JPH0989399A - Helium refrigerator - Google Patents

Helium refrigerator

Info

Publication number
JPH0989399A
JPH0989399A JP24125595A JP24125595A JPH0989399A JP H0989399 A JPH0989399 A JP H0989399A JP 24125595 A JP24125595 A JP 24125595A JP 24125595 A JP24125595 A JP 24125595A JP H0989399 A JPH0989399 A JP H0989399A
Authority
JP
Japan
Prior art keywords
helium
line
recovery
pressure
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24125595A
Other languages
Japanese (ja)
Inventor
Kozo Matsumoto
孝三 松本
Ikuo Kawamura
郁生 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Techno Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Techno Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Techno Engineering Co Ltd
Priority to JP24125595A priority Critical patent/JPH0989399A/en
Publication of JPH0989399A publication Critical patent/JPH0989399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to smoothly recover cryogenic helium held by material to be cooled at the time of abnormal material to be cooled while continuing the operation of a refrigerator body by providing a recovery line for connecting the material to be cooled to an intermediate-pressure tank and providing backflow preventing means and recovery gas heating means at the line. SOLUTION: At the time of quenching, a supply valve 16, a return valve 27 and a depressurizing valve 14 are fully closed. When a recovery valve 12 is fully opened, the pressure of a recovery line 9 is instantaneously abruptly changed, but the abrupt change is not given to the pressure of an intermediate- pressure tank 4 by a check valve 10. When the pressure of the line 9 becomes larger than the pressure of the tank 4, the cryogenic helium discharged from material 3 to be cooled is heated by recovery gas heating means 11, and recovered to the tank 4 via the valve 10. Thus, since the recovered gas is introduced to the tank after the gas is heated, the helium discharged at the time of the abnormal material to be cooled can be recovered without requiring for the cryogenic designing of the recovery tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヘリウム冷凍装置に係わ
り、特に定常運転時に大量の極低温ヘリウムを保持する
被冷却体を含む装置に好適なヘリウム冷凍装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a helium refrigerating apparatus, and more particularly to a helium refrigerating apparatus suitable for an apparatus including an object to be cooled which holds a large amount of cryogenic helium during steady operation.

【0002】[0002]

【従来の技術】ヘリウム冷凍装置は大気圧下の液化温度
が -269℃(4.2K)という極低温にあるヘリウムを冷媒
とした冷凍装置であると共に、冷媒であるヘリウムは非
常に高価である。
2. Description of the Related Art A helium refrigerating device is a refrigerating device using helium as a refrigerant, which has an extremely low liquefaction temperature under atmospheric pressure of -269 ° C. (4.2 K), and helium which is a refrigerant is very expensive.

【0003】このために、ヘリウム冷凍装置は中圧タン
クをバッファーとした閉サイクルを構成し、全系が常温
状態にある時には大部分のヘリウムを中圧タンクで保持
し、冷却の進行・極低温ヘリウムの生成と共に中圧タン
ク内のヘリウムガスを供給(圧力は低下)するようにな
っている。中圧タンクは圧縮機吐出ラインの圧力制御弁
と圧縮機吸入ラインの圧力制御弁とを介して、プロセス
ラインと接続され、中圧タンク内ヘリウムガスの授受が
円滑に行なわれる。
For this reason, the helium refrigerating device constitutes a closed cycle using the medium pressure tank as a buffer, and when the whole system is at room temperature, most of the helium is held in the medium pressure tank, and cooling progresses at extremely low temperature. As the helium is generated, the helium gas in the medium pressure tank is supplied (pressure is reduced). The medium pressure tank is connected to the process line via the pressure control valve of the compressor discharge line and the pressure control valve of the compressor suction line, so that the helium gas in the medium pressure tank can be transferred smoothly.

【0004】通常の運転時は上記のように閉サイクルと
なっているが、被冷却体(例えば超電導マグネット)の
異常時には短時間の内に被冷却体が保持する極低温ヘリ
ウムを放出する必要がある。この被冷却体異常時の極低
温ヘリウム放出は短時間の内に行なう必要があるため、
流量が非常に大きくなり圧縮機で中圧タンクに回収する
ことはできず、従来、大気に放出したり、別置の回収タ
ンクに回収していた。この種の従来技術として、例えば
Advances in Cryogenic Engineering, Vol.37, Part
A,P667に記載のヘリウム冷凍装置がある。
Although the closed cycle is performed during normal operation as described above, it is necessary to discharge the cryogenic helium held by the cooled object within a short time when the cooled object (eg, superconducting magnet) is abnormal. is there. Since it is necessary to release cryogenic helium in a short time when the body to be cooled is abnormal,
Since the flow rate becomes so large that it cannot be collected in the medium pressure tank by the compressor, it has been conventionally discharged to the atmosphere or collected in a separate collection tank. As this type of conventional technology, for example,
Advances in Cryogenic Engineering, Vol.37, Part
There is a helium refrigerator described in A, P667.

【0005】[0005]

【発明が解決しようとする課題】主要な被冷却体の1つ
である超電導マグネットは、本格的な核融合装置等では
超大形化し、極低温ヘリウムの保持量が液体ヘリウム換
算で10万l(ガス換算略7万Nm3)オーダーになるこ
とが予測されている。
The superconducting magnet, which is one of the main objects to be cooled, has become extremely large in a full-scale nuclear fusion device, and the amount of cryogenic helium retained is 100,000 l in terms of liquid helium ( It is predicted that the gas equivalent will be about 70,000 Nm 3 ).

【0006】上記従来技術は、被冷却体の保持する極低
温ヘリウムが膨大になった場合については考慮されてお
らず、大気放出では補充のために膨大な費用と長期間が
必要になるという問題があった。別置の回収タンクでの
回収では、非常に大形の回収タンクが必要となると共
に、回収ガスの加温が考慮されていないため回収タンク
の極低温設計が必要になり、装置が大形化し高価になる
という問題があった。
The above-mentioned prior art does not take into consideration the case where the cryogenic helium held by the object to be cooled becomes enormous, and a large amount of money and a long period of time are required for replenishment when released into the atmosphere. was there. The recovery in a separate recovery tank requires a very large recovery tank, and because the recovery gas heating is not taken into consideration, a cryogenic design of the recovery tank is required, and the equipment becomes larger. There was a problem of becoming expensive.

【0007】本発明は被冷却体異常時に被冷却体の保持
する極低温ヘリウムを、圧縮機,コールドボックス,等
ヘリウム冷凍機本体の運転を継続しながら、円滑に回収
し得るコンパクトで安価なヘリウム冷凍装置を提供する
ことを目的とする。
The present invention is a compact and inexpensive helium that can smoothly collect the cryogenic helium held by the object to be cooled when the object to be cooled is abnormal while continuing operation of the helium refrigerator body such as the compressor, the cold box, etc. An object is to provide a refrigerating device.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、ヘリウム冷凍装置は全系が常温状態でもヘリウム
を保持できる中圧タンクを有することに着目し、被冷却
体と中圧タンクを接続する回収ラインを設け、本回収ラ
インに逆流防止手段と回収ガス加温手段を設ける。
In order to achieve the above object, the helium refrigerating apparatus has a medium pressure tank capable of holding helium even when the whole system is at room temperature. A recovery line to be connected is provided, and a backflow prevention means and a recovered gas heating means are provided in this recovery line.

【0009】[0009]

【作用】中圧タンクは圧縮機の吐出ライン,及び吸入ラ
インの圧力制御系統に接続されているため、中圧タンク
圧力が急激に変動した場合には上記の圧力制御が不可能
となり、圧縮機の過負荷等により装置停止に至る。又、
中圧タンク圧力は装置の運転状態によって十数kg/cm2
範囲で変動する。このような条件で円滑に回収ガスを中
圧タンクに回収するために回収ラインに逆流防止手段が
設けられ、回収ラインの圧力が中圧タンクの圧力より大
きくなった時に中圧タンクへのガス回収が始まり、回収
ライン圧力が中圧タンク圧力より小さい正常運転時は、
逆流防止手段が回収ラインの流れを閉止し、常温ヘリウ
ムガスが極低温部に逆流するのを防止する。
[Function] Since the medium pressure tank is connected to the pressure control system of the discharge line and the suction line of the compressor, the above pressure control becomes impossible when the pressure of the medium pressure tank fluctuates rapidly. The equipment will be stopped due to overload of the equipment. or,
The medium pressure tank pressure fluctuates in the range of over ten kg / cm 2 depending on the operating condition of the equipment. In order to smoothly collect the collected gas in the medium pressure tank under such conditions, the recovery line is equipped with a backflow prevention means, and when the pressure in the collection line becomes higher than the pressure in the medium pressure tank, the gas is collected in the medium pressure tank. Is started and the recovery line pressure is lower than the medium pressure tank pressure during normal operation,
The backflow prevention means closes the flow of the recovery line to prevent the normal temperature helium gas from backflowing to the cryogenic portion.

【0010】回収ガス加温手段は、被冷却体から放出さ
れる極低温ヘリウムを加温し、中圧タンクに極低温状態
で流入するのを防止し、中圧タンクの極低温設計を不要
とする。
The recovery gas heating means heats the cryogenic helium discharged from the object to be cooled and prevents the cryogenic helium from flowing into the intermediate pressure tank in a cryogenic state, thus eliminating the need for the cryogenic design of the intermediate pressure tank. To do.

【0011】[0011]

【実施例】以下、本発明の一実施例を図1によって説明
する。図1において1は圧縮機,2はコールドボック
ス,3は被冷却体,4は中圧タンク,5は圧縮機吐出ラ
イン,6は圧縮機吸入ライン,7は吐出ライン圧力制御
弁,8は吸入ライン圧力制御弁,9は回収ライン,10は
逆流防止手段としての逆止弁,11は回収ガスの加温に要
する熱容量を回収ライン部材で構成した回収ガス加温手
段,12は回収弁,13は脱圧ライン,14は脱圧弁,15は液
体ヘリウム(以下、LHe)貯槽,16は供給弁,17は戻
り弁である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a compressor, 2 is a cold box, 3 is a cooled object, 4 is a medium pressure tank, 5 is a compressor discharge line, 6 is a compressor suction line, 7 is a discharge line pressure control valve, and 8 is suction. Line pressure control valve, 9 is a recovery line, 10 is a check valve as a backflow prevention means, 11 is a recovery gas heating means constituted by a recovery line member for the heat capacity required for heating the recovery gas, 12 is a recovery valve, 13 Is a depressurization line, 14 is a depressurization valve, 15 is a liquid helium (hereinafter, LHe) storage tank, 16 is a supply valve, and 17 is a return valve.

【0012】次に、上記のように構成された実施例の動
作について説明する。圧縮機1で圧縮された高圧ヘリウ
ムガスは圧縮機吐出ライン5を通り、コールドボックス
2に供給され、コールドボックス2で極低温ヘリウムが
生成されLHe貯槽15に送られる。LHe貯槽15のLH
eは供給弁16を通り、被冷却体3に供給され熱負荷を吸
収してガス化し、戻り弁17を通りコールドボクス2に戻
り寒冷回収される。コールドボックス2を出た低圧ヘリ
ウムガスは、圧縮機吸入ライン6を通り圧縮機1に戻
る。圧縮機吐出ライン5の圧力は吐出ライン圧力制御弁
7で制御され、吐出ライン圧力制御弁7の二次側は中圧
タンク4に接続されている。圧縮機吸入ライン6の圧力
は吸入ライン圧力制御弁8で制御され、吸入ライン圧力
制御弁8の一次側は中圧タンク4に接続されている。全
系が常温状態にある時は、系内の大部分のヘリウムが中
圧タンク4に保持され、圧縮機1で圧縮された高圧ヘリ
ウムガスの大部分が吐出ライン圧力制御弁7と吸入ライ
ン圧力制御弁8を介してバイパスしている。冷却の進行
に伴い、コールドボックス2に供給される高圧ヘリウム
ガス流量が増大し、吐出ライン圧力制御弁7を流れる流
量は減少し、吸入ライン圧力制御弁8を流れる流量は吐
出ライン圧力制御弁7を流れる流量より大きくなり、中
圧タンク4の圧力は低下する。加温運転時には冷却運転
と逆の状態になり、中圧タンク4の圧力は上昇する。
Next, the operation of the embodiment configured as described above will be described. The high-pressure helium gas compressed by the compressor 1 is supplied to the cold box 2 through the compressor discharge line 5, and cryogenic helium is generated in the cold box 2 and sent to the LHe storage tank 15. LHe of LHe storage tank 15
The e passes through the supply valve 16 and is supplied to the body 3 to be cooled, absorbs the heat load and is gasified, and returns through the return valve 17 to the cold box 2 for cold recovery. The low-pressure helium gas exiting the cold box 2 returns to the compressor 1 through the compressor suction line 6. The pressure of the compressor discharge line 5 is controlled by the discharge line pressure control valve 7, and the secondary side of the discharge line pressure control valve 7 is connected to the intermediate pressure tank 4. The pressure of the compressor suction line 6 is controlled by a suction line pressure control valve 8, and the primary side of the suction line pressure control valve 8 is connected to the intermediate pressure tank 4. When the whole system is at room temperature, most of the helium in the system is held in the medium pressure tank 4, and most of the high pressure helium gas compressed by the compressor 1 is discharged line pressure control valve 7 and suction line pressure. It is bypassed via the control valve 8. As the cooling progresses, the flow rate of the high-pressure helium gas supplied to the cold box 2 increases, the flow rate of the discharge line pressure control valve 7 decreases, and the flow rate of the suction line pressure control valve 8 decreases. And the pressure in the medium pressure tank 4 decreases. During the heating operation, the state is the reverse of the cooling operation, and the pressure in the intermediate pressure tank 4 rises.

【0013】以上は正常運転時の動作であるが、次に、
被冷却体3 異常時のガス回収について説明する。被冷
却体3の異常として、超電導マグネットのクエンチ(超
電導から常電導への転移)を例として説明する。超電導
状態で超電導マグネットに蓄積されている膨大なエネル
ギーはクエンチに伴い、熱化して極低温ヘリウムに伝熱
され、極低温ヘリウムが温度上昇し急膨張を開始する。
このため、短時間でヘリウムを放出しなければ異常な圧
力まで上昇し、ついには超電導マグネットの破壊に至
る。
The above is the operation during normal operation. Next,
The object to be cooled 3 The gas recovery when an abnormality occurs will be described. As the abnormality of the cooled body 3, quench of the superconducting magnet (transition from superconducting to normal conducting) will be described as an example. The enormous amount of energy stored in the superconducting magnet in the superconducting state is heated by the quench and transferred to the cryogenic helium, and the temperature of the cryogenic helium rises to start rapid expansion.
Therefore, unless helium is released in a short time, the pressure rises to an abnormal value, and eventually the superconducting magnet is destroyed.

【0014】図1の実施例では、クエンチ発生時、供給
弁16,戻り弁17,及び脱圧弁14を全閉とし、回収弁12を
全開にする。回収弁12の全開に伴って、回収ライン9の
圧力は瞬時的に急変動するが、逆止弁10によって中圧タ
ンク4の圧力に急変動を与えない。回収ライン9の圧力
が中圧タンク4の圧力より大きくなると、被冷却体3か
ら放出される極低温ヘリウムは、回収ガス加温手段11で
加温され、逆止弁10を通り中圧タンク4に回収される。
尚、一般的にはヘリウム加温のために電熱式,空温式
(例えば、Alスターフィン)などが用いられるが、ク
エンチ等の被冷却体3異常時には短時間の内に膨大な流
量のヘリウムを加温する必要があり、回収ライン部材の
熱容量で吸収するように構成するのが費用,装置の大き
さ,信頼性,等で効果的である。
In the embodiment of FIG. 1, the supply valve 16, the return valve 17 and the depressurization valve 14 are fully closed and the recovery valve 12 is fully opened when a quench occurs. Although the pressure in the recovery line 9 suddenly fluctuates with the full opening of the recovery valve 12, the check valve 10 does not cause a sudden fluctuation in the pressure in the intermediate pressure tank 4. When the pressure in the recovery line 9 becomes higher than the pressure in the intermediate pressure tank 4, the cryogenic helium released from the cooled object 3 is heated by the recovery gas heating means 11 and passes through the check valve 10 to reach the intermediate pressure tank 4. Will be collected.
Generally, an electric heating type or an air temperature type (for example, Al star fin) is used for heating helium. However, when the object to be cooled 3 such as quench is abnormal, a huge flow rate of helium is reached within a short time. It is effective in terms of cost, size of equipment, reliability, etc. to absorb the heat capacity of the recovery line member.

【0015】脱圧ライン13,及び脱圧弁14は、逆止弁10
で洩れが生じた場合でも極低温部に常温ヘリウムガスが
逆流するのを防止するために設けられている。又、クエ
ンチ等の被冷却体3異常時には、中圧タンク4の圧力上
昇が正常運転とは異なるものとなるため、吐出ライン圧
力制御と吸入ライン圧力制御との制御法を、例えばPI
D制御の制御定数を切替える等、使い分けることでより
安定した運転を達成できる。
The depressurizing line 13 and the depressurizing valve 14 are the check valves 10.
It is provided in order to prevent the normal temperature helium gas from flowing back to the cryogenic portion even if a leak occurs at. Further, when the cooled object 3 is abnormal such as quenching, the pressure increase in the intermediate pressure tank 4 is different from that in normal operation. Therefore, the control method of the discharge line pressure control and the suction line pressure control is, for example, PI.
More stable operation can be achieved by switching the control constants of D control and using them properly.

【0016】以上、詳細に説明したように本実施例によ
れば、被冷却体異常時に被冷却体から放出されるヘリウ
ムを、回収タンクを追加せずに中圧タンクに円滑に回収
できると共に、回収ガスを加温した後に中圧タンクに導
入するため回収タンクの極低温設計を要さず、被冷却体
異常時に放出される極低温ヘリウムを回収し得るコンパ
クトで安価なヘリウム冷凍装置を構成できる効果があ
る。
As described above in detail, according to the present embodiment, helium released from the cooled object when the cooled object is abnormal can be smoothly recovered in the medium pressure tank without adding a recovery tank. Since the recovered gas is introduced into the medium pressure tank after heating, the cryogenic design of the recovery tank is not required, and a compact and inexpensive helium refrigerating device that can recover the cryogenic helium released when the cooled object is abnormal can be configured. effective.

【0017】さらに、逆流防止手段と回収ラインからの
脱圧ラインにより、正常運転時には回収ラインから常温
ヘリウムガスが極低温部に逆流するのを完全に防止でき
るため、無用な冷凍負荷を生じさせることが無く、信頼
性の高いヘリウム冷凍装置を達成できる効果がある。
Further, the backflow prevention means and the depressurization line from the recovery line can completely prevent the normal temperature helium gas from flowing back from the recovery line to the cryogenic portion during normal operation, thus causing unnecessary refrigeration load. There is no effect, and there is an effect that a highly reliable helium refrigeration system can be achieved.

【0018】さらに、吐出ライン圧力制御と吸入ライン
圧力制御の制御法を正常運転時と被冷却体からのガス回
収時とで使い分けることにより、被冷却体異常時にも圧
縮機,コールドボックス,等冷凍機本体の運転をより安
定して継続できるという効果がある。
Further, the discharge line pressure control and the suction line pressure control are selectively used in the normal operation and the gas recovery from the object to be cooled, so that the compressor, the cold box, the refrigerator, etc. can be frozen even when the object to be cooled is abnormal. The effect is that the operation of the machine body can be continued more stably.

【0019】[0019]

【発明の効果】被冷却体と中圧タンクを接続する回収ラ
インを設け、本回収ラインに逆流防止手段と回収ガス加
温手段を設けることにより、被冷却体異常時に被冷却体
から放出される極低温ヘリウムを加温ガスとして円滑に
中圧タンクに回収できるため、被冷却体異常時にもヘリ
ウム冷凍機本体の運転を継続しながら、被冷却体の保持
する極低温ヘリウムを回収し得るコンパクトで安価なヘ
リウム冷凍装置を実現できる効果がある。
EFFECTS OF THE INVENTION By providing a recovery line for connecting an object to be cooled and a medium pressure tank, and providing a backflow preventing means and a recovered gas warming means in this recovery line, the object to be cooled is discharged from the object to be cooled. Since cryogenic helium can be smoothly collected as a heating gas in the medium pressure tank, even if the cooled object is abnormal, the cryogenic helium held by the cooled object can be collected while continuing operation of the helium refrigerator body. There is an effect that an inexpensive helium refrigeration system can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…コールドボックス、3…被冷却体、4
…中圧タンク、5…圧縮機吐出ライン、6…圧縮機吸入
ライン、7…吐出ライン圧力制御弁、8…吸入ライン圧
力制御弁、9…回収ライン、10…逆止弁、11…回収
ガス加温手段、13…脱圧ライン。
1 ... Compressor, 2 ... Cold box, 3 ... Cooled object, 4
... Medium pressure tank, 5 ... Compressor discharge line, 6 ... Compressor suction line, 7 ... Discharge line pressure control valve, 8 ... Suction line pressure control valve, 9 ... Recovery line, 10 ... Check valve, 11 ... Collected gas Heating means, 13 ... depressurization line.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ヘリウムガスを圧縮循環する圧縮機と圧縮
機から供給される高圧ヘリウムを受け、極低温ヘリウム
を生成するコールドボックスと、極低温ヘリウムで冷却
される被冷却体と、ヘリウムの常温バッファータンクで
ある中圧タンクを有し、上記圧縮機の吐出ラインの圧力
制御弁の二次側と吸入ラインの圧力制御弁一次側とが上
記中圧タンクに接続されて成るヘリウム冷凍装置におい
て、上記被冷却体と上記中圧タンクを接続する回収ライ
ンを設け、該回収ラインに逆流防止手段と回収ガス加温
手段を設けたことを特徴とするヘリウム冷凍装置。
1. A cold box that receives a high-pressure helium supplied from the compressor and a compressor that circulates and circulates helium gas, a cooled object that is cooled by the cryogenic helium, and a normal temperature of the helium. In a helium refrigeration system having a medium pressure tank that is a buffer tank, the secondary side of the pressure control valve of the discharge line of the compressor and the pressure control valve primary side of the suction line are connected to the medium pressure tank, A helium refrigerating apparatus comprising a recovery line for connecting the object to be cooled and the medium pressure tank, and a backflow preventing means and a recovered gas heating means provided in the recovery line.
【請求項2】回収ラインの逆流防止手段として、逆止弁
を設けたことを特徴とする特許請求の範囲第1項記載の
ヘリウム冷凍装置。
2. The helium refrigerating apparatus according to claim 1, wherein a check valve is provided as a backflow preventing means of the recovery line.
【請求項3】回収ラインの回収ガス加温手段を回収ライ
ン部材の熱容量で吸収するように構成したことを特徴と
する特許請求の範囲第1項記載のヘリウム冷凍装置。
3. The helium refrigerating apparatus according to claim 1, wherein the recovery gas heating means of the recovery line is configured to absorb the heat capacity of the recovery line member.
【請求項4】回収ライン逆流防止手段から洩れが生じた
場合でも、洩れた常温ヘリウムガスが極低温部に到達す
るのを防止するために、回収ラインと圧縮機の吸入ライ
ンとを接続した脱圧ラインを設けたことを特徴とする特
許請求の範囲第1項記載のヘリウム冷凍装置
4. A recovery line connected to a suction line of a compressor in order to prevent the leaked room temperature helium gas from reaching the cryogenic portion even if a leakage occurs from the recovery line backflow prevention means. A helium refrigeration system according to claim 1, characterized in that a pressure line is provided.
【請求項5】圧縮機の吐出ライン圧力制御と吸入ライン
圧力制御との制御法を、回収ライン使用時と回収ライン
を使用していない時とで使い分けることを特徴とする特
許請求の範囲第1項記載のヘリウム冷凍装置。
5. The control method of the discharge line pressure control and the suction line pressure control of the compressor is selectively used depending on whether the recovery line is used or not. The helium refrigerating apparatus according to the item.
JP24125595A 1995-09-20 1995-09-20 Helium refrigerator Pending JPH0989399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24125595A JPH0989399A (en) 1995-09-20 1995-09-20 Helium refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24125595A JPH0989399A (en) 1995-09-20 1995-09-20 Helium refrigerator

Publications (1)

Publication Number Publication Date
JPH0989399A true JPH0989399A (en) 1997-04-04

Family

ID=17071526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24125595A Pending JPH0989399A (en) 1995-09-20 1995-09-20 Helium refrigerator

Country Status (1)

Country Link
JP (1) JPH0989399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066565A1 (en) * 2007-11-19 2009-05-28 Ihi Corporation Cryogenic refrigerator and control method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066565A1 (en) * 2007-11-19 2009-05-28 Ihi Corporation Cryogenic refrigerator and control method therefor

Similar Documents

Publication Publication Date Title
KR20100087135A (en) Cryogenic refrigerator and control method therefor
JP2006170606A (en) Cryogenic cooling system having backup low-temperature storage device and method
US10030919B2 (en) Cooling apparatus for superconductor
JPH0989399A (en) Helium refrigerator
JP2841955B2 (en) Supercritical helium cooling device and operating method thereof
JPH09113052A (en) Freezer
JP3113992B2 (en) Helium liquefaction refrigeration equipment
JP3836171B2 (en) Cooling system
JP2574815B2 (en) Cryogenic refrigeration equipment
JPH0579717A (en) Helium refrigerator
JPH09106906A (en) Conductive cooling superconducting magnet
JPH05335636A (en) Superconducting magnet device
JPH07104059B2 (en) Dual freezer
Mito et al. Performance of the LHD cryogenic system during cooling and excitation tests
Soyars et al. Superconducting radio-frequency modules test facility operating experience
JPS61226904A (en) Very low temperature cooling method and very low temperature cooling device
JPH0788980B2 (en) Helium refrigerator
JP2837096B2 (en) Cryogenic liquefaction equipment
JP2000154944A (en) Cooling apparatus for cryogenic container
JPH06241594A (en) Supercritical helium cooling system
Ganni et al. Operational Modes and Control Philosophy of the SSCL Magnet Test Lab (MTL) Cryogenic System
CN115420034A (en) Superconducting magnet extremely-low temperature refrigerator and control method thereof
JPH09329387A (en) Cooling device
JPH11125474A (en) Cryogenic refrigeration system
JPH0498052A (en) Cryogenic cooling device