Inubushi, Kagasuno, Tokushima City 463 Otsuka Chemical Co., Ltd. Tokushima Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を負極材として用いる高分子固
体電解質リチウム二次電池において、 芳香族炭化水素基及び複素芳香族炭化水素基の少なくと
も一つを有する高分子化合物からなる高分子固体電解質
を用いることを特徴とする高分子固体電解質リチウム二
次電池。
1. A polymer solid electrolyte lithium secondary battery using a carbon material as a negative electrode material, comprising a polymer solid electrolyte comprising a polymer compound having at least one of an aromatic hydrocarbon group and a heteroaromatic hydrocarbon group. A polymer solid electrolyte lithium secondary battery characterized by being used.
【請求項2】 前記高分子化合物は、前記芳香族炭化水
素基を側鎖に有していることを特徴とする請求項1に記
載の高分子固体電解質リチウム二次電池。
2. The polymer solid electrolyte lithium secondary battery according to claim 1, wherein the polymer compound has the aromatic hydrocarbon group in a side chain.
【請求項3】 前記高分子化合物として、メトキシオリ
ゴエチレンオキシポリフォスファゼンの側鎖のメチル基
を芳香族炭化水素基に置換したものを用いることを特徴
とする請求項2に記載の高分子固体電解質リチウム二次
電池。
3. The polymer solid according to claim 2, wherein the polymer compound is methoxyoligoethyleneoxypolyphosphazene having a side chain methyl group substituted with an aromatic hydrocarbon group. Electrolyte lithium secondary battery.
JP24278795A 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery Expired - Fee Related JP3524651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24278795A JP3524651B2 (en) 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24278795A JP3524651B2 (en) 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0992331A true JPH0992331A (en) 1997-04-04
JP3524651B2 JP3524651B2 (en) 2004-05-10

Family

ID=17094293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24278795A Expired - Fee Related JP3524651B2 (en) 1995-09-21 1995-09-21 Polymer solid electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3524651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227135B2 (en) * 2005-03-29 2012-07-24 Toyota Motor Corporation Electrolytes to enhance oxygen reduction reaction (ORR) in the cathode layer of PEM fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8227135B2 (en) * 2005-03-29 2012-07-24 Toyota Motor Corporation Electrolytes to enhance oxygen reduction reaction (ORR) in the cathode layer of PEM fuel cell

Also Published As

Publication number Publication date
JP3524651B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
KR100537613B1 (en) Anode composition of lithium battery, and anode and lithium battery employing the same
JP4117573B2 (en) battery
US6558840B1 (en) Electrode for use in a non-aqueous battery
JP4352475B2 (en) Solid electrolyte secondary battery
JP2004185862A (en) Lithium ion secondary battery and its manufacturing method
JPH1092444A (en) Solid high molecular electrolyte complex for electrochemical reaction device and electrochemical reaction device using it
JP2000156229A (en) Nonaqueous electrolyte lithium secondary battery
CA2410097A1 (en) Method for producing rechargeable lithium-polymer batteries and a battery produced according to said method
US9601804B2 (en) Gel polymer electrolyte, lithium battery including gel polymer electrolyte, and method of preparing gel polymer electrolyte
JPS63213266A (en) Solid state battery electrolyte
JP2004063432A (en) Battery
JP3312836B2 (en) Non-aqueous electrolyte secondary battery
US6503284B1 (en) Method of preparing electrochemical cells
KR20190118811A (en) Binder for all-solid-state lithium secondary battery, electrode slurry comprising the same, and the all-solid-state lithium secondary battery comprising the same
JPH05314965A (en) Battery positive electrode sheet, manufacture thereof and totally solid secondary battery
JP3556743B2 (en) Polymer solid electrolyte lithium secondary battery
JP3524651B2 (en) Polymer solid electrolyte lithium secondary battery
US8778533B2 (en) Lithium secondary battery
JPS63136407A (en) Lithium ion conducting polymer electrolyte
JP2872223B2 (en) Vinyl acetate copolymer, gel polymer electrolyte composition containing the same, and lithium polymer secondary battery
JPS62254303A (en) Lithium ion conducting polymer electrolyte
JP2004193041A (en) Carbon electrode for polymer battery and the polymer battery using the same
CN111499995A (en) Polymer composite membrane and preparation method thereof, composite electrode plate and preparation method thereof, and lithium metal secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JP3902349B2 (en) Polymer electrolyte battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees