JPH0982933A - Solid state image sensing device and its manufacture - Google Patents

Solid state image sensing device and its manufacture

Info

Publication number
JPH0982933A
JPH0982933A JP7234292A JP23429295A JPH0982933A JP H0982933 A JPH0982933 A JP H0982933A JP 7234292 A JP7234292 A JP 7234292A JP 23429295 A JP23429295 A JP 23429295A JP H0982933 A JPH0982933 A JP H0982933A
Authority
JP
Japan
Prior art keywords
light
light receiving
amorphous silicon
film
receiving portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7234292A
Other languages
Japanese (ja)
Inventor
Michio Sasaki
道夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7234292A priority Critical patent/JPH0982933A/en
Publication of JPH0982933A publication Critical patent/JPH0982933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid state image sensing device of low noise wherein decrease of manufacturing yield and deterioration of optical sensitivity are not generated. SOLUTION: In a solid state image sensing device, a light transparent electrode 9 of a surface of a light receiving part 2 is constituted of amorphous silicon or amorphous silicon carbide or amorphous silicon nitride which are formed by using a photo-assisted CVD method and a plasma CVD method. Thereby light absorption in a visible, light region is not generated, and deterioration of sensitivity can be prevented. Coverage shape is excellent and manufacturing yield is not decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電荷転送素子(C
CD)を用いた固体撮像装置およびその製造方法に関す
る。
The present invention relates to a charge transfer device (C
The present invention relates to a solid-state imaging device using a CD and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、ビデオカメラや電子スチルカメ
ラ、さらにはハイビジョンカメラの画像入力装置として
電荷転送素子(以下CCDと記す)を用いた固体撮像装
置が使用されている。この固体撮像装置は、複数の画素
を2次元平面上に配列しており、各画素で発生した信号
電荷をCCDを用いて転送、出力するものである。
2. Description of the Related Art In recent years, a solid-state image pickup device using a charge transfer device (hereinafter referred to as CCD) has been used as an image input device for a video camera, an electronic still camera, and a high-definition camera. This solid-state imaging device has a plurality of pixels arranged on a two-dimensional plane, and transfers and outputs a signal charge generated in each pixel using a CCD.

【0003】図3は従来の固体撮像装置の単位画素の構
成を示す断面図である。p型のSi基板1の表面に,n
型の受光部2、n型の信号電荷転送チャネル3、及びp
+ 型の素子分離部4形成されている。電荷転送チャネル
3上には第1の絶縁膜5を介して複数本の信号電荷転送
電極6が形成されている。そして、信号電荷転送電極6
上は第2の絶縁膜7で覆われ、さらに遮光膜8に覆われ
ている。
FIG. 3 is a sectional view showing the structure of a unit pixel of a conventional solid-state image pickup device. On the surface of the p-type Si substrate 1, n
-Type light receiving section 2, n-type signal charge transfer channel 3, and p
A + type element isolation portion 4 is formed. A plurality of signal charge transfer electrodes 6 are formed on the charge transfer channel 3 via a first insulating film 5. Then, the signal charge transfer electrode 6
The upper part is covered with the second insulating film 7, and further covered with the light shielding film 8.

【0004】ところで、このような固体撮像装置には、
固定パターン雑音という問題があった。これはp−n接
合で形成されている受光部2(フォトダイオード)の空
乏層がSi基板1と第1の絶縁膜5との界面に到達して
発生するリーク電流が原因である。このリーク電流が画
素ごとにばらついて受光部2内の信号電荷に加算される
と、固定パターン雑音となる。
By the way, in such a solid-state image pickup device,
There was a problem of fixed pattern noise. This is due to a leak current generated when the depletion layer of the light receiving portion 2 (photodiode) formed by the pn junction reaches the interface between the Si substrate 1 and the first insulating film 5. When this leak current varies from pixel to pixel and is added to the signal charge in the light receiving section 2, it becomes fixed pattern noise.

【0005】固定パターンを低減するためには、Si基
板1と第1の絶縁膜5との界面に空乏層を形成しないよ
うにすることである。その空乏層の形成を防ぐ方法を以
下に示す。
In order to reduce the fixed pattern, it is necessary not to form a depletion layer at the interface between the Si substrate 1 and the first insulating film 5. The method for preventing the formation of the depletion layer is shown below.

【0006】図4は埋め込みフォトダイオード型固体撮
像装置の画素構造を示す断面図である。この装置は、図
3の固体撮像装置のn型の受光部2の表面に、浅い高濃
度のp+ 層11を形成して表面を正孔蓄積状態にするこ
とによって界面の空乏化を防ぐものである。しかしなが
ら、埋め込みフォトダイオード型固体撮像装置には微小
白傷画像欠陥という問題があった。これは界面の空乏化
を防ぐためのp+ 層11を形成する際に高濃度にドープ
されたB(ボロン)に重金属などがゲッタリングされて
生成・再結合の中心になることが画像欠陥の原因となる
ものである。
FIG. 4 is a sectional view showing a pixel structure of a buried photodiode type solid-state image pickup device. This device prevents depletion of the interface by forming a shallow high-concentration p + layer 11 on the surface of the n-type light receiving part 2 of the solid-state imaging device of FIG. 3 and making the surface hole accumulating state. Is. However, the embedded photodiode type solid-state imaging device has a problem of minute white defect image defects. This is because when a p + layer 11 for preventing depletion of the interface is formed, a heavy metal or the like is gettered to the heavily doped B (boron) and becomes a center of generation and recombination, which causes an image defect. It is a cause.

【0007】図5はピニングフォトダイオード型固体撮
像装置の画素構造を示す断面図である。この装置は、図
3の固体撮像装置の受光部2上に、第1の絶縁膜5を介
して、光を透過する電極12(以下透明電極と記す)を
形成したものである。透明電極12に負のバイアスを印
加させると、Si基板1や素子分離部4からの正孔が表
面に集結して正孔蓄積状態になることによって、表面に
正孔蓄積層10を形成し、Si基板1と第1の絶縁膜5
との界面に空乏層が形成するのを防止できるというもの
である。
FIG. 5 is a sectional view showing a pixel structure of a pinning photodiode type solid-state image pickup device. In this device, an electrode 12 (hereinafter, referred to as a transparent electrode) that transmits light is formed on the light receiving portion 2 of the solid-state imaging device of FIG. 3 via the first insulating film 5. When a negative bias is applied to the transparent electrode 12, holes from the Si substrate 1 and the element isolation portion 4 are collected on the surface to be in a hole accumulation state, so that the hole accumulation layer 10 is formed on the surface, Si substrate 1 and first insulating film 5
It is possible to prevent the formation of a depletion layer at the interface with.

【0008】この透明電極12は、例えばスパッタ法に
よって形成されたインジウムの酸化物とスズの酸化物の
化合物とからなる。この方法では、アクセプタを受光部
2表面に浅く注入する必要が無いので白傷画像欠陥の発
生は防止できるが、一方で製造歩留まりの低下という問
題があった。つまりスパッタ法で形成される透明電極1
2は被膜形状が良くないので、画素面積が縮小して受光
部のアスペクト比が増大したときに透明電極12が段切
れしてしまうからである。
The transparent electrode 12 is made of, for example, a compound of indium oxide and tin oxide formed by a sputtering method. In this method, it is not necessary to shallowly inject the acceptor into the surface of the light receiving portion 2, so that the occurrence of a white defect image defect can be prevented, but on the other hand, there is a problem that the manufacturing yield is lowered. That is, the transparent electrode 1 formed by the sputtering method
2 is not good in the shape of the coating, and the transparent electrode 12 is cut off when the pixel area is reduced and the aspect ratio of the light receiving portion is increased.

【0009】また、スパッタ法に比較して被膜形状の良
好な気相成長法(以下CVD法と記す)で多結晶シリコ
ンを透明電極12として形成する方法があるが、入射光
が透明電極12で吸収されてしまい、短波長側(青色
側)で感度が劣化するという問題があった。
Further, there is a method of forming polycrystalline silicon as the transparent electrode 12 by a vapor phase growth method (hereinafter referred to as a CVD method) having a film shape better than that of the sputtering method. There is a problem in that the sensitivity is absorbed and the sensitivity is deteriorated on the short wavelength side (blue side).

【0010】[0010]

【発明が解決しようとする課題】上記したように、従来
の固体撮像装置には、受光部と絶縁層との界面に空乏層
が発生するために、リーク電流が発生し、これが信号電
荷に加算されて固定パターン雑音が生じるという問題が
あった。また、固定パターンを低減するために透明電極
を形成する方法では、製造歩留まりが低かったり、ポリ
Siを透明電極として形成する方法では光感度が劣化す
るという問題があった。
As described above, in the conventional solid-state image pickup device, a depletion layer is generated at the interface between the light receiving portion and the insulating layer, so that a leak current is generated and this is added to the signal charge. There was a problem in that fixed pattern noise was generated. Further, the method of forming the transparent electrode for reducing the fixed pattern has a problem that the manufacturing yield is low, and the method of forming poly-Si as the transparent electrode has a problem that the photosensitivity is deteriorated.

【0011】本発明の目的は、光感度の劣化や製造歩留
まりの低下を招くことなく固定パターン雑音を低減する
ことのできる固体撮像装置およびその製造方法を提供す
ることにある。
An object of the present invention is to provide a solid-state image pickup device capable of reducing fixed pattern noise without deteriorating the photosensitivity and lowering the manufacturing yield, and a manufacturing method thereof.

【0012】[0012]

【課題を解決するための手段】上記課題を解決し目的を
達成するために本発明の固体撮像装置およびその製造方
法は、以下のごとく構成されている。 (1)光信号を電気信号に変換する複数の受光部と、こ
れらの受光部で得られた電気信号を外部に出力する手段
と、前記受光部上に絶縁膜を介して形成されたアモルフ
ァスシリコン系の薄膜からなる光透過電極とを具備す
る。 (2)半導体基板上に形成された複数の受光部と、これ
らの受光部に隣接して設けられ、前記受光部で得られた
信号電荷を転送する信号電荷転送部と、前記信号電荷転
送部上に形成された導電性の遮光膜と、前記受光部上に
絶縁膜を介して形成され、かつ前記遮光膜に直接接続さ
れたアモルファスシリコン系の薄膜からなる光透過電極
とを具備する。 (3)半導体基板上に2次元配置さた受光部と、これら
の受光部に隣接して設けられ、前記受光部で得られた信
号電荷を垂直方向に転送する複数の垂直CCDと、前記
垂直CCDの端部と接続され、前記信号電荷を水平方向
に転送する水平CCDと、前記受光部を除く領域上に形
成された導電性の遮光膜と、前記受光部上に絶縁膜を介
して形成され、かつ前記遮光膜に直接接続されたアモル
ファスシリコン系の薄膜からなる光透過電極とを具備す
る。 (4)半導体基板上に複数の受光部および前記受光部で
得られた信号電荷を転送する信号電荷転送部を形成する
工程と、前記信号電荷転送部上に導電性の遮光膜を形成
する工程と、前記受光部上に絶縁膜を介し、かつ前記遮
光膜上に直接、CVD法によってアモルファスシリコン
系の薄膜からなる光透過電極を形成する工程とを含む。 (5)半導体基板上に形成された複数の受光部と、前記
受光部で得られた信号電荷を外部に取り出す前記受光部
を選択する手段と、前記受光部以外に光信号が入射する
のを防ぐ導電性の遮光膜と、前記受光部上に絶縁膜を介
して形成され、かつ前記遮光膜に電気的に直接接続され
たモルファスシリコン系の薄膜からなる光透過電極とを
具備する。 (6)光信号を電気信号に変換する受光部を形成する工
程と、前記受光部に絶縁膜を形成する工程と、前記電気
信号を取り出す前記受光部を選択する手段を形成する工
程と、受光部以外に光信号が入射するのを防ぐ導体から
なる遮光膜を形成する工程と、前記受光部上に前記絶縁
体を介し、かつ前記遮光膜に直接、CVD方によってア
モルファスシリコン系の薄膜からなる光透過電極を形成
する工程とを含む。 (7)上記(1)、(2)、(3)、(5)に記載の固
体撮像装置において、前記光透過電極に負のバイアス電
圧をかける事を特徴とする。 (8)上記(1)、(2)、(3)、(5)に記載の固
体撮像装置において、前記光透過電極が例えばアモルフ
ァスシリコン、アモルファスシリコンカーバイト又はア
モルファスシリコンナイトライドから構成されている。
In order to solve the above problems and achieve the object, a solid-state image pickup device and a method of manufacturing the same according to the present invention are configured as follows. (1) A plurality of light receiving portions for converting an optical signal into an electric signal, means for outputting the electric signals obtained by these light receiving portions to the outside, and amorphous silicon formed on the light receiving portion via an insulating film. And a light-transmitting electrode formed of a thin film of the system. (2) A plurality of light receiving portions formed on a semiconductor substrate, a signal charge transfer portion that is provided adjacent to these light receiving portions and transfers the signal charges obtained by the light receiving portions, and the signal charge transfer portion. It comprises a conductive light-shielding film formed above, and a light-transmitting electrode formed of an amorphous silicon thin film formed on the light-receiving portion via an insulating film and directly connected to the light-shielding film. (3) Light-receiving portions arranged two-dimensionally on a semiconductor substrate, a plurality of vertical CCDs provided adjacent to these light-receiving portions and vertically transferring signal charges obtained by the light-receiving portions, and the vertical CCDs. A horizontal CCD connected to the end of the CCD to transfer the signal charges in the horizontal direction, a conductive light-shielding film formed on a region excluding the light receiving portion, and an insulating film formed on the light receiving portion via an insulating film. And a light transmitting electrode formed of an amorphous silicon thin film directly connected to the light shielding film. (4) A step of forming a plurality of light receiving parts and a signal charge transfer part for transferring the signal charges obtained by the light receiving parts on the semiconductor substrate, and a step of forming a conductive light-shielding film on the signal charge transfer parts. And a step of forming a light-transmitting electrode made of an amorphous silicon-based thin film by a CVD method directly on the light-receiving portion via an insulating film and on the light-shielding film. (5) A plurality of light receiving portions formed on the semiconductor substrate, a means for selecting the light receiving portions for taking out the signal charges obtained by the light receiving portions to the outside, and an optical signal incident on the light receiving portions other than the light receiving portions. A conductive light-shielding film that prevents the light-shielding film and a light-transmitting electrode that is formed on the light-receiving portion via an insulating film and is made of a morphous silicon-based thin film that is electrically connected directly to the light-shielding film are provided. (6) forming a light receiving portion for converting an optical signal into an electric signal; forming an insulating film on the light receiving portion; forming a means for selecting the light receiving portion for taking out the electric signal; Forming a light-shielding film made of a conductor for preventing an optical signal from being incident on portions other than the light-receiving part, and comprising an amorphous silicon-based thin film on the light-receiving part via the insulator and directly on the light-shielding film by a CVD method. Forming a light transmitting electrode. (7) In the solid-state imaging device described in (1), (2), (3), and (5) above, a negative bias voltage is applied to the light transmitting electrode. (8) In the solid-state imaging device according to (1), (2), (3), or (5), the light transmissive electrode is made of, for example, amorphous silicon, amorphous silicon carbide, or amorphous silicon nitride. .

【0013】[0013]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1実施形態)図1は本発明の第1実施形態に係わる
固体撮像装置の画素構造を示す断面図である。図2は本
発明の第1実施形態に係わる固体撮像装置の画素配列を
示す平面図である。図1あるいは図2において、p型の
Si基板1の表面にn型の受光部2が2次元配置され、
受光部2に隣接して複数本のn型の信号電荷転送チャネ
ル3が形成されている。さらにSi基板1の表面層には
+ 型の素子分離部4が形成されている。信号電荷転送
チャネル3の上に第1の絶縁膜5が積層され、その第1
の絶縁膜5の上部に信号電荷転送電極6が形成されてい
る。ここで、信号電荷転送チャネル3と信号電荷転送電
極6とが垂直CCDを構成する。また、信号電荷転送電
極6の一部が受光部2の信号電荷を転送チャネル3へと
読み出す読みだしゲートを兼ねている。なお信号電荷転
送電極6は2層のポリSi膜から構成されるが、図2に
おいては省略して1層のみを図示している。
(First Embodiment) FIG. 1 is a sectional view showing a pixel structure of a solid-state imaging device according to the first embodiment of the present invention. FIG. 2 is a plan view showing a pixel array of the solid-state imaging device according to the first embodiment of the present invention. 1 or 2, an n-type light receiving portion 2 is two-dimensionally arranged on the surface of a p-type Si substrate 1.
A plurality of n-type signal charge transfer channels 3 are formed adjacent to the light receiving section 2. Further, a p + type element isolation portion 4 is formed on the surface layer of the Si substrate 1. A first insulating film 5 is stacked on the signal charge transfer channel 3 and
The signal charge transfer electrode 6 is formed on the insulating film 5 of FIG. Here, the signal charge transfer channel 3 and the signal charge transfer electrode 6 form a vertical CCD. Further, a part of the signal charge transfer electrode 6 also serves as a read gate for reading out the signal charge of the light receiving portion 2 to the transfer channel 3. Although the signal charge transfer electrode 6 is composed of two layers of poly-Si film, it is omitted in FIG. 2 and only one layer is shown.

【0014】信号電荷転送電極6は第2の絶縁体7で覆
われ、さらに遮光膜8で覆われている。遮光膜8の材料
として例えばアルミニウムをもちい、膜厚は例えば40
0nm〜1μmである。遮光膜8の材料としてはアルミニ
ウムに限らず、例えばモリブデン、タングステンなどで
も良く、また、これらのシリサイド化合物でも良い。
The signal charge transfer electrode 6 is covered with a second insulator 7 and further covered with a light shielding film 8. Aluminum is used as the material of the light-shielding film 8, and the film thickness is, for example, 40.
It is 0 nm to 1 μm. The material of the light-shielding film 8 is not limited to aluminum, but may be molybdenum, tungsten, or the like, or a silicide compound of these.

【0015】本実施形態ではp型のSi基板1にn型の
受光部2や信号電荷転送チャネル3を形成しているが、
n型のSi基板にpウェルを形成し、このpウエルに受
光部2や信号電荷転送チャネル3を形成しても良い。さ
らにn型基板上にp型の受光部2や信号電荷転送チャネ
ル3を形成して、信号電荷として電子ではなく正孔を転
送しても良い。
In this embodiment, the n-type light receiving portion 2 and the signal charge transfer channel 3 are formed on the p-type Si substrate 1, but
It is also possible to form a p-well on an n-type Si substrate and form the light receiving portion 2 and the signal charge transfer channel 3 in this p-well. Further, the p-type light receiving portion 2 and the signal charge transfer channel 3 may be formed on the n-type substrate to transfer holes as signal charges instead of electrons.

【0016】ここまでの構成は、従来と同様であるが本
実施形態ではさらに次のような構成を付加している。即
ち、受光部2の上にある第1の絶縁膜5および遮光膜8
上に、アモルファスシリコン系の薄膜、例えばアモルフ
ァスシリコンカーバイトから構成される光透過電極9が
形成されている。
The structure up to this point is the same as the conventional one, but in the present embodiment, the following structure is further added. That is, the first insulating film 5 and the light shielding film 8 on the light receiving portion 2
A light-transmitting electrode 9 composed of an amorphous silicon-based thin film, for example, amorphous silicon carbide is formed on the upper surface.

【0017】上記のように構成された固体撮像装置にお
いて、光透過電極9および第1の絶縁膜5を経由して受
光部2に入射した光は、受光部2において信号電荷(こ
の場合は電子)に変換されて一定期間蓄積される。読み
だしゲートを兼ねた信号電荷転送電極6に読みだしパル
スを印加することにより受光部2に蓄積された電子は垂
直CCDへと読み出され、さらに図示されていない水平
CCDと出力アンプを経由してビデオ信号として外部へ
と取り出される。
In the solid-state image pickup device configured as described above, the light incident on the light receiving section 2 via the light transmitting electrode 9 and the first insulating film 5 receives the signal charge (electron in this case) in the light receiving section 2. ) And is accumulated for a certain period. By applying a read pulse to the signal charge transfer electrode 6 which also serves as a read gate, the electrons accumulated in the light receiving portion 2 are read out to the vertical CCD, and further passed through a horizontal CCD and an output amplifier (not shown). Are taken out as a video signal to the outside.

【0018】動作中、光透過電極9に負の電荷を印加す
ることで、受光部2の表面に正孔蓄積層10が形成され
る。正孔蓄積層10のために、Si基板1と第1の絶縁
膜5との界面は空乏化しない。したがって、蓄積期間内
でリーク電流が信号に加算されることによる固定パター
ン雑音の発生を抑止することができる。
During operation, by applying a negative charge to the light transmitting electrode 9, the hole storage layer 10 is formed on the surface of the light receiving portion 2. Due to the hole storage layer 10, the interface between the Si substrate 1 and the first insulating film 5 is not depleted. Therefore, it is possible to suppress the occurrence of fixed pattern noise due to the leak current being added to the signal within the accumulation period.

【0019】このように本実施形態によれば、アモルフ
ァスシリコン系の薄膜を光透過電極として採用すること
によって、バンドギャップを広く設定することが可能と
なる。そうすると遮断周波数(光が透過できる周波数限
界)を低く設定できるので、短波長側での感度劣化がな
い。光透過電極のバンドギャップを広くした場合、光透
過電極の抵抗が増大するが、画素ごとに導体からなる遮
光膜で裏打ちしているので、画素ごとに十分電圧を印加
することができ、受光部表面を十分に正孔蓄積状態にで
きる。そしてこの結果固定パターン雑音の発生を防止す
ることができる。
As described above, according to the present embodiment, it is possible to set a wide band gap by using the amorphous silicon type thin film as the light transmitting electrode. Then, the cutoff frequency (frequency limit at which light can be transmitted) can be set low, so that there is no sensitivity deterioration on the short wavelength side. When the band gap of the light transmitting electrode is widened, the resistance of the light transmitting electrode increases, but since it is lined with a light shielding film made of a conductor for each pixel, a sufficient voltage can be applied to each pixel and the light receiving unit The surface can be fully brought into a hole accumulation state. As a result, it is possible to prevent the generation of fixed pattern noise.

【0020】本実施形態によれば、受光部表面を正孔蓄
積状態にピニングさせる光透過電極をCVD法により形
成するため受光部において段切れを防止することができ
る。さらに、バンドギャップを任意に設定することが可
能なので短波長側の光吸収も無視することができる。
According to this embodiment, since the light transmitting electrode for pinning the surface of the light receiving portion to the hole accumulating state is formed by the CVD method, it is possible to prevent disconnection in the light receiving portion. Further, since the band gap can be set arbitrarily, the light absorption on the short wavelength side can be ignored.

【0021】(第2実施形態)光透過電極をCVD法に
よって形成する固体撮像装置の製造方法について説明す
る。
(Second Embodiment) A method of manufacturing a solid-state image pickup device in which a light transmitting electrode is formed by a CVD method will be described.

【0022】本実施形態の固体撮像装置に光透過電極を
形成する前の構成は図3に示した従来の固体撮像装置の
構成と同一である。材料ガスに紫外線を照射して、材料
ガスを分解して成膜する光CVD法によって、i型アモ
ルファスシリコンカーバイト(i型a-SiC )からなる光
透過電極9の形成について説明する。
The structure before the light transmitting electrode is formed in the solid-state imaging device of this embodiment is the same as the structure of the conventional solid-state imaging device shown in FIG. The formation of the light transmissive electrode 9 made of i-type amorphous silicon carbide (i-type a-SiC) by the photo-CVD method of irradiating the material gas with ultraviolet rays to decompose the material gas to form a film will be described.

【0023】成膜条件としては、例えばシラン(SiH
4 )やアセチレン(C22 )を、キャリアガスとして
ヘリウム(He)を各々10sccm、3.6sccm、100sc
cmの流量で水銀(Hg)蒸気と混合させて成膜室に導入
し、圧力を0.1Torrに設定する。基板温度を例えば2
00度に加熱し、励起光として波長185nm、254nm
の紫外線を基板に照射することで、光透過電極9である
アモルファスシリコンカーバイト膜を形成することがで
きる。このときのバンドギャップは1.93eV、遮断周
波数は約500nmである。そして暗導電率σは、 σ=1×1013Ωcm-1 となり、非常に高抵抗の(光吸収の少ない)光透過電極
9が得られる。
The film forming conditions are, for example, silane (SiH
4 ) or acetylene (C 2 H 2 ) and helium (He) as carrier gas at 10 sccm, 3.6 sccm, and 100 sc, respectively.
It is mixed with mercury (Hg) vapor at a flow rate of cm and introduced into the film forming chamber, and the pressure is set to 0.1 Torr. Substrate temperature is, for example, 2
It is heated to 00 degrees and the wavelength of excitation light is 185nm and 254nm.
By irradiating the substrate with the ultraviolet rays of, the amorphous silicon carbide film which is the light transmitting electrode 9 can be formed. At this time, the band gap is 1.93 eV and the cutoff frequency is about 500 nm. Then, the dark conductivity σ becomes σ = 1 × 10 13 Ωcm −1 , and the light transmission electrode 9 having a very high resistance (light absorption is small) is obtained.

【0024】感度の劣化を防ぐには、短波長側での光吸
収は90%以上であることが望ましい。光透過電極とし
てアモルファスシリコンを使用した場合、材料ガスの流
量を変化させることにより、バンドギャップ2.3eV、
波長450nmでの透過率96.6%という非常に望まし
い結果が得られる。
In order to prevent deterioration of sensitivity, it is desirable that the light absorption on the short wavelength side is 90% or more. When amorphous silicon is used as the light transmitting electrode, the band gap is changed to 2.3 eV by changing the flow rate of the material gas.
The highly desirable result of 96.6% transmission at a wavelength of 450 nm is obtained.

【0025】(第3実施形態)材料ガスに高周波電力を
印加して、材料ガスを分解して成膜するプラズマCVD
法によって、アモルファスシリコンナイトライド(a-Si
N:H)からなる光透過電極9の形成について説明する。ア
モルファスシリコンナイトライド膜の形成には、原料ガ
スとしてシラン(SiH4 )とアンモニア(NH3 )と水素
(H2 )の混合ガスを用いる。その混合ガスを成膜室内
に投入し、基板を所定の温度に加熱した状態で高周波電
力を(例えば13.56MHz)を印加する。そうすると
発生したプラズマにより、シラン、アンモニア、水素の
混合ガスを分解し、アモルファスシリコンナイトライド
からなる光透過電極8を形成する。ここで、これらの混
合ガスの混合比を適宜調整することにより、所望のアモ
ルファスシリコンナイトライド膜を得る。
(Third Embodiment) Plasma CVD in which high-frequency power is applied to a material gas to decompose the material gas to form a film.
Amorphous silicon nitride (a-Si
The formation of the light transmissive electrode 9 made of N: H) will be described. In forming the amorphous silicon nitride film, a mixed gas of silane (SiH 4 ), ammonia (NH 3 ) and hydrogen (H 2 ) is used as a raw material gas. The mixed gas is introduced into the film forming chamber, and high frequency power (for example, 13.56 MHz) is applied while the substrate is heated to a predetermined temperature. The plasma thus generated decomposes the mixed gas of silane, ammonia, and hydrogen to form the light transmitting electrode 8 made of amorphous silicon nitride. Here, a desired amorphous silicon nitride film is obtained by appropriately adjusting the mixing ratio of these mixed gases.

【0026】本実施形態によれば、第2実施形態と同様
の効果が得られる。 (変形例)光透過電極はアモルファスシリコン、アモル
ファスシリコンカーバイト、アモルファスシリコンナイ
トライドに限らず、アモルファスシリコン系の薄膜を用
いることができる。
According to this embodiment, the same effect as that of the second embodiment can be obtained. (Modification) The light transmitting electrode is not limited to amorphous silicon, amorphous silicon carbide, and amorphous silicon nitride, and an amorphous silicon-based thin film can be used.

【0027】本発明の受光部上に絶縁膜を介して光透過
電極を形成するという構成は、CCDを用いた固体撮像
装置に限らず、MOS型固体撮像装置などにも適用する
ことができる。その他本発明の要旨を逸脱しない範囲
で、種々変形して実施することが可能である。
The structure of the present invention in which the light transmitting electrode is formed on the light receiving portion via the insulating film can be applied not only to the solid-state image pickup device using a CCD but also to a MOS type solid-state image pickup device and the like. Other various modifications may be made without departing from the scope of the present invention.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、固
定パターン雑音の発生を防止するために受光部上に絶縁
膜を介して形成する光透過電極をアモルファスシリコン
系の薄膜とすることで、光透過電極で可視光領域の吸収
が無いために、感度の劣化を防止することができる。
As described above, according to the present invention, the light transmitting electrode formed on the light receiving portion via the insulating film in order to prevent the generation of fixed pattern noise is an amorphous silicon thin film. Since the light-transmitting electrode does not absorb visible light, it is possible to prevent deterioration of sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態に係わる固体撮像装置の
画素構造を示す断面図。
FIG. 1 is a sectional view showing a pixel structure of a solid-state imaging device according to a first embodiment of the present invention.

【図2】本発明の第1実施形態に係わる固体撮像装置の
画素配列を示す平面図。
FIG. 2 is a plan view showing a pixel array of the solid-state imaging device according to the first embodiment of the invention.

【図3】従来の固体撮像装置の画素構造を示す断面図。FIG. 3 is a sectional view showing a pixel structure of a conventional solid-state imaging device.

【図4】従来の埋め込みフォトダイオード型固体撮像装
置の画素構造を示す断面図。
FIG. 4 is a sectional view showing a pixel structure of a conventional embedded photodiode type solid-state imaging device.

【図5】従来のピニングフォトダイオード型固体撮像装
置の画素構造を示す断面図。
FIG. 5 is a cross-sectional view showing a pixel structure of a conventional pinning photodiode type solid-state imaging device.

【符号の説明】[Explanation of symbols]

1…Si基板 2…受光部 3…信号電荷転送チャネル 4…素子分離部 5…第1の絶縁膜 6…信号電荷転送電極 7…第2の絶縁膜 8…遮光膜 9…光透過電極 10…正孔蓄積層 11…p+ 層 12…透明電極DESCRIPTION OF SYMBOLS 1 ... Si substrate 2 ... Light receiving part 3 ... Signal charge transfer channel 4 ... Element isolation part 5 ... 1st insulating film 6 ... Signal charge transfer electrode 7 ... 2nd insulating film 8 ... Light-shielding film 9 ... Light transmission electrode 10 ... Hole accumulation layer 11 ... P + layer 12 ... Transparent electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に2次元配置さた受光部と、
これらの受光部に隣接して設けられ、前記受光部で得ら
れた信号電荷を垂直方向に転送する複数の垂直CCD
と、前記垂直CCDの端部と接続され、前記信号電荷を
水平方向に転送する水平CCDと、前記受光部を除く領
域上に形成された導電性の遮光膜と、前記受光部上に絶
縁膜を介して形成され、かつ前記遮光膜に直接接続され
たアモルファスシリコン系の薄膜からなる光透過電極と
を具備してなることを特徴とする固体撮像装置。
1. A light receiving section which is two-dimensionally arranged on a semiconductor substrate,
A plurality of vertical CCDs provided adjacent to these light receiving portions and vertically transferring the signal charges obtained by the light receiving portions.
A horizontal CCD connected to the end of the vertical CCD to transfer the signal charges in the horizontal direction, a conductive light-shielding film formed on a region excluding the light receiving portion, and an insulating film on the light receiving portion. And a light transmitting electrode formed of an amorphous silicon thin film directly connected to the light shielding film.
【請求項2】半導体基板上に複数の受光部、およびこれ
らの受光部で得られた信号電荷を転送する信号電荷転送
部を形成する工程と、前記信号電荷転送部上に導電性の
遮光膜を形成する工程と、前記受光部上に絶縁膜を介
し、かつ前記遮光膜上に直接、CVD法によってアモル
ファスシリコン系の薄膜からなる光透過電極を形成する
工程とを含むことを特徴とする固体撮像装置の製造方
法。
2. A step of forming a plurality of light receiving portions on a semiconductor substrate, and a signal charge transfer portion for transferring signal charges obtained by these light receiving portions, and a conductive light-shielding film on the signal charge transfer portion. And a step of forming a light-transmitting electrode made of an amorphous silicon-based thin film by a CVD method directly on the light-shielding film via an insulating film on the light-receiving portion. Manufacturing method of imaging device.
JP7234292A 1995-09-12 1995-09-12 Solid state image sensing device and its manufacture Pending JPH0982933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7234292A JPH0982933A (en) 1995-09-12 1995-09-12 Solid state image sensing device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7234292A JPH0982933A (en) 1995-09-12 1995-09-12 Solid state image sensing device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0982933A true JPH0982933A (en) 1997-03-28

Family

ID=16968709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7234292A Pending JPH0982933A (en) 1995-09-12 1995-09-12 Solid state image sensing device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0982933A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809359B2 (en) 2001-05-16 2004-10-26 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device, method for manufacturing the same, and method for driving the same
WO2006046385A1 (en) * 2004-10-29 2006-05-04 Nikon Corporation Solid-state image pickup device
JP2006261633A (en) * 2005-02-18 2006-09-28 Tokyo Electron Ltd Treatment method of substrate, manufacturing method of solid image pickup
JP2008294176A (en) * 2007-05-24 2008-12-04 Sony Corp Solid imaging device and camera
US8415725B2 (en) 2007-05-24 2013-04-09 Sony Corporation Solid-state imaging device and camera

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809359B2 (en) 2001-05-16 2004-10-26 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device, method for manufacturing the same, and method for driving the same
US7354791B2 (en) 2001-05-16 2008-04-08 Matsushita Electric Industrial Co., Ltd. Solid-state imaging device, method for manufacturing the same, and method for driving the same
WO2006046385A1 (en) * 2004-10-29 2006-05-04 Nikon Corporation Solid-state image pickup device
JP2006261633A (en) * 2005-02-18 2006-09-28 Tokyo Electron Ltd Treatment method of substrate, manufacturing method of solid image pickup
JP2008294176A (en) * 2007-05-24 2008-12-04 Sony Corp Solid imaging device and camera
US8415725B2 (en) 2007-05-24 2013-04-09 Sony Corporation Solid-state imaging device and camera
US8674417B2 (en) 2007-05-24 2014-03-18 Sony Corporation Solid-state imaging device and camera
TWI479887B (en) * 2007-05-24 2015-04-01 Sony Corp Back illuminated solid-state imaging device and camera

Similar Documents

Publication Publication Date Title
US8283710B2 (en) Low dark current image sensors with epitaxial SiC and/or carbonated channels for array transistors
US9000493B2 (en) Solid-state imaging device, method for producing same, and camera
US5677201A (en) Laminated solid-state image pickup device and a method for manufacturing the same
CN101814516B (en) Solid-state imaging device, manufacturing method thereof, and imaging apparatus
US7335958B2 (en) Tailoring gate work-function in image sensors
JPH05198787A (en) Solid-state image pickup device and manufacture thereof
KR20080094772A (en) Transparent-channel thin-film transistor-based pixels for high-performance image sensors
KR101002122B1 (en) Image Sensor and Method for Manufacturing thereof
JPH0982933A (en) Solid state image sensing device and its manufacture
JPS6292365A (en) Semiconductor device and manufacture thereof
KR100922929B1 (en) Image Sensor and Method for Manufacturing thereof
JP2959460B2 (en) Solid-state imaging device
KR20070107137A (en) Method of fabrication an image sensor device with reduced pixel cross-talk
US6936806B1 (en) Photoelectric conversion device and solid-state image sensing device using the same
KR100997328B1 (en) Image Sensor and Method for Manufacturing thereof
KR100748318B1 (en) Image sensor and method for fabricating the same
US20090166789A1 (en) Image sensor and method for manufacturing the same
JPH07335936A (en) Optoelectric transducer
KR20070000817A (en) Cmos image sensor, and method for fabricating the same
KR101045744B1 (en) Method for Manufacturing of Image Sensor
JP3233401B2 (en) Solid-state imaging device
JPH04261070A (en) Photoelectric converter
JP3020563B2 (en) Solid-state imaging device
KR101016514B1 (en) Image Sensor and Method for Manufacturing thereof
KR101033397B1 (en) Method for Manufacturing of Image Sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees