JPH0991693A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0991693A
JPH0991693A JP25302195A JP25302195A JPH0991693A JP H0991693 A JPH0991693 A JP H0991693A JP 25302195 A JP25302195 A JP 25302195A JP 25302195 A JP25302195 A JP 25302195A JP H0991693 A JPH0991693 A JP H0991693A
Authority
JP
Japan
Prior art keywords
film
magnetic
metal magnetic
metal
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25302195A
Other languages
Japanese (ja)
Inventor
Hideki Imamura
秀樹 今村
Hirohide Mizunoya
博英 水野谷
Akira Shiga
章 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP25302195A priority Critical patent/JPH0991693A/en
Publication of JPH0991693A publication Critical patent/JPH0991693A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve magnetic characteristics, durability and corrosion resis tance by adding a process to atomize and spray water onto a metal magnetic film and a process to irradiate the water drops with microwaves to the produc tion method. SOLUTION: A metal magnetic film is formed on a PET(polyethylen terephthalate) film 23 in a vacuum chamber 26 and the film is wound up on a winding roll 22b. When the film is guided to the outside of the vacuum chamber 26, water drops are deposited on the metal magnetic film by ultrasonic atomizing device 1. Further, the water drops are irradiated with microwaves introduced through a waveguide from a microwave generator 2. Therefore, water drops generates heat and increases its temp. so that the surface of the metal magnetic film is effectively oxidized with oxygen included in the water drops to uniformly form an oxide film. Thus, durability and corrosion resistance of the medium can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に金属薄膜型の
磁気記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal thin film type magnetic recording medium.

【0002】[0002]

【発明が解決しようとする課題】磁気テープ等の磁気記
録媒体においては、高密度記録化の要請から、非磁性支
持体上に設けられる磁性層として、バインダ樹脂を用い
た塗布型のものではなく、バインダ樹脂を用いない金属
薄膜型のものが提案されている。すなわち、湿式メッキ
手段、あるいは真空蒸着、スパッタリングあるいはイオ
ンプレーティングといった乾式メッキ手段により磁性層
を構成した磁気記録媒体が提案されている。そして、こ
の種の磁気記録媒体は磁性体の充填密度が高いことか
ら、高密度記録に適したものである。
In a magnetic recording medium such as a magnetic tape, a magnetic layer provided on a non-magnetic support is not a coating type using a binder resin because of a demand for high density recording. , A metal thin film type that does not use a binder resin has been proposed. That is, there has been proposed a magnetic recording medium having a magnetic layer formed by a wet plating means or a dry plating means such as vacuum deposition, sputtering or ion plating. This kind of magnetic recording medium is suitable for high-density recording because of its high packing density of magnetic material.

【0003】このような乾式メッキ手段による磁気記録
媒体の製造装置は、図2のように構成されているものが
一般的である。尚、図2中、21は冷却キャンロール、
22aはポリエチレンテレフタレート(PET)フィル
ム23の供給側ロール、22bはPETフィルム23の
巻取側ロール、24はルツボ、25は磁性金属、26は
真空槽である。そして、真空槽26内を所定の真空度の
ものに排気した後、電子銃27を作動させてルツボ24
内の磁性金属25を蒸発させ、PETフィルム23に対
して磁性金属25の蒸発粒子を堆積(蒸着)させること
によって磁気記録媒体が製造されている。
An apparatus for manufacturing a magnetic recording medium by such dry plating means is generally constructed as shown in FIG. In FIG. 2, 21 is a cooling can roll,
22a is a supply side roll of the polyethylene terephthalate (PET) film 23, 22b is a winding side roll of the PET film 23, 24 is a crucible, 25 is a magnetic metal, and 26 is a vacuum chamber. Then, after evacuating the inside of the vacuum chamber 26 to have a predetermined vacuum degree, the electron gun 27 is operated to operate the crucible 24.
The magnetic recording medium is manufactured by evaporating the magnetic metal 25 in the inside and depositing (evaporating) evaporated particles of the magnetic metal 25 on the PET film 23.

【0004】ところで、このような装置により金属薄膜
型の磁気記録媒体を製造するに際して、磁性粒子の蒸着
部分に酸素を供給し、磁気特性の向上を図ろうとするこ
とが試みられた。すなわち、PETフィルム23の走行
方向とは逆方向に酸素を供給することが提案(特公昭6
1−56563号公報)された。そして、このものは、
それなりの特長を奏するものであった。
By the way, when manufacturing a metal thin film type magnetic recording medium with such an apparatus, it was attempted to supply oxygen to the vapor deposition portion of the magnetic particles to improve the magnetic characteristics. That is, it is proposed that oxygen be supplied in the direction opposite to the traveling direction of the PET film 23 (Japanese Patent Publication No.
1-56563). And this one is
It had some features.

【0005】しかしながら、前記提案のものでも満足で
きないことが次第に判って来た。すなわち、酸素ガスの
供給は磁気特性の向上のみでなく、表面酸化膜の形成に
より保護膜を形成し、耐久性・耐蝕性の向上をも目的と
している。これらの目的を達成する為に、酸素ガスを吹
き付けているとは言え、真空中における成膜段階におい
て酸素ガス吹付量を多くすることは出来ず、従ってまば
らなものとなり、表面酸化膜が出来ている部分とそうで
ない部分とが斑のように出来てしまい、均一な皮膜が出
来ていないことから、耐久性の向上については決して満
足できるものではなかった。
However, it has gradually become clear that the above proposal is not satisfactory. That is, the supply of oxygen gas is intended not only to improve the magnetic characteristics but also to improve the durability and corrosion resistance by forming a protective film by forming a surface oxide film. Although oxygen gas is blown to achieve these purposes, it is not possible to increase the amount of oxygen gas blown during the film formation step in a vacuum, and therefore it becomes sparse and a surface oxide film is formed. The unevenness was not satisfactory because the spots that were present and the spots that were not were formed like spots, and a uniform film was not formed.

【0006】又、酸素ガス吹付量を多くすると、磁性層
表面の酸素濃度が高く、PETフィルムに近い側では酸
素濃度が低く、酸素含有量に濃度勾配が出来、時間の経
過につれて酸素の拡散が起き、飽和磁束密度の低下が起
きることも判って来た。従って、本発明は、磁気特性、
及び耐久性・耐蝕性に優れた磁気記録媒体を提供するこ
とを目的とする。
Further, when the amount of oxygen gas sprayed is increased, the oxygen concentration on the surface of the magnetic layer is high, the oxygen concentration is low on the side close to the PET film, a concentration gradient is created in the oxygen content, and the diffusion of oxygen over time. It has also been found that a decrease in the saturation magnetic flux density occurs. Therefore, the present invention has
It is also an object of the present invention to provide a magnetic recording medium having excellent durability and corrosion resistance.

【0007】[0007]

【課題を解決するための手段】前記本発明の目的は、支
持体上に金属磁性膜を設ける成膜工程と、金属磁性膜上
に有極性分子を供給する有極性分子供給工程と、金属磁
性膜上に付けられた有極性分子に対してマイクロ波を照
射するマイクロ波照射工程とを具備することを特徴とす
る磁気記録媒体の製造方法によって達成される。
The object of the present invention is to provide a step of forming a metal magnetic film on a support, a step of supplying polar molecules onto the metal magnetic film, and a step of supplying metal magnetic particles. And a microwave irradiating step of irradiating the polar molecules attached to the film with microwaves.

【0008】特に、支持体上に金属磁性膜を設ける成膜
工程と、金属磁性膜上に水を噴霧する工程と、金属磁性
膜上に付けられた水滴に対してマイクロ波を照射するマ
イクロ波照射工程とを具備することを特徴とする磁気記
録媒体の製造方法によって達成される。
In particular, a film forming step of providing a metal magnetic film on a support, a step of spraying water on the metal magnetic film, and a microwave for irradiating a water drop on the metal magnetic film with microwaves. And a step of irradiating the magnetic recording medium.

【0009】尚、マイクロ波照射工程における条件は、
マイクロ波発生源の出力400w〜5kw、使用周波数
がマイクロ波帯のものが好ましい。例えば、マイクロ波
照射時間は10秒以内、周波数が2.45GHz、出力
1〜5kwのものとしておけば、磁気記録媒体(支持
体)が熱損傷を受けない。
The conditions in the microwave irradiation process are as follows:
It is preferable that the output of the microwave source is 400 w to 5 kw and the operating frequency is in the microwave band. For example, if the microwave irradiation time is within 10 seconds, the frequency is 2.45 GHz, and the output is 1 to 5 kW, the magnetic recording medium (support) will not be damaged by heat.

【0010】[0010]

【発明の実施の形態】本発明は、支持体上に金属磁性膜
を設ける成膜工程と、金属磁性膜上に有極性分子を供給
する有極性分子供給工程と、金属磁性膜上に付けられた
有極性分子に対してマイクロ波を照射するマイクロ波照
射工程とを具備する。有極性分子しては種々のものが挙
げられる。例えば、蒸留水などの水、アルコール、その
他にも多数のものが有る。しかし、使用のし易さから考
えると、水を用いるのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention includes a film forming step of providing a metal magnetic film on a support, a polar molecule supplying step of supplying polar molecules onto the metal magnetic film, and a metal magnetic film provided on the metal magnetic film. And a microwave irradiation step of irradiating the polar molecules with microwaves. As the polar molecule, various kinds can be mentioned. For example, there are water such as distilled water, alcohol, and many others. However, from the viewpoint of ease of use, it is preferable to use water.

【0011】従って、本発明の好ましい形態として、支
持体上に金属磁性膜を設ける成膜工程と、金属磁性膜上
に水を噴霧する工程と、金属磁性膜上に付けられた水滴
に対してマイクロ波を照射するマイクロ波照射工程とを
具備する磁気記録媒体の製造方法が挙げられる。そし
て、金属磁性膜上に付けられた有極性分子液滴(水滴)
に対してマイクロ波を照射すると、誘電加熱の原理によ
り有極性分子(水分子)には振動などの分子運動が起こ
り、これによって有極性分子液滴(水滴)が発熱し、中
に含まれている酸素によって金属磁性膜表面は効果的に
酸化される。特に、この酸化は、液滴(水滴)が酸素分
子に比べるとマクロなものである為、ミクロ的な領域で
酸化されるものとは異なり、マクロ的領域にわたって酸
化が一度に行われるから、真空中における成膜段階にお
いて酸素ガスを吹き付ける場合に比べ、酸化が均一に処
理される。すなわち、酸化皮膜が斑点のように斑なもの
ではなく、均一である為、酸化膜による耐久性・耐蝕性
が向上する。
Therefore, as a preferred embodiment of the present invention, a film forming step of providing a metal magnetic film on a support, a step of spraying water on the metal magnetic film, and a water droplet attached to the metal magnetic film And a microwave irradiation step of irradiating a microwave. And polar molecular droplets (water droplets) attached on the metal magnetic film
When microwave is applied to the polar molecules (water molecules) due to the principle of dielectric heating, molecular motion such as vibration occurs, and as a result, polar molecule droplets (water droplets) generate heat and are contained in the droplets. The surface of the metal magnetic film is effectively oxidized by the existing oxygen. In particular, this oxidation is a macroscopic droplet (water droplet) compared to oxygen molecules, so unlike oxidation in a microscopic area, oxidation is performed at once in a macroscopic area. Oxidation is treated more uniformly than in the case where oxygen gas is blown in the film formation step inside. That is, since the oxide film is not uneven like spots and is uniform, the durability and corrosion resistance of the oxide film are improved.

【0012】かつ、図2の成膜段階で酸素ガスを供給
し、磁気分離を行わせる場合にあっても、酸素ガス吹付
量を必要以上に多くする必要がないから、時間の経過に
つれての酸素の大幅な拡散を心配する必要がなく、飽和
磁束密度の低下を心配する必要もない。従って、この点
からも、磁気特性が良好である。本発明における磁気記
録媒体の支持体は、磁性を有するものでも非磁性のもの
でも良いが、一般的には非磁性のものである。例えば、
PET等のポリエステル、ポリアミド、ポリイミド、ポ
リスルフォン、ポリカーボネート、ポリプロピレン等の
オレフィン系の樹脂、セルロース系の樹脂、塩化ビニル
系の樹脂といった高分子材料が用いられる。そして、セ
ラミックや金属に比べて耐熱性が劣る高分子材料を支持
体に用いる場合、酸化処理時の熱量が少ない本発明は好
適である。尚、支持体面上には、必要に応じて磁性層
(磁性薄膜)の密着性を向上させる為のアンダーコート
層が設けられている。すなわち、表面の粗さを適度に粗
すことにより、斜め蒸着法により構成される磁性薄膜の
密着性を向上させ、さらに磁気記録媒体表面の表面粗さ
を適度なものとして走行性を改善する為、例えばSiO
2 等の粒子を含有させた厚さが0.005〜0.1μm
の塗膜を設けることによってアンダーコート層が構成さ
れている。
In addition, oxygen gas is supplied in the film forming stage of FIG.
However, even if magnetic separation is performed, blowing oxygen gas
There is no need to increase the amount more than necessary, so over time
Saturation without having to worry about significant oxygen diffusion
There is no need to worry about a decrease in magnetic flux density. Therefore, this point
Also, the magnetic properties are excellent. Magnetic recording in the present invention
The recording medium support is either magnetic or non-magnetic.
However, it is generally non-magnetic. For example,
Polyester such as PET, polyamide, polyimide, polyethylene
Such as resulphone, polycarbonate, polypropylene
Olefin resin, cellulose resin, vinyl chloride
A polymer material such as a system resin is used. And
Supports polymeric materials that have poor heat resistance compared to Lamic and metals
When used on the body, the present invention, which requires less heat during oxidation treatment, is preferable.
It is suitable. If necessary, a magnetic layer may be formed on the support surface.
Undercoat to improve the adhesion of (magnetic thin film)
A layer is provided. That is, the surface roughness should be moderately rough.
The magnetic thin film formed by the oblique deposition method.
Improves adhesion and further surface roughness of magnetic recording media
In order to improve the running property, for example, SiO 2
2The thickness including particles such as 0.005 to 0.1 μm
The undercoat layer is formed by providing
Have been.

【0013】支持体上に斜め蒸着などの乾式メッキ手段
で構成される金属磁性膜の材料としては、例えばFe,
Co,Ni等の金属の他に、Co−Ni合金、Co−P
t合金、Co−Ni−Pt合金、Fe−Co合金、Fe
−Ni合金、Fe−Co−Ni合金、Fe−Co−B合
金、Co−Ni−Fe−B合金、Co−Cr合金、ある
いはこれらにAl等の金属を含有させたもの等が挙げら
れる。尚、金属磁性膜としては、前記材料の酸化物、窒
化物(例えば、Fe−N,Fe−N−O)や炭化物(例
えば、Fe−C,Fe−C−O)等も挙げられる。そし
て、例えば真空槽内を10-4〜10-6Torr程度、例
えば2×10-5Torrの真空度に排気した後、抵抗加
熱、高周波加熱、電子ビーム加熱などによりルツボ内の
磁性金属を蒸発させ、PETフィルム等の支持体に対し
て400〜2000Å、例えば1800Å厚さ磁性金属
を斜め蒸着させることによって金属薄膜型の磁気記録媒
体が製造される。尚、この磁性金属粒子の斜め蒸着に際
して、酸素ガス供給ノズルから微量の酸素が吹き込まれ
ている。これによって、磁性金属薄膜には磁気コラムが
形成される。そして、このようにして得られた磁性金属
薄膜の磁気特性は、磁気コラムの間が酸化膜によって磁
気分離されていることから、磁気特性が優れたものであ
る。尚、成膜は、スパッタ等の手段を用いても良い。
As the material of the metal magnetic film formed on the support by a dry plating means such as oblique deposition, Fe,
In addition to metals such as Co and Ni, Co-Ni alloys, Co-P
t alloy, Co-Ni-Pt alloy, Fe-Co alloy, Fe
-Ni alloys, Fe-Co-Ni alloys, Fe-Co-B alloys, Co-Ni-Fe-B alloys, Co-Cr alloys, or those containing a metal such as Al are listed. Examples of the metal magnetic film also include oxides, nitrides (e.g. Fe-N, Fe-N-O) and carbides (e.g. Fe-C, Fe-C-O) of the above materials. Then, for example, after evacuation of the vacuum chamber to a vacuum degree of about 10 −4 to 10 −6 Torr, for example, 2 × 10 −5 Torr, the magnetic metal in the crucible is evaporated by resistance heating, high frequency heating, electron beam heating, or the like. Then, a metal thin film type magnetic recording medium is manufactured by obliquely vapor-depositing a magnetic metal having a thickness of 400 to 2000Å, for example, 1800Å on a support such as a PET film. During the oblique deposition of the magnetic metal particles, a small amount of oxygen is blown from the oxygen gas supply nozzle. As a result, a magnetic column is formed on the magnetic metal thin film. The magnetic properties of the magnetic metal thin film thus obtained are excellent because the magnetic columns are magnetically separated by the oxide film. The film formation may be performed by means such as sputtering.

【0014】図1は、本発明になる磁気記録媒体の製造
装置の概略説明図である。金属磁性膜の成膜(蒸着)部
分の構成は図2のものと基本的に同じであるから、同一
部分には同一符号を付し、詳細な説明は省略する。1は
超音波噴霧装置であり、この超音波噴霧装置1により成
膜された金属磁性膜上に水滴が付着させられ、この後マ
イクロ波発生源2からのマイクロ波が導波管を介して金
属磁性膜上の水滴に照射される。
FIG. 1 is a schematic explanatory view of a magnetic recording medium manufacturing apparatus according to the present invention. Since the structure of the film formation (vapor deposition) portion of the metal magnetic film is basically the same as that of FIG. 2, the same portions are denoted by the same reference numerals and detailed description thereof will be omitted. Reference numeral 1 denotes an ultrasonic spraying device, in which water droplets are made to adhere to the metal magnetic film formed by this ultrasonic spraying device 1, and then the microwave from the microwave generation source 2 is transferred to the metal via a waveguide. The water droplets on the magnetic film are irradiated.

【0015】すなわち、真空槽内において磁性膜が成膜
され、そして巻取側ロールに巻き取られる前段階、すな
わち真空槽26外に導出された段階で、金属磁性膜上に
は超音波噴霧装置1により水滴が付着させられ、この後
マイクロ波発生源2からのマイクロ波が導波管を介して
金属磁性膜上の水滴に照射される。このマイクロ波が金
属磁性膜上の水滴に照射される結果、水滴は発熱し、温
度が高くなるから水滴中に含まれていた酸素により金属
磁性膜は表面が効果的に酸化される。
That is, the ultrasonic spraying device is formed on the metal magnetic film before the magnetic film is formed in the vacuum chamber and wound on the take-up roll, that is, at the stage of being led out of the vacuum chamber 26. Water droplets are adhered by 1, and thereafter microwaves from the microwave generation source 2 are applied to the water droplets on the metal magnetic film via the waveguide. As a result of irradiating the water droplets on the metal magnetic film with this microwave, the water droplets generate heat and the temperature rises, so that the surface of the metal magnetic film is effectively oxidized by oxygen contained in the water droplets.

【0016】尚、マイクロ波照射工程における条件は、
マイクロ波発生源の出力400w〜5kw、使用周波数
がマイクロ波帯のものである。これによって、処理が効
率よく行われる。この後、カーボンブラックをバインダ
樹脂中に分散させてなるバックコート用の塗料をダイレ
クトグラビア法により磁性層とは反対側の支持体に塗布
し、バックコート層を設ける。尚、バックコート層は金
属薄膜型のものでも良い。
The conditions in the microwave irradiation step are as follows:
The output of the microwave source is 400w to 5kw, and the operating frequency is in the microwave band. Thereby, the processing is efficiently performed. After that, a back coat coating material in which carbon black is dispersed in a binder resin is applied to a support on the side opposite to the magnetic layer by a direct gravure method to form a back coat layer. The back coat layer may be of a metal thin film type.

【0017】そして、パーフルオロポリエーテル(グレ
ード:FOMBLIN Z DIAC カルボキシル基
変性、日本モンテジソン社製)等の潤滑剤をフッ素不活
性液体(フロリナート、FC−84、住友スリーエム社
製)に希釈・分散させた塗料を金属磁性面に塗布し、乾
燥させる。この後、所定の幅にスリットし、磁気テープ
を得る。
Then, a lubricant such as perfluoropolyether (grade: FOMBLIN Z DIAC carboxyl group-modified, manufactured by Nippon Montedison Co., Ltd.) is diluted and dispersed in a fluorine-inert liquid (Fluorinert, FC-84, manufactured by Sumitomo 3M Limited). Apply the above paint to the metal magnetic surface and dry. After that, slit to a predetermined width to obtain a magnetic tape.

【0018】[0018]

【実施例1】真空度2×10-4Torr、酸素ガス供給
量が20sccmの真空槽中において、10μm厚のP
ETフィルム上にCo磁性膜を1600Å厚さ斜め蒸着
手段により成膜した。この成膜後、1m/minの速度
で走行するCo磁性膜に向けて超音波噴霧装置1により
蒸留水を吹き付け(噴霧量;20cc/min)た。
Example 1 In a vacuum chamber having a vacuum degree of 2 × 10 −4 Torr and an oxygen gas supply amount of 20 sccm, a P layer having a thickness of 10 μm was used.
A Co magnetic film was formed on the ET film by an oblique vapor deposition means having a thickness of 1600Å. After this film formation, distilled water was sprayed (spray amount; 20 cc / min) by the ultrasonic spraying device 1 toward the Co magnetic film running at a speed of 1 m / min.

【0019】噴霧後、1m/minの速度で走行するC
o磁性膜に向けてマイクロ波(マイクロ波パワー500
w、周波数2.45GHz)が照射された。この後、バ
ックコート層を設け、潤滑剤を設け、磁気テープを得
た。
After spraying, C running at a speed of 1 m / min
o Microwave (microwave power 500
w, frequency 2.45 GHz). Then, a back coat layer was provided, a lubricant was provided, and a magnetic tape was obtained.

【0020】[0020]

【実施例2】実施例1において、マイクロ波パワーを1
kwにした以外は実施例1に準じて行い、磁気テープを
得た。
Second Embodiment In the first embodiment, the microwave power is set to 1
A magnetic tape was obtained in the same manner as in Example 1 except that kw was used.

【0021】[0021]

【実施例3】実施例1において、マイクロ波周波数を
5.8GHzにした以外は実施例1に準じて行い、磁気
テープを得た。
Example 3 A magnetic tape was obtained in the same manner as in Example 1, except that the microwave frequency was changed to 5.8 GHz.

【0022】[0022]

【実施例4】実施例1において、マイクロ波周波数を2
2.125GHzにした以外は実施例1に準じて行い、
磁気テープを得た。
Fourth Embodiment In the first embodiment, the microwave frequency is set to 2
Performed according to Example 1 except that the frequency was set to 2.125 GHz,
A magnetic tape was obtained.

【0023】[0023]

【比較例1】実施例1において、超音波噴霧及びマイク
ロ波照射を省略した以外は実施例1に準じて行い、磁気
テープを得た。
Comparative Example 1 A magnetic tape was obtained in the same manner as in Example 1 except that the ultrasonic spraying and microwave irradiation were omitted.

【0024】[0024]

【比較例2】比較例1において、成膜時の酸素ガス供給
量を50sccmとした以外は比較例1に準じて行い、
磁気テープを得た。
Comparative Example 2 Comparative Example 1 was carried out according to Comparative Example 1 except that the oxygen gas supply rate during film formation was 50 sccm.
A magnetic tape was obtained.

【0025】[0025]

【特性】上記各例で得た磁気テープについて、保磁力、
飽和磁束密度、耐久性、及び耐蝕性を調べたので、その
結果を下記の表−1に示す。 表−1 保磁力(Oe) 飽和磁束密度(G) 耐久性(dB) 耐蝕性(%) 実施例1 1300 5500 1 7 実施例2 1400 5000 1 7 実施例3 1350 5500 0.5 6 実施例4 1400 5000 0.5 6 比較例1 1300 5500 0.5 9 比較例2 1000 4000 3 6 *耐久性は3時間スチル再生した場合の再生出力の低下で表示 *耐蝕性は温度60℃、湿度90%RH下に30日間放置後の飽和磁束密度の 低下で表示 これによれば、本発明によって得られたものは耐久性・
耐蝕性に富むことが判る。又、磁気特性にも優れてい
る。
[Characteristics] Coercive force of the magnetic tapes obtained in the above examples
The saturation magnetic flux density, durability, and corrosion resistance were examined, and the results are shown in Table 1 below. Table-1 Coercive force (Oe) Saturation magnetic flux density (G) Durability (dB) Corrosion resistance (%) Example 1 1300 5500 1 7 Example 2 1400 5000 1 7 Example 3 1350 5500 0.5 6 Example 4 1400 5000 0.5 6 Comparative example 1 1300 5500 0.5 9 Comparative example 2 1000 4000 3 6 * Durability is indicated by a reduction in reproduction output after still reproduction for 3 hours. * Corrosion resistance is temperature 60 ° C, humidity 90%. Displayed as a decrease in saturation magnetic flux density after standing for 30 days under RH.
It turns out that it is rich in corrosion resistance. It also has excellent magnetic properties.

【0026】これに対して、比較例1のものは、磁気特
性が本発明と同様優れているものの、酸化膜の不均一性
に起因して耐久性・耐蝕性が劣っている。又、比較例2
になるものは、磁性膜の成膜時に酸素を多めに供給した
ことから、表面酸化が厚くなされ、この結果耐久性・耐
蝕性が比較的良好なるものの、磁気特性が良くない。
On the other hand, although the magnetic properties of Comparative Example 1 are excellent as in the present invention, the durability and corrosion resistance are poor due to the non-uniformity of the oxide film. Comparative Example 2
However, since a large amount of oxygen was supplied at the time of forming the magnetic film, the surface oxidation was thickened, resulting in relatively good durability and corrosion resistance, but poor magnetic properties.

【0027】[0027]

【効果】本発明によれば、耐久性、耐蝕性、及び磁気特
性に優れたものが得られる。
[Effect] According to the present invention, it is possible to obtain the one excellent in durability, corrosion resistance and magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる磁気記録媒体の製造装置の概略説
明図
FIG. 1 is a schematic explanatory view of a magnetic recording medium manufacturing apparatus according to the present invention.

【図2】蒸着装置の概略説明図FIG. 2 is a schematic explanatory diagram of a vapor deposition device.

【符号の説明】[Explanation of symbols]

1 超音波噴霧装置 2 マイクロ波発生手段 1 ultrasonic spraying device 2 microwave generation means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 支持体上に金属磁性膜を設ける成膜工程
と、 金属磁性膜上に有極性分子を供給する有極性分子供給工
程と、 金属磁性膜上に付けられた有極性分子に対してマイクロ
波を照射するマイクロ波照射工程とを具備することを特
徴とする磁気記録媒体の製造方法。
1. A film forming step of providing a metal magnetic film on a support, a polar molecule supplying step of supplying polar molecules onto the metal magnetic film, and a polar molecule attached to the metal magnetic film. And a microwave irradiation step of irradiating microwaves.
【請求項2】 有極性分子供給工程が、金属磁性膜上に
水を噴霧する工程であることを特徴とする請求項1の磁
気記録媒体の製造方法。
2. The method for producing a magnetic recording medium according to claim 1, wherein the step of supplying the polar molecules is a step of spraying water on the metal magnetic film.
【請求項3】 マイクロ波照射工程が、マイクロ波発生
源の出力400w〜5kw、使用周波数がマイクロ波帯
のものであることを特徴とする請求項1の磁気記録媒体
の製造方法。
3. The method of manufacturing a magnetic recording medium according to claim 1, wherein the microwave irradiation step is performed with an output of a microwave generation source of 400 w to 5 kw and a use frequency of a microwave band.
JP25302195A 1995-09-29 1995-09-29 Production of magnetic recording medium Pending JPH0991693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25302195A JPH0991693A (en) 1995-09-29 1995-09-29 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25302195A JPH0991693A (en) 1995-09-29 1995-09-29 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0991693A true JPH0991693A (en) 1997-04-04

Family

ID=17245389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25302195A Pending JPH0991693A (en) 1995-09-29 1995-09-29 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0991693A (en)

Similar Documents

Publication Publication Date Title
US5593723A (en) Magnetic recording medium manufacturing method and manufacturing apparatus and magnetic recording medium
JPH0991693A (en) Production of magnetic recording medium
JP3323660B2 (en) Magnetic recording medium and thin film manufacturing method and thin film manufacturing apparatus
JP3516286B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH0765372A (en) Method and device for producing magnetic recording medium
JP2843252B2 (en) Method and apparatus for manufacturing magnetic recording medium
JPH08100266A (en) Formation of thin film and device therefor
JPH0950625A (en) Production of magnetic recording medium
JPH08102068A (en) Formation of metal film and equipment therefor
JPH06103571A (en) Production of magnetic recording medium
JPH06101029A (en) Production of magnetic recording medium
JPH08212545A (en) Protective layer of magnetic recording medium and method and device for forming lubricative layer
JPH07320264A (en) Device for producing magnetic recording medium and method therefor
JPH07243032A (en) Thin film forming device
JPH1041177A (en) Manufacture of magnetic recording medium
JPH08102056A (en) Production of magnetic recording medium and device therefor
JPS5860432A (en) Manufacture of magnetic recording medium
JPH09212858A (en) Production of magnetic recording medium and producing device therefor
JPH0798831A (en) Magnetic recording medium, its production and producing device
JPH0927110A (en) Magnetic recording medium and its production
JPH0798850A (en) Production of magnetic recording medium and device therefor
JPH0798852A (en) Production of magnetic recording medium
JPH07238378A (en) Device for producing metallic thin film body
JPH0927125A (en) Production of magnetic recording medium
JPH0991666A (en) Magnetic recording medium