JPH0983450A - Radio base station, radio local area network and optical fiber feeder - Google Patents

Radio base station, radio local area network and optical fiber feeder

Info

Publication number
JPH0983450A
JPH0983450A JP7236469A JP23646995A JPH0983450A JP H0983450 A JPH0983450 A JP H0983450A JP 7236469 A JP7236469 A JP 7236469A JP 23646995 A JP23646995 A JP 23646995A JP H0983450 A JPH0983450 A JP H0983450A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
signal
radio
wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7236469A
Other languages
Japanese (ja)
Other versions
JP2900853B2 (en
Inventor
Yasuhiko Matsunaga
泰彦 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7236469A priority Critical patent/JP2900853B2/en
Publication of JPH0983450A publication Critical patent/JPH0983450A/en
Application granted granted Critical
Publication of JP2900853B2 publication Critical patent/JP2900853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To supply a radio signal to an antenna dead zone by providing an optical transmission line ease of connection with low noise at a low cost with respect to an antenna feeder in a radio communication system. SOLUTION: A radio signal 100 from a mobile terminal equipment 3 is received by an antenna 71a and converted into an optical signal 202a by an optical transmission section 11a. The optical signal 202a is sent to a radio base station 5 by a multi-mode optical fiber transmission line 2a and converted into a radio signal 106a by an optical receiver 13a. The radio signal 106a uses an optical branching device 30 to add radio signals from antennas 71b, 72 and the sum is given to a MODEM 40. Furthermore, the radio base station 5 branches an output radio signal 109 from the MODEM 40 by the branching device 30 and part of signal is converted into an optical signal 201a by an optical transmitter 10a. The optical signal 201a is sent through a multi-mode optical fiber transmission line 1a and converted into a radio signal 103a by the optical receiver 12a and emitted from an antenna 71a and received by a mobile terminal equipment 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、サブキャリア多重
光伝送方式を用いた無線信号伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio signal transmission device using a subcarrier multiplex optical transmission system.

【0002】[0002]

【従来の技術】移動無線電話のような無線通信システム
では、サービスエリアが複数の小エリアに分割され、各
小エリア毎に無線基地局が配置される。無線基地局は、
アンテナ部、無線信号を通話信号に変換する変復調部、
および無線チャンネルの制御をおこなう制御部等からな
り、さらに大きなエリアの回転制御をおこなう中央局に
ケーブルで接続される。一つの無線基地局が統括するエ
リアを小さくすれば、無線端末と無線基地局の送信出力
を低減し、かつ周波数使用効率を向上できるが、基地局
の数が膨大になるために基地局の小型化と高信頼化が求
められる。
2. Description of the Related Art In a wireless communication system such as a mobile wireless telephone, a service area is divided into a plurality of small areas, and a wireless base station is arranged in each small area. The radio base station
An antenna part, a modulation / demodulation part for converting a radio signal into a call signal,
And a control unit for controlling radio channels, etc., and is connected to a central station for controlling rotation of a larger area with a cable. If the area covered by one wireless base station is reduced, the transmission output of wireless terminals and wireless base stations can be reduced and the frequency usage efficiency can be improved. And high reliability are required.

【0003】また、無線通信に使用する信号は、伝送信
号レートの大容量化と周波数資源の逼迫により、年々高
周波化が進んでいる。一般に無線信号の周波数が高くな
るにつれ、電波伝搬の直進性が強くなり、また構造物を
透過する際の吸収損が大きくなる。特に、都市部のよう
に建物が密集した区域や屋内などにおいては、電波伝搬
が構造物によって妨害を受けるため、無線信号の届きに
くい地帯(アンテナ不感地帯)が生じる。アンテナ不感
地帯に無線信号を供給するためには、無線基地局を増設
し、相互にケーブル接続すればよい。しかしながら、無
線基地局には無線信号の変復調器や制御装置などが含ま
れるため、装置の小型化や低コスト化が難しいという問
題があった。
Further, the frequency of signals used for wireless communication has been increasing year by year due to the increase in transmission signal rate and tight frequency resources. Generally, as the frequency of a radio signal increases, the straightness of radio wave propagation increases, and the absorption loss when passing through a structure increases. In particular, in areas such as urban areas where buildings are densely packed, indoors, and the like, radio wave propagation is disturbed by structures, so that a zone where radio signals are hard to reach (antenna dead zone) occurs. In order to supply a radio signal to the antenna dead zone, a radio base station may be added and the cables may be connected to each other. However, since the radio base station includes a radio signal modulator / demodulator and a control device, it is difficult to reduce the size and cost of the device.

【0004】そこで、無線基地局のアンテナ部の機能の
みを分離し、変復調部や制御部等は中央局に配置し、両
者を光ファイバで接続するという方法がある。この方法
は、たとえば渋谷らによる「光によるマイクロセル移動
通信の無線信号集配方式」電子情報通信学会、無線通信
システム研究会、RCS90−12等の文献に詳細に記
されている。この方式では、無線基地局は光信号と電気
信号の変換および無線信号の増幅のみをおこなえばよい
ので、基地局の小型化と高信頼化が実現できる。
Therefore, there is a method in which only the function of the antenna section of the radio base station is separated, the modulation / demodulation section and the control section are arranged in the central station, and both are connected by an optical fiber. This method is described in detail, for example, in "Shibuya et al.," Radio signal collection and delivery system for microcell mobile communication by light ", Institute of Electronics, Information and Communication Engineers, Study Group of Radio Communication Systems, RCS90-12 and the like. In this method, the wireless base station only needs to convert the optical signal and the electric signal and amplify the wireless signal, so that downsizing and high reliability of the base station can be realized.

【0005】一方無線LANに関しても、同様に小型で
広帯域の光ファイバ伝送技術を用いたサービスエリア間
伝送装置が提案されている。光ファイバ伝送技術を無線
LANシステムに適用した例としては、トーマス(H.
Thomas)らによる1992年電子情報通信学会秋
季大会、B−334等が挙げられる。
On the other hand, also for the wireless LAN, there has been proposed a small-sized inter-service area transmission device using a broadband optical fiber transmission technique. As an example of applying the optical fiber transmission technology to a wireless LAN system, Thomas (H.
Thomas, et al., 1992 Autumn Meeting of the Institute of Electronics, Information and Communication Engineers, B-334.

【0006】[0006]

【発明が解決しようとする課題】以上で説明した、従来
の光ファイバ伝送による無線信号の集配方式では、全て
の変復調器を中央局に集約し、各アンテナと中央局とを
光ファイバによって1対1に接続する構成をとってい
る。そのため、伝送距離は最大で20km程度となり、フ
ァイバコア径が10μm 以下のシングルモードファイバ
による伝送が必要である。また、光送信器の光源として
は、低雑音かつ低歪な分布帰還型レーザダイオードを用
いる必要がある。これらの理由により、従来のシステム
では導入コストが高くなるという問題があった。しか
し、前記のアンテナ不感地帯への無線信号の集配という
目的のために、近接エリアの無線基地局あるいは無線L
AN端末のアンテナへの無線信号を分岐し、アンテナ不
感地帯にアンテナを増設して、両者の間を光ファイバで
接続するという構成で実現できる。この場合に必要な伝
送距離は高々500m 程度であるため、接続の容易な多
モードファイバや低コストのファブリ・ペローレーザダ
イオード等の適用が可能になる。
In the conventional radio signal collecting and delivering system by optical fiber transmission described above, all modulators and demodulators are integrated in a central station, and each antenna and the central station are paired by an optical fiber. It is configured to connect to 1. Therefore, the maximum transmission distance is about 20 km, and transmission by a single mode fiber having a fiber core diameter of 10 μm or less is required. Further, it is necessary to use a distributed feedback laser diode with low noise and low distortion as the light source of the optical transmitter. For these reasons, the conventional system has a problem that the introduction cost is high. However, for the purpose of collecting and delivering radio signals to the above-mentioned antenna dead zone, a radio base station or radio L in a near area is provided.
This can be realized by a configuration in which a radio signal to an antenna of an AN terminal is branched, an antenna is added in an antenna dead zone, and both are connected by an optical fiber. In this case, the required transmission distance is about 500 m at most, so that it is possible to apply a multimode fiber that can be easily connected, a low-cost Fabry-Perot laser diode, or the like.

【0007】そこで、本発明は無線通信システムに於け
るアンテナ給電線に関し、低雑音で接続の容易な光伝送
路を低コストで提供し、アンテナ不感地帯に無線信号を
供給することを目的とする。
Therefore, the present invention relates to an antenna feed line in a wireless communication system, and an object thereof is to provide an optical transmission line with low noise and which can be easily connected at low cost, and to supply a wireless signal to an antenna dead zone. .

【0008】[0008]

【課題を解決するための手段】第1の発明の無線基地局
は、移動端末に対して無線信号を送受信するアンテナ
と、該無線信号と通話信号とを変換する変復調器と、該
アンテナと変復調器の間を接続する光ファイバ給電線か
ら成り、該光ファイバ給電線は、無線信号を光信号に変
換する光送信器と、該光送信器の出力光信号を伝送する
光ファイバ伝送路と、該光ファイバ伝送路の出力を無線
信号に変換する光受信器によって構成される無線基地局
において、前記光ファイバ伝送路としてコア径100μ
m 以上の多モード光ファイバを用いることを特徴とす
る。
According to a first aspect of the present invention, there is provided a radio base station, an antenna for transmitting / receiving a radio signal to / from a mobile terminal, a modulator / demodulator for converting the radio signal and a call signal, and the antenna and the modulator / demodulator. An optical fiber feed line connecting between the optical devices, the optical fiber feed line is an optical transmitter for converting a radio signal into an optical signal, and an optical fiber transmission line for transmitting an optical signal output from the optical transmitter, In a wireless base station including an optical receiver for converting the output of the optical fiber transmission line into a wireless signal, a core diameter of 100 μm is used as the optical fiber transmission line.
It is characterized by using a multimode optical fiber of m or more.

【0009】第2の発明の無線LANは、無線ローカル
エリアネットワーク(無線LAN)端末に対して無線信
号を送受信する複数のアンテナと、該無線信号とベース
バンド信号とを変換する変復調器と、該アンテナと変復
調器の間を接続する光ファイバ給電線から成り、該光フ
ァイバ給電線は、無線信号を光信号に変換する光送信器
と、該光送信器の出力光信号を伝送する光ファイバ伝送
路と、該光ファイバ伝送路の出力を無線信号に変換する
光受信器によって構成される無線LANにおいて、前記
光ファイバ伝送路としてコア径100μm 以上の多モー
ド光ファイバを用いることを特徴とする。
A wireless LAN according to a second aspect of the invention comprises a plurality of antennas for transmitting and receiving wireless signals to and from a wireless local area network (wireless LAN) terminal, a modulator / demodulator for converting the wireless signals and baseband signals, and An optical fiber feeder connecting an antenna and a modulator / demodulator, the optical fiber feeder being an optical transmitter for converting a radio signal into an optical signal, and an optical fiber transmission for transmitting an optical signal output from the optical transmitter. In the wireless LAN configured by a line and an optical receiver for converting the output of the optical fiber transmission line into a radio signal, a multimode optical fiber having a core diameter of 100 μm or more is used as the optical fiber transmission line.

【0010】第3の発明の光ファイバ給電線装置は、第
1の発明の無線基地局または第2の発明の無線LANに
おける光ファイバ給電線装置であって、前記光送信器の
光源に、ファブリ・ペローレーザダイオードまたは発光
ダイオードを使用することを特徴とする。
An optical fiber feeder circuit device of a third invention is an optical fiber feeder device in the wireless base station of the first invention or the wireless LAN of the second invention, wherein a light source of the optical transmitter is a fabric. -It is characterized by using a Perot laser diode or a light emitting diode.

【0011】第4の発明の光ファイバ給電線装置は、第
1の発明の無線基地局または第2の発明の無線LANに
おける光ファイバ給電線装置であって、前記アンテナか
ら光送信器への入力無線信号と光受信器からアンテナへ
の出力無線信号とを切り替える電気的なスイッチを有
し、また前記変調器から光送信器への入力無線信号と光
受信器から復調器への出力無線信号とを切り替える電気
的なスイッチを有することを特徴とする。
An optical fiber feeder circuit device of a fourth invention is an optical fiber feeder device in the wireless base station of the first invention or the wireless LAN of the second invention, wherein the input from the antenna to the optical transmitter. It has an electric switch for switching between a radio signal and an output radio signal from the optical receiver to the antenna, and an input radio signal from the modulator to the optical transmitter and an output radio signal from the optical receiver to the demodulator. It is characterized by having an electric switch for switching between.

【0012】第5〜6の発明の無線基地局または無線L
ANは、それぞれ第1の発明の無線基地局または第2の
発明の無線LANであって、前記変復調器と電気的な分
波器とを接続し、該分波器によって分岐した無線信号
を、直接または前記光ファイバ給電線装置を介して、複
数のアンテナに集配することを特徴とする。
A radio base station or radio L according to the fifth to sixth inventions
The ANs are the wireless base station of the first invention or the wireless LAN of the second invention, respectively, wherein the modulator / demodulator and the electrical demultiplexer are connected to each other, and the wireless signal branched by the demultiplexer is It is characterized in that the light is distributed to a plurality of antennas either directly or via the optical fiber feeder device.

【0013】第7〜8の発明の無線基地局または無線L
ANは、それぞれ第1の発明の無線基地局または第2の
発明の無線LANであって、前記変復調器とアンテナと
を光ファイバ給電線で接続し、該光ファイバ給電線が光
カプラを含み、該光カプラによって分岐された光信号
を、前記光ファイバ給電線装置を介して複数のアンテナ
に集配することを特徴とする。
A radio base station or radio L according to the seventh to eighth inventions
The ANs are the wireless base station of the first invention or the wireless LAN of the second invention, respectively, wherein the modulator / demodulator and the antenna are connected by an optical fiber feeder, and the optical fiber feeder includes an optical coupler. The optical signal branched by the optical coupler is collected and delivered to a plurality of antennas through the optical fiber feeder device.

【0014】(作用)第1の発明の無線基地局および第
2の発明の無線LAN端末において、光ファイバ伝送路
のファイバコア径を100μm 以上と大きくすることに
より、コア径が10μm 以下の単一モードファイバやコ
ア径が50μm 程度の多モードファイバを使用した場合
に比べて、光ファイバ同士の融着および光部品との接続
の精度に関する制約が緩和されるため、より容易な光フ
ァイバの接続を実現できる。
(Operation) In the wireless base station of the first invention and the wireless LAN terminal of the second invention, by increasing the fiber core diameter of the optical fiber transmission line to 100 μm or more, a single core diameter of 10 μm or less is obtained. Compared to the case of using a mode fiber or a multimode fiber with a core diameter of about 50 μm, the restrictions on the accuracy of fusion of optical fibers and the accuracy of connection with optical components are alleviated. realizable.

【0015】また、光ファイバ伝送路の光源としてレー
ザダイオードを使用した場合、レーザダイオードの相対
強度雑音特性が戻り光の影響によって悪化することはよ
く知られている。ここで多モード光ファイバのコア径が
レーザダイオードの発光面に比して十分大きい場合、光
ファイバ伝送路の途中に反射点が存在しても、レーザダ
イオード内部に戻る光量は小さくなるため、相対強度雑
音の劣化を軽減することができる。
It is well known that when a laser diode is used as a light source of an optical fiber transmission line, the relative intensity noise characteristic of the laser diode is deteriorated by the influence of the returning light. If the core diameter of the multimode optical fiber is sufficiently larger than the light emitting surface of the laser diode, the amount of light returning to the inside of the laser diode will be small even if there is a reflection point in the optical fiber transmission line. It is possible to reduce deterioration of intensity noise.

【0016】なお一般的に多モード光ファイバを用いて
無線信号を光伝送する場合、ファイバ端面や接続部にお
いて各モードの信号光間で干渉パターンが生じ、モード
雑音が発生する。しかし、多モード光ファイバのモード
数がファイバコア径の2乗に比例して増加するため、フ
ァイバコア径を大きくすることにより、ファイバ端面や
接続部における光強度分布は平均化され、コード雑音の
影響は低減される。この多モード光ファイバのモード数
とモード雑音の関係については、例えばコーネン(A.
M.J.KOONEN)による、アイ・イー・イー・イ
ージャーナルオンセレクテドエリアズインコミュニケー
ション(IEEE Journal of Selec
ted Areas in Communicatio
n)第4巻9号1515頁、式(2)に述べられてい
る。本発明ではファイバコア径を100μm 以上と大き
くすることにより、モード雑音を無視できる程度まで抑
圧している。
Generally, when a wireless signal is optically transmitted by using a multimode optical fiber, an interference pattern is generated between signal lights of respective modes at a fiber end face and a connecting portion, and mode noise is generated. However, since the number of modes of a multimode optical fiber increases in proportion to the square of the fiber core diameter, increasing the fiber core diameter averages the light intensity distribution at the fiber end face and the connecting portion, and the code noise The impact is reduced. Regarding the relationship between the number of modes and the mode noise of this multimode optical fiber, see, for example, Konen (A.
M. J. KOENEN), IEEE Journal of Selec
ted Areas in Communicatio
n) Volume 4, No. 9, page 1515, Formula (2). In the present invention, the mode noise is suppressed to a negligible level by increasing the fiber core diameter to 100 μm or more.

【0017】第3の発明の光ファイバ給電線装置は、光
ファイバ伝送路の送信光源に、低干渉性のファブリ・ペ
ローレーザダイオードまたは発光ダイオードを使用す
る。光源の干渉性が低下することにより、前述の多モー
ドファイバで生じるモード雑音の影響を軽減できる。
In the optical fiber feeder circuit of the third invention, a Fabry-Perot laser diode or a light emitting diode having low coherence is used as the transmission light source of the optical fiber transmission line. By reducing the coherence of the light source, it is possible to reduce the influence of the mode noise generated in the above-mentioned multimode fiber.

【0018】第4の発明の光ファイバ給電線装置では、
アンテナから光送信器、および光受信器からアンテナへ
の無線信号の流れは電気的なスイッチによって切り替え
られる。また、変調器から光送信器、および光受信器か
ら復調器への無線信号の流れもまた電気的なスイッチに
よって切り替えられる。この様な構成にすることによ
り、アンテナと光ファイバ給電線装置、および変復調器
と光ファイバ給電線装置の無線信号の入出力系統を単一
化し、装置構成を簡略化することができる。
In the optical fiber feeder system of the fourth invention,
The flow of radio signals from the antenna to the optical transmitter and from the optical receiver to the antenna is switched by electrical switches. Also, the flow of wireless signals from the modulator to the optical transmitter and from the optical receiver to the demodulator is also switched by electrical switches. With such a configuration, it is possible to unify the radio signal input / output system of the antenna and the optical fiber feeding line device, and the modulator / demodulator and the optical fiber feeding line device, and simplify the device configuration.

【0019】第5〜7の発明の無線基地局および無線L
ANでは、光ファイバ給電線装置と変復調器とが電気的
な分波器を介して接続される。この様な構成にすること
により、光ファイバ給電線装置伝送路を用いない従来の
無線基地局や無線LAN端末に対し、変復調器を増設す
ることなしに、光ファイバ給電線装置を介してアンテナ
を接続することが可能になる。
Radio base stations and radio L of the fifth to seventh inventions
In the AN, the optical fiber feeder device and the modulator / demodulator are connected via an electrical demultiplexer. With such a configuration, an antenna can be installed via the optical fiber feeder line device without adding a modulator / demodulator to a conventional wireless base station or wireless LAN terminal that does not use the optical fiber feeder line transmission line. It becomes possible to connect.

【0020】第7〜8の発明の無線基地局および無線L
ANでは、光ファイバ給電線装置が光カプラを含み、こ
の光カプラを介して無線信号が複数の無線エリアに置か
れたアンテナに集配される。この様な構成にすることに
より、複数のアンテナに接続された光ファイバ給電線
の、変復調器側の光送信器および光受信器を共通化し、
装置構成を簡略化することが可能になる。
A radio base station and a radio L according to the seventh to eighth inventions
In the AN, the optical fiber feeder device includes an optical coupler through which radio signals are collected and delivered to antennas placed in a plurality of radio areas. With such a configuration, the optical transmitter and the optical receiver of the modulator / demodulator side of the optical fiber feeder connected to the plurality of antennas are made common,
It is possible to simplify the device configuration.

【0021】[0021]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0022】図1に本発明の第1の実施例の無線基地局
の構成を示す。図1で、無線基地局5はリモートアンテ
ナ装置4aおよび4bと、それぞれ多モード光ファイバ
1a、2aおよび1b、2bを介して接続されている。
ここで、移動端末3は、無線基地局5のアンテナ72と
直接無線信号を送受信不可能であるが、リモートアンテ
ナ装置4aのアンテナ71aとは直接交信できる位置に
あるものとする。
FIG. 1 shows the configuration of a radio base station according to the first embodiment of the present invention. In FIG. 1, the radio base station 5 is connected to remote antenna devices 4a and 4b via multimode optical fibers 1a, 2a and 1b, 2b, respectively.
Here, it is assumed that the mobile terminal 3 cannot directly transmit / receive a radio signal to / from the antenna 72 of the radio base station 5, but is in a position where it can directly communicate with the antenna 71a of the remote antenna device 4a.

【0023】移動端末3から送信された無線信号100
は、リモートアンテナ装置4aのアンテナ71aで受信
され、帯域通過フィルタ20aによって不要な周波数成
分を除去された後、サーキュレータ21aを介して、光
送信器11aに入力される。光送信器11aは電気/光
変換器、増幅器等からなり、入力無線信号104aを光
信号202aに変換する。変換された光信号202a
は、多モード光ファイバ伝送路2aを通り、無線基地局
5の光受信器13aによって受信される。ここで、多モ
ード光ファイバ伝送路としてファイバコア径が100μ
m 以上のものを用いることにより、作用の項で説明した
ように、光ファイバ同士や光部品との接続を容易にし、
多モード光ファイバ伝送路から電気/光変換器への戻り
光による雑音の影響を軽減し、さらに多モード光ファイ
バ伝送路中で生じるモード雑音の影響を低減できる。光
受信器13aは光/電気変換器、増幅器等からなり、入
力光信号202aを無線信号106aに変換する。無線
信号106aはサーキュレータ22aを介して分波器3
0に入力され、アンテナ72、リモートアンテナ4bか
らの無線信号と足しあわされる。分波器の分岐数は任意
であり、分岐数を増やすほど多数のアンテナを接続可能
になる。分波器の出力無線信号109は変復調器40に
入力され、通話信号300に復調される。復調された通
話信号300は、複数の無線基地局を統括する中央局へ
と伝送される。ここでは移動端末から無線基地局への信
号(上り回線)について説明したが、無線基地局から移
動端末への信号(下り回線)についても同様である。
Radio signal 100 transmitted from mobile terminal 3
Is received by the antenna 71a of the remote antenna device 4a, the unnecessary frequency component is removed by the bandpass filter 20a, and then input to the optical transmitter 11a via the circulator 21a. The optical transmitter 11a includes an electric / optical converter, an amplifier, etc., and converts the input wireless signal 104a into an optical signal 202a. Converted optical signal 202a
Is transmitted by the optical receiver 13a of the radio base station 5 through the multimode optical fiber transmission line 2a. Here, the fiber core diameter of the multimode optical fiber transmission line is 100 μm.
By using m or more, as described in the section of operation, it facilitates connection between optical fibers and optical components,
It is possible to reduce the influence of noise caused by the return light from the multimode optical fiber transmission line to the electric / optical converter and further reduce the influence of mode noise generated in the multimode optical fiber transmission line. The optical receiver 13a includes an optical / electrical converter, an amplifier, etc., and converts the input optical signal 202a into the wireless signal 106a. The radio signal 106a is sent to the demultiplexer 3 via the circulator 22a.
It is input to 0 and is added to the radio signals from the antenna 72 and the remote antenna 4b. The number of branches of the duplexer is arbitrary, and the larger the number of branches, the more antennas can be connected. The output radio signal 109 of the duplexer is input to the modulator / demodulator 40 and demodulated into the call signal 300. The demodulated call signal 300 is transmitted to a central station that controls a plurality of radio base stations. Here, the signal from the mobile terminal to the wireless base station (uplink) has been described, but the same applies to the signal from the wireless base station to the mobile terminal (downlink).

【0024】なお前項では無線基地局5のアンテナ72
で送受信される無線信号と、リモートアンテナ4a、4
bのアンテナ71a、71bで送受信される無線信号は
それぞれ互いに干渉しないものとして記述したが、現実
には複数のアンテナにおいて同時に無線信号を送受信可
能な場合が存在する。この場合は、移動端末3から送信
された無線信号(上り回線)は、アンテナ71a、71
b、および72で受信され、無線基地局の復調器40に
おいて受信レベルおよび受信遅延差の異なるマルチパス
信号として認識されて、トランスバーサルフィルタまた
はディジタル信号処理によって等化処理される。また、
無線基地局からアンテナ71a、71b、および72を
介して送信された無線信号(下り回線)についても、移
動端末3の復調器においてマルチパス信号として認識さ
れ、等化処理される。
In the previous section, the antenna 72 of the radio base station 5
Wireless signals transmitted and received by the remote antennas 4a and 4
Although the radio signals transmitted and received by the antennas 71a and 71b of b are not described as interfering with each other, in reality, there are cases where a plurality of antennas can simultaneously transmit and receive radio signals. In this case, the radio signal (uplink) transmitted from the mobile terminal 3 is transmitted to the antennas 71a and 71a.
b and 72, the demodulator 40 of the radio base station recognizes them as multipath signals having different reception levels and reception delay differences, and equalizes them by a transversal filter or digital signal processing. Also,
The radio signal (downlink) transmitted from the radio base station via the antennas 71a, 71b, and 72 is also recognized as a multipath signal by the demodulator of the mobile terminal 3 and equalized.

【0025】図2に、無線LANを部屋間で接続する従
来の構成を示す。無線LANは主に屋内で使用され、一
つのアンテナがカバーできる範囲は基本的に一つの部屋
に限定される。そのため、複数の部屋にサービスエリア
を拡張するためには、部屋間を有線ケーブルを用いて接
続する。図2において無線エリアXと無線エリアYとは
壁などによって仕切られており、相互に無線信号を直接
通信できないものとする。無線LAN端末7は無線エリ
アXに、無線LAN端末6は無線エリアYに配置され、
両者は有線LANケーブル9によって接続されている。
無線エリアXにある無線LAN端末8が発する無線信号
100は、アンテナ75で受信され、ベースバンド信号
302に復調される。復調されたベースバンド信号30
2は有線LAN/無線LANブリッジ61に入力され
る。有線LAN/無線LANブリッジ61はトランスポ
ート層でベースバンド信号302を有線LANに接続
し、ベースバンド信号303を有線LANケーブル9に
送出する。ベースバンド信号303は、有線LAN/無
線LANブリッジ60においてベースバンド信号301
に変換され、無線LAN端末6に入力される。無線LA
N端末6はベースバンド信号301を再度無線信号に変
調し、アンテナ74から無線エリアYに向けて送信す
る。また、無線エリアYのアンテナ74において受信さ
れた無線信号も、同様に無線エリアXに向けて送信され
る。この様に従来の無線LANでは、部屋間接続に有線
LANを用いる構成であるため、部屋毎に無線の変復調
器および有線LAN/無線LANの接続ブリッジが必要
となる。
FIG. 2 shows a conventional structure for connecting a wireless LAN between rooms. The wireless LAN is mainly used indoors, and the range covered by one antenna is basically limited to one room. Therefore, in order to extend the service area to a plurality of rooms, the rooms are connected using a cable. In FIG. 2, the wireless area X and the wireless area Y are partitioned by a wall or the like, and it is assumed that wireless signals cannot be directly communicated with each other. The wireless LAN terminal 7 is arranged in the wireless area X, the wireless LAN terminal 6 is arranged in the wireless area Y,
Both are connected by a wired LAN cable 9.
The wireless signal 100 emitted from the wireless LAN terminal 8 in the wireless area X is received by the antenna 75 and demodulated into the baseband signal 302. Demodulated baseband signal 30
2 is input to the wired LAN / wireless LAN bridge 61. The wired LAN / wireless LAN bridge 61 connects the baseband signal 302 to the wired LAN at the transport layer and sends the baseband signal 303 to the wired LAN cable 9. The baseband signal 303 is the baseband signal 301 in the wired LAN / wireless LAN bridge 60.
Is input to the wireless LAN terminal 6. Wireless LA
The N terminal 6 modulates the baseband signal 301 into a radio signal again and transmits it from the antenna 74 to the radio area Y. Further, the wireless signal received by the antenna 74 in the wireless area Y is also transmitted to the wireless area X in the same manner. As described above, in the conventional wireless LAN, since the wired LAN is used for connection between the rooms, a wireless modulator / demodulator and a wired LAN / wireless LAN connection bridge are required for each room.

【0026】図3に、本発明の第2の発明である無線L
ANの構成を示す。図3においても図2と同様に無線エ
リアXと無線エリアYとは壁などによって仕切られてお
り、直接無線信号を相互に通信できないものとする。無
線LAN端末6とリモートアンテナ4aはそれぞれ無線
エリアX、Yに配置され、両者は多モード光ファイバ伝
送路1a、2aで接続される。リモートアンテナ装置4
aおよび無線LAN端末6の光送信器、光受信器および
変復調器などの機能については、実施例1の無線基地局
と同様である。有線LANを用いて無線LANを接続す
る従来の方法と比較して、本発明の光ファイバを用いて
リモートアンテナ4aを増設する方法では、無線信号を
そのまま光信号の強度変調におきかえ、サブキャリア多
重して伝送するため、無線信号の変復調器や有線LAN
との接続ブリッジ等は不要である。本構成では、無線エ
リアXおよびYで同一無線チャンネルを共有するため、
特に無線エリアYを占める無線LAN端末の台数が比較
的低く、高コストの有線LANとの接続機器の設置の必
要性が低い場合に特に有効と考えられる。
FIG. 3 shows a wireless L which is the second invention of the present invention.
The structure of AN is shown. In FIG. 3, as in FIG. 2, the wireless area X and the wireless area Y are partitioned by a wall or the like, and direct wireless signals cannot be communicated with each other. The wireless LAN terminal 6 and the remote antenna 4a are arranged in the wireless areas X and Y, respectively, and both are connected by the multimode optical fiber transmission lines 1a and 2a. Remote antenna device 4
The functions of the optical transmitter a, the optical receiver and the modulator / demodulator of the wireless LAN terminal 6 are the same as those of the wireless base station of the first embodiment. Compared with the conventional method of connecting a wireless LAN using a wired LAN, in the method of adding the remote antenna 4a using the optical fiber of the present invention, the wireless signal is directly changed to the intensity modulation of the optical signal, and the subcarrier multiplexing is performed. Wireless signal modulator / demodulator or wired LAN
No connection bridge or the like is required. In this configuration, since the same wireless channel is shared by the wireless areas X and Y,
In particular, it is considered to be particularly effective when the number of wireless LAN terminals occupying the wireless area Y is relatively low and the necessity of installing a connection device with a high-cost wired LAN is low.

【0027】図4に、本発明の第3の実施例である無線
LANの構成を示す。無線LANのような無線システム
の場合、端末の送信と受信は時間的に切り替えられる。
そこで、無線LAN端末6の分波器31にスイッチ27
を接続し、分波器31の入出力無線信号107aを、光
送信器10aへの入力無線信号105aと光受信器13
aからの出力無線信号106aとに切り替える。スイッ
チ27の制御信号は、変復調器41からスイッチ制御信
号400を取り出して用いる。実際に無線LAN端末で
は消費電力の低減のため、無線信号送出時、受信時、お
よび待機時で電子回路の動作モードを変化させるための
制御信号を有しているので、これを使用する。また、ス
イッチ制御信号400は振幅変調器81によって無線信
号よりも十分低い周波数の制御信号401に変調され、
合波器33によって無線信号にサブキャリア多重され
る。リモートアンテナ4aでは、受信無線信号103a
の一部を分波器32によって取り出し、低周波通過フィ
ルタ23によって制御信号を取り出した後、振幅復調器
80によってスイッチ制御信号403を取り出す。この
様な構成にすることにより、無線信号の光送信器入力と
光受信器出力を、サーキュレータを用いずにアンテナ端
子に接続することが可能になる。また、光送受信器に送
受信切り替えの信号を利用して、未使用時には増幅器を
低電力動作モードに切り替えることにより、装置の低消
費電力化を図ることができる。
FIG. 4 shows the configuration of a wireless LAN according to the third embodiment of the present invention. In the case of a wireless system such as a wireless LAN, transmission and reception of terminals are switched in time.
Therefore, the switch 27 is added to the demultiplexer 31 of the wireless LAN terminal 6.
To connect the input / output radio signal 107a of the demultiplexer 31 to the input radio signal 105a to the optical transmitter 10a and the optical receiver 13a.
The output wireless signal 106a from a is switched to. As the control signal of the switch 27, the switch control signal 400 is extracted from the modulator / demodulator 41 and used. Actually, the wireless LAN terminal has a control signal for changing the operation mode of the electronic circuit at the time of transmitting, receiving and waiting for the wireless signal in order to reduce the power consumption, and therefore this is used. Further, the switch control signal 400 is modulated by the amplitude modulator 81 into the control signal 401 having a frequency sufficiently lower than that of the radio signal,
The multiplexer 33 subcarrier multiplexes the radio signal. In the remote antenna 4a, the received wireless signal 103a
Of the switch control signal 403 is extracted by the amplitude demodulator 80 after a part of the signal is extracted by the demultiplexer 32 and the control signal is extracted by the low frequency pass filter 23. With such a configuration, it becomes possible to connect the optical transmitter input and the optical receiver output of the radio signal to the antenna terminal without using the circulator. Further, by using the signal for transmission / reception switching to the optical transmitter / receiver and switching the amplifier to the low power operation mode when not in use, the power consumption of the device can be reduced.

【0028】図5に、本発明の第4の実施例である無線
基地局の構成を示す。無線基地局5およびリモートアン
テナ装置4a、4bの機能は実施例1と同じである。無
線基地局5からの出力光信号201aは光カプラ24に
よって光信号201c、201dに分岐され、それぞれ
リモートアンテナ装置4a、4bの光受信器に入力され
る。また、リモートアンテナ装置4a、4bの出力光信
号202c、202dは、光カプラ25によって合波さ
れ、無線基地局の光受信器に入力される。この様な構成
にすることによって、リモートアンテナ装置4a、4b
に対する無線基地局側の光送受信器を共有化でき、装置
構成を単純化することが可能になる。但し、本構成の場
合、リモートアンテナ装置4aの光送信器11aの光源
と、リモートアンテナ装置4bの光送信器11bの光源
とは、光受信器13aにおいてビート雑音を発生しない
ように波長を離す必要がある。
FIG. 5 shows the configuration of a radio base station which is the fourth embodiment of the present invention. The functions of the radio base station 5 and the remote antenna devices 4a and 4b are the same as those in the first embodiment. The output optical signal 201a from the wireless base station 5 is branched into optical signals 201c and 201d by the optical coupler 24 and input to the optical receivers of the remote antenna devices 4a and 4b, respectively. The output optical signals 202c and 202d of the remote antenna devices 4a and 4b are combined by the optical coupler 25 and input to the optical receiver of the wireless base station. With such a configuration, the remote antenna devices 4a, 4b
The optical transmitter / receiver on the side of the wireless base station can be shared, and the device configuration can be simplified. However, in the case of this configuration, the light source of the optical transmitter 11a of the remote antenna device 4a and the light source of the optical transmitter 11b of the remote antenna device 4b need to be separated in wavelength so that beat noise is not generated in the optical receiver 13a. There is.

【0029】図6に、本発明の第5の実施例である無線
基地局の構成を示す。無線基地局5とリモートアンテナ
装置4aとは多モード光ファイバ1aおよび2aにより
接続され、リモートアンテナ装置4aと4bとは多モー
ド光ファイバ1bおよび2bにより接続される。光信号
はリモートアンテナ装置4aにおいて非再生中継され
る。すなわち、リモートアンテナ装置4bから多モード
光ファイバ2bを通して伝送される光信号202bは、
リモートアンテナ装置4aの光受信器15で一度無線信
号に変換され、アンテナ71aにおいて受信された無線
信号113と分波器35を介して合波され、光送信器1
1aにより再度光信号202aに変換されて、多モード
光ファイバ伝送路2aを通り無線基地局5の光受信器で
受信される。また、無線基地局からの送信光信号201
aは、リモートアンテナ装置4aの光受信器12aによ
って電気信号に変換された後、分波器34によって分岐
される。分岐された無線信号110は、増幅器90によ
って適切な強度に増幅された後、サーキュレータ12a
および帯域通過フィルタ20aを経てアンテナ71aか
ら送信される。また、分波器34によって分岐されたも
う一方の無線信号111は、光送信器14に入力され、
光信号201bに変換される。変換された光信号201
bは、多モード光ファイバ伝送路1bを通ってリモート
アンテナ装置4bに伝送され、光受信器12bによって
無線信号103bに変換される。変換された無線信号1
03bは、サーキュレータ21bおよび帯域通過フィル
タ20bを経て、アンテナ71bから送信される。この
様な構成にすることにより、光ファイバ伝送路を通る光
源の波長が単一となる。従って、光ファイバ伝送路上で
光信号を多重する方式で問題であったビート雑音の問題
を回避することができ、光源の波長管理が不要となる。
FIG. 6 shows the configuration of a radio base station which is a fifth embodiment of the present invention. The radio base station 5 and the remote antenna device 4a are connected by the multimode optical fibers 1a and 2a, and the remote antenna devices 4a and 4b are connected by the multimode optical fibers 1b and 2b. The optical signal is non-regenerated and relayed in the remote antenna device 4a. That is, the optical signal 202b transmitted from the remote antenna device 4b through the multimode optical fiber 2b is
The optical receiver 15 of the remote antenna device 4a once converts the signal into a wireless signal, and the wireless signal 113 received by the antenna 71a is multiplexed via the demultiplexer 35, and the optical transmitter 1
The optical signal 202a is converted again by 1a and is received by the optical receiver of the radio base station 5 through the multimode optical fiber transmission line 2a. In addition, the transmission optical signal 201 from the wireless base station
The light a is converted into an electric signal by the optical receiver 12a of the remote antenna device 4a, and then branched by the demultiplexer 34. The branched radio signal 110 is amplified to a proper intensity by the amplifier 90, and then the circulator 12a.
Then, the signal is transmitted from the antenna 71a via the band pass filter 20a. The other radio signal 111 branched by the demultiplexer 34 is input to the optical transmitter 14,
It is converted into an optical signal 201b. Converted optical signal 201
b is transmitted to the remote antenna device 4b through the multimode optical fiber transmission line 1b, and is converted into the radio signal 103b by the optical receiver 12b. Converted wireless signal 1
03b is transmitted from the antenna 71b via the circulator 21b and the bandpass filter 20b. With such a configuration, the wavelength of the light source passing through the optical fiber transmission line becomes single. Therefore, the problem of beat noise, which has been a problem in the method of multiplexing optical signals on the optical fiber transmission line, can be avoided, and wavelength management of the light source becomes unnecessary.

【0030】[0030]

【発明の効果】以上述べたように本発明によれば、移動
電話や無線LANなどの無線通信システムにおいて、低
雑音で接続の容易な光伝送路を用いてアンテナ不感地帯
に無線信号を供給することが実現できる。
As described above, according to the present invention, in a wireless communication system such as a mobile phone or a wireless LAN, a wireless signal is supplied to an antenna dead zone by using an optical transmission line with low noise and which can be easily connected. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の無線基地局の構成であ
る。
FIG. 1 is a configuration of a wireless base station according to a first embodiment of the present invention.

【図2】従来の無線LANを部屋間で接続する構成であ
る。
FIG. 2 is a configuration for connecting a conventional wireless LAN between rooms.

【図3】本発明の第2の実施例の無線LANの構成であ
る。
FIG. 3 is a configuration of a wireless LAN according to a second embodiment of the present invention.

【図4】本発明の第3の実施例の無線LANの構成であ
る。
FIG. 4 is a configuration of a wireless LAN according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の無線基地局の構成であ
る。
FIG. 5 is a configuration of a radio base station according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施例の無線基地局の構成であ
る。
FIG. 6 is a configuration of a radio base station according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a〜1d、2a〜2d 多モード光ファイバ伝送路 3 移動端末 4a、4b リモートアンテナ装置 5 無線基地局 6、7、8 無線LAN端末 9 有線LANケーブル 10a、10b、11a、11b、14 光送信器 12a、12b、13a、13b、15 光受信器 20a、20b、23 フィルタ 21a、21b、22a、22b サーキュレータ 24、25 光カプラ 26、27 スイッチ 30〜35 分波器 40、41 変復調器 60、61 無線LAN/有線LANブリッジ 70、71a、71b、72、73 アンテナ 80 振幅復調器 81 振幅変調器 100、101a、101b、102a、102b、1
03a〜103c、104a、104b、105a、1
05b、106a、106b、107a、107b、1
08〜112 無線信号 201a〜201d、202a〜202d 光信号 300 通信信号 301〜303 ベースバンド信号 400〜403 スイッチ制御信号 X、Y 無線エリア
1a to 1d, 2a to 2d multimode optical fiber transmission line 3 mobile terminal 4a, 4b remote antenna device 5 wireless base station 6, 7, 8 wireless LAN terminal 9 wired LAN cable 10a, 10b, 11a, 11b, 14 optical transmitter 12a, 12b, 13a, 13b, 15 Optical receiver 20a, 20b, 23 Filter 21a, 21b, 22a, 22b Circulator 24, 25 Optical coupler 26, 27 Switch 30-35 Splitter 40, 41 Modulator / demodulator 60, 61 Wireless LAN / Wired LAN bridge 70, 71a, 71b, 72, 73 Antenna 80 Amplitude demodulator 81 Amplitude modulator 100, 101a, 101b, 102a, 102b, 1
03a-103c, 104a, 104b, 105a, 1
05b, 106a, 106b, 107a, 107b, 1
08-112 wireless signal 201a-201d, 202a-202d optical signal 300 communication signal 301-303 baseband signal 400-403 switch control signal X, Y wireless area

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】移動端末に対して無線信号を送受信するア
ンテナと、該無線信号と通話信号とを変換する変復調器
と、該アンテナと変復調器の間を接続する光ファイバ給
電線から成り、該光ファイバ給電線は、無線信号を光信
号に変換する光送信器と、該光送信器の出力光信号を伝
送する光ファイバ伝送路と、該光ファイバ伝送路の出力
を無線信号に変換する光受信器によって構成される無線
基地局において、 前記光ファイバ伝送路としてコア径100μm 以上の多
モード光ファイバを用いることを特徴とする無線基地
局。
1. An antenna for transmitting and receiving a radio signal to and from a mobile terminal, a modulator / demodulator for converting the radio signal and a call signal, and an optical fiber feeder line connecting the antenna and the modulator / demodulator. The optical fiber feeder is composed of an optical transmitter for converting a wireless signal into an optical signal, an optical fiber transmission line for transmitting an optical signal output from the optical transmitter, and an optical fiber for converting an output of the optical fiber transmission line into a wireless signal. A radio base station configured by a receiver, wherein a multimode optical fiber having a core diameter of 100 μm or more is used as the optical fiber transmission line.
【請求項2】無線ローカルエリアネットワーク(無線L
AN)端末に対して無線信号を送受信する複数のアンテ
ナと、該無線信号とベースバンド信号とを変換する変復
調器と、該アンテナと変復調器の間を接続する光ファイ
バ給電線から成り、該光ファイバ給電線は、無線信号を
光信号に変換する光送信器と、該光送信器の出力光信号
を伝送する光ファイバ伝送路と、該光ファイバ伝送路の
出力を無線信号に変換する光受信器によって構成される
無線LANにおいて、 前記光ファイバ伝送路としてコア径100μm 以上の多
モード光ファイバを用いることを特徴とする無線LA
N。
2. A wireless local area network (wireless L
AN) a plurality of antennas for transmitting and receiving radio signals to and from a terminal, a modulator / demodulator for converting the radio signals and baseband signals, and an optical fiber feeder line connecting the antennas and the modulator / demodulator. The fiber feeder is composed of an optical transmitter for converting a radio signal into an optical signal, an optical fiber transmission line for transmitting an optical signal output from the optical transmitter, and an optical receiver for converting an output of the optical fiber transmission line into a radio signal. In a wireless LAN configured by a multi-mode optical fiber, a multi-mode optical fiber having a core diameter of 100 μm or more is used as the optical fiber transmission line.
N.
【請求項3】請求項1記載の無線基地局または請求項2
記載の無線LANにおける光ファイバ給電線装置であっ
て、 前記光送信器の光源に、ファブリ・ペローレーザダイオ
ードまたは発光ダイオードを使用することを特徴とする
光ファイバ給電線装置。
3. The radio base station according to claim 1 or claim 2.
An optical fiber feeder device in the wireless LAN according to claim 1, wherein a Fabry-Perot laser diode or a light emitting diode is used as a light source of the optical transmitter.
【請求項4】請求項1記載の無線基地局または請求項2
記載の無線LANにおける光ファイバ給電線装置であっ
て、 前記アンテナから光送信器への入力無線信号と光受信器
からアンテナへの出力無線信号とを切り替える電気的な
スイッチを有し、また前記変調器から光送信器への入力
無線信号と光受信器から復調器への出力無線信号とを切
り替える電気的なスイッチを有することを特徴とする光
ファイバ給電線装置。
4. The radio base station according to claim 1 or claim 2.
An optical fiber feeder for a wireless LAN according to claim 1, further comprising an electrical switch for switching an input wireless signal from the antenna to an optical transmitter and an output wireless signal from the optical receiver to the antenna, and the modulation. An optical fiber feeder device having an electrical switch for switching between an input wireless signal from a transmitter to an optical transmitter and an output wireless signal from an optical receiver to a demodulator.
【請求項5】変復調器と電気的な分波器とを接続し、該
分波器によって分岐した無線信号を、直接または前記光
ファイバ給電線装置を介して、複数のアンテナに集配す
ることを特徴とする請求項1記載の無線基地局。
5. A modulator / demodulator and an electrical demultiplexer are connected, and a radio signal branched by the demultiplexer is collected or delivered to a plurality of antennas directly or via the optical fiber feeder circuit. The radio base station according to claim 1, wherein the radio base station is a radio base station.
【請求項6】変復調器と電気的な分波器とを接続し、該
分波器によって分岐した無線信号を、直接または前記光
ファイバ給電線装置を介して、複数のアンテナに集配す
ることを特徴とする請求項2記載の無線LAN。
6. A modulator / demodulator and an electrical demultiplexer are connected, and a radio signal branched by the demultiplexer is collected and delivered to a plurality of antennas directly or through the optical fiber feeder device. The wireless LAN according to claim 2, wherein the wireless LAN is a wireless LAN.
【請求項7】変復調器とアンテナとを光ファイバ給電線
で接続し、該光ファイバ給電線が光カプラを含み、該光
カプラによって分岐された光信号を、前記光ファイバ給
電線装置を介して複数のアンテナに集配することを特徴
とする請求項1記載の無線基地局。
7. A modulator / demodulator and an antenna are connected by an optical fiber feed line, the optical fiber feed line includes an optical coupler, and an optical signal branched by the optical coupler is passed through the optical fiber feed line device. The radio base station according to claim 1, wherein the radio base station collects and delivers the plurality of antennas.
【請求項8】変復調器とアンテナとを光ファイバ給電線
で接続し、該光ファイバ給電線が光カプラを含み、該光
カプラによって分岐された光信号を、前記光ファイバ給
電線装置を介して複数のアンテナに集配することを特徴
とする請求項2記載の無線LAN。
8. A modulator / demodulator and an antenna are connected by an optical fiber feed line, the optical fiber feed line includes an optical coupler, and an optical signal branched by the optical coupler is passed through the optical fiber feed line device. The wireless LAN according to claim 2, wherein the wireless LAN is collected and delivered to a plurality of antennas.
JP7236469A 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder Expired - Fee Related JP2900853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7236469A JP2900853B2 (en) 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7236469A JP2900853B2 (en) 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder

Publications (2)

Publication Number Publication Date
JPH0983450A true JPH0983450A (en) 1997-03-28
JP2900853B2 JP2900853B2 (en) 1999-06-02

Family

ID=17001210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7236469A Expired - Fee Related JP2900853B2 (en) 1995-09-14 1995-09-14 Wireless base station, wireless local area network, and optical fiber feeder

Country Status (1)

Country Link
JP (1) JP2900853B2 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180202A (en) * 2002-11-29 2004-06-24 Synclayer Inc Transmission system of optical fiber network system, optical network system thereof, and terminal equipment thereof
JP2006295309A (en) * 2005-04-06 2006-10-26 Yagi Antenna Co Ltd Optical multi-stage relaying system
JP2008166893A (en) * 2006-12-27 2008-07-17 Nec Infrontia Corp Transmission/reception circuit of wireless terminal equipment by dual mode communication
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
JP2009065569A (en) * 2007-09-07 2009-03-26 Chubu Electric Power Co Inc Relay device, and radio communication apparatus
JP2009534930A (en) * 2006-04-19 2009-09-24 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Electro-optical cable for wireless system
JP2011503930A (en) * 2007-10-12 2011-01-27 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Hybrid wireless / wired transponder and hybrid RoF communication system using the same
US8391247B2 (en) 2006-03-28 2013-03-05 Kyocera Corporation Base station device and signal processing method
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
JP2020068485A (en) * 2018-10-25 2020-04-30 日本放送協会 Relay device
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004180202A (en) * 2002-11-29 2004-06-24 Synclayer Inc Transmission system of optical fiber network system, optical network system thereof, and terminal equipment thereof
JP2006295309A (en) * 2005-04-06 2006-10-26 Yagi Antenna Co Ltd Optical multi-stage relaying system
US8391247B2 (en) 2006-03-28 2013-03-05 Kyocera Corporation Base station device and signal processing method
JP2009534930A (en) * 2006-04-19 2009-09-24 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Electro-optical cable for wireless system
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US8873585B2 (en) 2006-12-19 2014-10-28 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
US9130613B2 (en) 2006-12-19 2015-09-08 Corning Optical Communications Wireless Ltd Distributed antenna system for MIMO technologies
JP2008166893A (en) * 2006-12-27 2008-07-17 Nec Infrontia Corp Transmission/reception circuit of wireless terminal equipment by dual mode communication
JP4512085B2 (en) * 2006-12-27 2010-07-28 Necインフロンティア株式会社 Wireless terminal
US8867919B2 (en) 2007-07-24 2014-10-21 Corning Cable Systems Llc Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
JP2009065569A (en) * 2007-09-07 2009-03-26 Chubu Electric Power Co Inc Relay device, and radio communication apparatus
JP2011503930A (en) * 2007-10-12 2011-01-27 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー Hybrid wireless / wired transponder and hybrid RoF communication system using the same
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9112611B2 (en) 2009-02-03 2015-08-18 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10128951B2 (en) 2009-02-03 2018-11-13 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9219879B2 (en) 2009-11-13 2015-12-22 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9485022B2 (en) 2009-11-13 2016-11-01 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9319138B2 (en) 2010-02-15 2016-04-19 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
US9525488B2 (en) 2010-05-02 2016-12-20 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9042732B2 (en) 2010-05-02 2015-05-26 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US9270374B2 (en) 2010-05-02 2016-02-23 Corning Optical Communications LLC Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US10014944B2 (en) 2010-08-16 2018-07-03 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US9037143B2 (en) 2010-08-16 2015-05-19 Corning Optical Communications LLC Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US8913892B2 (en) 2010-10-28 2014-12-16 Coring Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
US9325429B2 (en) 2011-02-21 2016-04-26 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9184843B2 (en) 2011-04-29 2015-11-10 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9240835B2 (en) 2011-04-29 2016-01-19 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9369222B2 (en) 2011-04-29 2016-06-14 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9258052B2 (en) 2012-03-30 2016-02-09 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10349156B2 (en) 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
US9621293B2 (en) 2012-08-07 2017-04-11 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9973968B2 (en) 2012-08-07 2018-05-15 Corning Optical Communications Wireless Ltd Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods
US9455784B2 (en) 2012-10-31 2016-09-27 Corning Optical Communications Wireless Ltd Deployable wireless infrastructures and methods of deploying wireless infrastructures
US9531452B2 (en) 2012-11-29 2016-12-27 Corning Optical Communications LLC Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs)
US10361782B2 (en) 2012-11-30 2019-07-23 Corning Optical Communications LLC Cabling connectivity monitoring and verification
US9647758B2 (en) 2012-11-30 2017-05-09 Corning Optical Communications Wireless Ltd Cabling connectivity monitoring and verification
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9715157B2 (en) 2013-06-12 2017-07-25 Corning Optical Communications Wireless Ltd Voltage controlled optical directional coupler
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9247543B2 (en) 2013-07-23 2016-01-26 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9661781B2 (en) 2013-07-31 2017-05-23 Corning Optical Communications Wireless Ltd Remote units for distributed communication systems and related installation methods and apparatuses
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US9178635B2 (en) 2014-01-03 2015-11-03 Corning Optical Communications Wireless Ltd Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference
US9775123B2 (en) 2014-03-28 2017-09-26 Corning Optical Communications Wireless Ltd. Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power
US9807772B2 (en) 2014-05-30 2017-10-31 Corning Optical Communications Wireless Ltd. Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems
US9357551B2 (en) 2014-05-30 2016-05-31 Corning Optical Communications Wireless Ltd Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9730228B2 (en) 2014-08-29 2017-08-08 Corning Optical Communications Wireless Ltd Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US10397929B2 (en) 2014-08-29 2019-08-27 Corning Optical Communications LLC Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit
US9929810B2 (en) 2014-09-24 2018-03-27 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US9602210B2 (en) 2014-09-24 2017-03-21 Corning Optical Communications Wireless Ltd Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS)
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US9420542B2 (en) 2014-09-25 2016-08-16 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units
US9788279B2 (en) 2014-09-25 2017-10-10 Corning Optical Communications Wireless Ltd System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US10560214B2 (en) 2015-09-28 2020-02-11 Corning Optical Communications LLC Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS)
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
JP2020068485A (en) * 2018-10-25 2020-04-30 日本放送協会 Relay device

Also Published As

Publication number Publication date
JP2900853B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JPH0983450A (en) Radio base station, radio local area network and optical fiber feeder
EP1113594B1 (en) Radio base station system and central control station with unified transmission format
US6337754B1 (en) Optical conversion relay amplification system
US6807374B1 (en) Mobile communication system
US7127176B2 (en) Optical transmission system of radio signal over optical fiber link
KR100819308B1 (en) Radio-over-fiber Link Apparatus Capable of Stable TDD Wireless Service
EP1605614A1 (en) Bi-directional optical transmission system, and master and slave stations used therefor
JPH09200840A (en) Private radio communication system
WO2006136811A1 (en) Optical transmission system
JPS62116031A (en) Optical communication system
WO2015024453A1 (en) Ftth network based optical fiber, and wireless hybrid access system and hybrid access method
JPH0448832A (en) Optical link radio communication system
JPH10200484A (en) Optical network system provided with mobile communication service, its center device and base station device
JPH04207532A (en) Communication equipment
Ohtsuka et al. A subcarrier transmission approach to microcellular systems
JP3568145B2 (en) High frequency optical fiber transmission system using optical wavelength division multiplexing.
CN101145845B (en) Full duplex optical fiber radio communication base station without light source and modulator
CN213602643U (en) 4/5G base station optical transmission demultiplexing system
JP2783248B2 (en) Wireless base station network
JPH09233050A (en) Radio network system and optical transmission method
JP2000049676A (en) Mobile communication system capable of effectively covering shadow area of base station and easily expanding its service area
CN113595634B (en) 6G-oriented visible light communication system and method
JPH07250029A (en) Optical loop network transmitting system
KR100699102B1 (en) The mobile telecommunication system with common optical fiber between base station and repeater
JP2965059B2 (en) Mobile communication and radio call monitoring control signal transmission device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees