JPH0979865A - Magnetic detecting sensor - Google Patents

Magnetic detecting sensor

Info

Publication number
JPH0979865A
JPH0979865A JP7233009A JP23300995A JPH0979865A JP H0979865 A JPH0979865 A JP H0979865A JP 7233009 A JP7233009 A JP 7233009A JP 23300995 A JP23300995 A JP 23300995A JP H0979865 A JPH0979865 A JP H0979865A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
permanent magnet
lead frame
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7233009A
Other languages
Japanese (ja)
Other versions
JP3603406B2 (en
Inventor
Yasuaki Makino
牧野  泰明
Ichiro Izawa
一朗 伊澤
Susumu Azeyanagi
進 畔柳
Yoshihiro Kato
良浩 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP23300995A priority Critical patent/JP3603406B2/en
Publication of JPH0979865A publication Critical patent/JPH0979865A/en
Application granted granted Critical
Publication of JP3603406B2 publication Critical patent/JP3603406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To miniaturize a magnetic detecting sensor and easily assemble it. SOLUTION: A magnetic detecting device is constituted of a gear type magnetic substance rotor 1 and a magnetic detecting sensor 2. The magnetic detecting sensor 2 is mounted with a sensor element 3 containing an MRE on a lead frame 5, and the sensor element 3 and the lead frame 5 are molded with a molding material 7 made of an insulating resin material. A plane square recess 8 is formed on a mold IC4, and a permanent magnet 10 for generating the bias magnetic field for the magnetic substance rotor 1 is fixed to the recess 8 by an adhesive 9. A neodymium sintered magnet relatively small and excellent in the magnetic characteristic is used for the permanent magnet 10. The recess 8 is formed at the position where the optimum magnetic field is generated by the permanent magnet 10 for the magnetic substance rotor 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、被検出対象の運
動を磁気抵抗素子(以下、MREという)による抵抗変
化により検出するようにした磁気検出センサに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic detection sensor for detecting movement of an object to be detected by a resistance change caused by a magnetoresistive element (hereinafter referred to as MRE).

【0002】[0002]

【従来の技術】図11は従来例としての磁気検出装置を
示す斜視図である。図11において、歯車状の磁性体ロ
ータ31から一定間隔をおいた所定位置には磁気検出セ
ンサ32が対向配置されている。磁気検出センサ32
は、MRE(ICチップ)を内部にモールドしたモール
ドIC(モールドパッケージ)33を有し、そのモール
ドIC33は、円柱状のバイアス磁石34に形成された
貫通孔35内に配置されている。かかる場合、磁性体ロ
ータ31の回転に伴いバイアス磁石34による磁気ベク
トルの向きが変わり、それによりモールドIC33内の
MREの抵抗値が変化する。そして、この抵抗値変化に
より磁性体ロータ31の回転状態が検出される。
2. Description of the Related Art FIG. 11 is a perspective view showing a conventional magnetic detection device. In FIG. 11, a magnetic detection sensor 32 is arranged opposite to a predetermined position spaced from the gear-shaped magnetic rotor 31 by a predetermined distance. Magnetic detection sensor 32
Has a mold IC (mold package) 33 in which an MRE (IC chip) is molded, and the mold IC 33 is arranged in a through hole 35 formed in a cylindrical bias magnet 34. In such a case, the direction of the magnetic vector by the bias magnet 34 changes with the rotation of the magnetic rotor 31, which changes the resistance value of the MRE in the mold IC 33. Then, the rotation state of the magnetic rotor 31 is detected by the change in the resistance value.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来技
術の場合、以下に示す問題を生ずる。つまり、上記構成
では、モールドIC33の周囲を完全に囲むようにバイ
アス磁石34が配設されるため、センサとして使用する
場合に大型化を招くという問題があった。また、モール
ドIC33とバイアス磁石34とを正確に位置決めしな
いと最適な検出結果が得られず、その組み付け作業時の
煩雑化を招くことがあった。
However, in the case of the above-mentioned conventional technique, the following problems occur. That is, in the above configuration, since the bias magnet 34 is arranged so as to completely surround the periphery of the mold IC 33, there is a problem that the size is increased when used as a sensor. Further, unless the mold IC 33 and the bias magnet 34 are accurately positioned, an optimum detection result cannot be obtained, which may lead to complication during the assembly work.

【0004】この発明は、上記問題に着目してなされた
ものであって、その目的とするところは、小型化を図り
つつ、組み付けを容易に行うことができる磁気検出セン
サを提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a magnetic detection sensor which can be easily assembled while being downsized. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、被検出対象の運動を抵抗
変化により検出する磁気抵抗素子をリードフレーム上に
設け、該磁気抵抗素子を前記リードフレームと共に絶縁
性樹脂材からなるモールドパッケージで封入した磁気検
出センサにおいて、前記モールドパッケージの外表面の
所定面をバイアス磁石の固着面とすると共に、この面に
形成した位置決め部を用いてバイアス磁石を配置したこ
とを要旨としている。
In order to achieve the above object, the invention according to claim 1 provides a magnetoresistive element for detecting a motion of an object to be detected by a resistance change on a lead frame, and the magnetoresistive element is provided. In a magnetic detection sensor in which an element is enclosed in a mold package made of an insulating resin material together with the lead frame, a predetermined surface of the outer surface of the mold package is used as a fixing surface of a bias magnet, and a positioning portion formed on this surface is used. The main point is to arrange a bias magnet.

【0006】請求項2に記載の発明は、被検出対象の運
動を抵抗変化により検出する磁気抵抗素子をリードフレ
ーム上に設け、該磁気抵抗素子を前記リードフレームと
共に絶縁性樹脂材からなるモールドパッケージで封入し
た磁気検出センサにおいて、前記リードフレーム上にバ
イアス磁石を載置し、該バイアス磁石をモールドパッケ
ージ内に封入したことを要旨としている。
According to a second aspect of the present invention, a magnetoresistive element for detecting the movement of the object to be detected by resistance change is provided on the lead frame, and the magnetoresistive element is made of an insulating resin material together with the lead frame. The gist of the magnetic detection sensor encapsulated in 1. is that a bias magnet is placed on the lead frame and the bias magnet is encapsulated in a mold package.

【0007】請求項3に記載の発明では、請求項1又は
2に記載の発明において、前記バイアス磁石を希土類磁
石により構成している。 (作用)請求項1に記載の構成によれば、バイアス磁石
をモールドパッケージの外表面の所定面に固着したた
め、モールドパッケージの周囲を円柱状のバイアス磁石
で囲って構成した従来例と比較して、大幅な小型化が可
能となる。また、バイアス磁石は、位置決め部を用いて
所定位置に固着されるため、組み付け時における作業が
容易となる。さらに、同磁石の位置ズレが防止され、バ
イアス磁石により得られる磁界の最適化が可能となる。
According to a third aspect of the invention, in the first or second aspect of the invention, the bias magnet is formed of a rare earth magnet. (Operation) According to the structure of claim 1, since the bias magnet is fixed to the predetermined surface of the outer surface of the mold package, compared with the conventional example in which the periphery of the mold package is surrounded by the cylindrical bias magnet. , It is possible to make a large size reduction. Further, since the bias magnet is fixed to the predetermined position by using the positioning portion, the work at the time of assembly becomes easy. Further, the displacement of the magnet is prevented, and the magnetic field obtained by the bias magnet can be optimized.

【0008】請求項2に記載の構成によれば、バイアス
磁石はモールドパッケージ内に封入されることで、所定
位置に位置決めされる。かかる場合、上記請求項1と同
様に、センサの小型化、組み付けの容易化、バイアス磁
界の最適化が実現できる。
According to the second aspect of the present invention, the bias magnet is enclosed in the mold package to be positioned at a predetermined position. In such a case, similarly to the above-mentioned claim 1, downsizing of the sensor, easy assembling, and optimization of the bias magnetic field can be realized.

【0009】請求項3に記載の構成によれば、例えばネ
オジウム(Nd)磁石等の希土類磁石を用いることで、
比較的小型であっても優れた磁気特性を発揮でき、セン
サのさらなる小型化に貢献できる。
According to the structure of claim 3, by using a rare earth magnet such as a neodymium (Nd) magnet,
Even if it is relatively small, it can exhibit excellent magnetic properties and contribute to further miniaturization of the sensor.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施形態)以下、この発明を具体化した第1の
実施形態を図面を用いて説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は、本実施形態における磁気検出装置
を示す断面図であり、図2は磁気検出装置の斜視図であ
る。図1,2において、磁気検出装置は、歯車状の磁性
体ロータ(被検出対象)1と磁気検出センサ2とから構
成されている。磁性体ロータ1は図示しない回転体に連
結され、磁気検出センサ2は磁性体ロータ1の図示右方
にて同ロータ1から一定間隔をおいて対向配置されてい
る。
FIG. 1 is a sectional view showing a magnetic detection device according to this embodiment, and FIG. 2 is a perspective view of the magnetic detection device. 1 and 2, the magnetic detection device includes a gear-shaped magnetic rotor (detection target) 1 and a magnetic detection sensor 2. The magnetic body rotor 1 is connected to a rotating body (not shown), and the magnetic detection sensor 2 is arranged on the right side of the magnetic body rotor 1 in the figure so as to face the rotor 1 at a constant interval.

【0012】磁気検出センサ2は、センサ素子(ICチ
ップ)3を内部にモールドしたモールドIC(モールド
パッケージ)4を備える。詳しくは、モールドIC4内
において、銅製のリードフレーム5には、MREを含む
センサ素子3がマウントされており、センサ素子3とリ
ードフレーム5とはボンディングワイヤ6にて接続され
ている。センサ素子3及びリードフレーム5は、絶縁性
の樹脂材(本実施形態では、エポキシ系樹脂)としての
モールド材7にてモールドされている。
The magnetic detection sensor 2 includes a molded IC (mold package) 4 having a sensor element (IC chip) 3 molded therein. Specifically, in the molded IC 4, a sensor element 3 including an MRE is mounted on a copper lead frame 5, and the sensor element 3 and the lead frame 5 are connected by a bonding wire 6. The sensor element 3 and the lead frame 5 are molded with a molding material 7 as an insulating resin material (epoxy resin in the present embodiment).

【0013】モールドIC4の図示上面には、位置決め
部としての平面四角形状の凹部8が形成されており、そ
の凹部8には、磁性体ロータ1に向けてバイアス磁界を
発生させるための永久磁石(バイアス磁石)10が接着
剤9により固定されている。モールドIC4の図示上面
はバイアス磁石の固着面に相当する。本実施形態では永
久磁石10として、希土類磁石であるネオジウム(N
d)の焼結磁石を用いており、同磁石は比較的小型で且
つ優れた磁気特性を有する。凹部8は、前記磁性体ロー
タ1に対して永久磁石10による最適な磁界が得られる
ような位置に形成されている。
On the upper surface of the mold IC 4 shown in the drawing, there is formed a flat rectangular recess 8 as a positioning portion. In the recess 8, a permanent magnet (for generating a bias magnetic field toward the magnetic rotor 1 ( A bias magnet) 10 is fixed by an adhesive 9. The illustrated upper surface of the mold IC 4 corresponds to the fixing surface of the bias magnet. In this embodiment, as the permanent magnet 10, neodymium (N) which is a rare earth magnet is used.
The sintered magnet of d) is used, and the magnet is relatively small and has excellent magnetic characteristics. The recess 8 is formed at a position where an optimum magnetic field of the permanent magnet 10 can be obtained with respect to the magnetic rotor 1.

【0014】また、図2において、「W1」,「L
1」,「W2」,「L2」,「T2」は、磁気検出セン
サ2の主要部(モールドIC4,永久磁石10)におけ
る寸法を示し、本実施形態では、W1=10mm,L1
=14mm,W2=4.5mm,L2=6.2mm,T
2=2mmとなっている。
Further, in FIG. 2, "W1", "L"
1 ”,“ W2 ”,“ L2 ”, and“ T2 ”represent dimensions in the main part (mold IC 4, permanent magnet 10) of the magnetic detection sensor 2, and in the present embodiment, W1 = 10 mm, L1.
= 14 mm, W2 = 4.5 mm, L2 = 6.2 mm, T
2 = 2 mm.

【0015】一方、図3に示すように、センサ素子3は
ICチップ内に2つのMRE11,12を備えており、
このMRE11,12は、永久磁石10の磁界方向と同
一平面内の磁界方向(図3でWで示す)に対しそれぞれ
プラス・マイナス45度の角度で一対配置されている。
On the other hand, as shown in FIG. 3, the sensor element 3 has two MREs 11 and 12 in the IC chip.
The MREs 11 and 12 are arranged in pairs at an angle of plus or minus 45 degrees with respect to the magnetic field direction (indicated by W in FIG. 3) in the same plane as the magnetic field direction of the permanent magnet 10.

【0016】ここで、磁気の検出原理を説明する。磁性
体ロータ1が回転すると、ロータ1〜MRE11,12
〜永久磁石10の磁気回路内にて、磁性体ロータ1の歯
(凸部)に引かれた磁気ベクトルが振れる。すると、図
4に示すように、この磁気ベクトルの方向変化を受けて
MRE11,12の抵抗値が変化する。このとき、一対
のMRE11,12の抵抗変化はそれぞれ逆相に働く。
この抵抗変化を同一チップ内に形成された処理回路13
(図3参照)が波形整形し、磁性体ロータ1の回転に応
じたパルス数(=歯数)を出力する。
Here, the principle of magnetism detection will be described. When the magnetic rotor 1 rotates, the rotors 1 to MRE 11 and 12
In the magnetic circuit of the permanent magnet 10, the magnetic vector drawn by the teeth (projections) of the magnetic rotor 1 fluctuates. Then, as shown in FIG. 4, the resistance values of the MREs 11 and 12 change in response to the change in the direction of the magnetic vector. At this time, the resistance changes of the pair of MREs 11 and 12 work in opposite phases.
This resistance change is processed by the processing circuit 13 formed in the same chip.
(See FIG. 3) waveform-shapes and outputs the number of pulses (= number of teeth) according to the rotation of the magnetic rotor 1.

【0017】また、MRE11,12が上記の如く配置
される場合、図5,6,7に示すように、MRE11,
12上にて受ける磁気ベクトルをBxとBy方向成分に
分けて考察する。なお、Bxは電流方向に平行な磁気ベ
クトルであり、Byは電流方向に垂直な磁気ベクトルで
ある。かかる場合、飽和領域における抵抗値をそれぞれ
Rx,Ryとすれば、図8中のMRE11,12の抵抗
値R1,R2は、次のようになる。なお、磁気ベクトル
(Bベクトル)の振れ角をδとする。
When the MREs 11 and 12 are arranged as described above, as shown in FIGS.
The magnetic vector received on 12 is divided into Bx and By direction components for consideration. Note that Bx is a magnetic vector parallel to the current direction, and By is a magnetic vector perpendicular to the current direction. In this case, assuming that the resistance values in the saturation region are Rx and Ry, respectively, the resistance values R1 and R2 of the MREs 11 and 12 in FIG. 8 are as follows. The deflection angle of the magnetic vector (B vector) is δ.

【0018】 R1=Rx・cos2 {(π/4)−δ} +Ry・sin2 {(π/4)−δ} =(Rx+Ry)/2+(Rx−Ry)/2・sin2δ R2=Rx・cos2 {(π/4)+δ} +Ry・sin2 {(π/4)+δ} =(Rx+Ry)/2−(Rx−Ry)/2・sin2δ 故に、抵抗値R1,R2の差ΔRは、 ΔR=R1−R2=(Rx−Ry)sin2δ となる。R1 = Rx · cos 2 {(π / 4) −δ} + Ry · sin 2 {(π / 4) −δ} = (Rx + Ry) / 2 + (Rx−Ry) / 2 · sin2δ R2 = Rx · cos 2 {(π / 4) + δ} + Ry · sin 2 {(π / 4) + δ} = (Rx + Ry) / 2- (Rx-Ry) / 2 · sin2δ Therefore, the difference ΔR between the resistance values R1 and R2 is ΔR = R1−R2 = (Rx−Ry) sin2δ.

【0019】ここで、磁気回路を考える場合、磁気ベク
トル(Bベクトル)の振れ角δを、−45°<δ<45
°の範囲内にて最大振れ角δmax をとるように設計をす
れば、MRE11,12の感度(抵抗変化率ΔR/R
(R=R1=R2)が向上する。
When considering a magnetic circuit, the deflection angle δ of the magnetic vector (B vector) is -45 ° <δ <45.
By designing the maximum deflection angle δmax within the range of °, the sensitivity of the MREs 11 and 12 (resistance change rate ΔR / R
(R = R1 = R2) is improved.

【0020】このように本実施形態では、磁性体ロータ
1に向けて永久磁石10(バイアス磁石)を設けると共
に、バイアス磁界とでなす角度が略45度となるように
MRE11,12を配置した。そして、磁性体ロータ1
の運動に対応したバイアス磁界の状態変化をMRE1
1,12の抵抗変化により検出するようにした。かかる
場合、MRE11,12の感度低下を極力抑えた上で出
力波形の波形割れが防止される。
As described above, in this embodiment, the permanent magnet 10 (bias magnet) is provided toward the magnetic rotor 1, and the MREs 11 and 12 are arranged so that the angle formed by the bias magnetic field is approximately 45 degrees. Then, the magnetic rotor 1
Change in the state of the bias magnetic field corresponding to the movement of the
It was made to detect by the resistance change of 1 and 12. In such a case, the deterioration of the sensitivity of the MREs 11 and 12 is suppressed as much as possible, and the waveform breakage of the output waveform is prevented.

【0021】そして、本実施形態によれば、以下に示す
特有の効果が得られる。つまり、本実施形態の磁気検出
センサ2では、永久磁石10をモールドIC4の一面に
載置した状態に構成したため、円環状の永久磁石を用い
た従来例(図11参照)に比較して、センサの小型化を
実現することができる。このとき、従来例では一般に永
久磁石としてフェライト磁石が用いられるが、本実施形
態ではネオジウム(Nd)磁石を用いたため、比較的小
型の磁石でも従来例と同等のバイアス磁界(200ガウ
ス以上)を得ることができる。
According to this embodiment, the following unique effects can be obtained. That is, in the magnetic detection sensor 2 of the present embodiment, the permanent magnet 10 is placed on one surface of the mold IC 4, so that the sensor is more sensitive than the conventional example (see FIG. 11) using the annular permanent magnet. It is possible to realize the miniaturization of. At this time, a ferrite magnet is generally used as a permanent magnet in the conventional example, but since a neodymium (Nd) magnet is used in the present embodiment, a relatively small magnet can obtain a bias magnetic field (200 gauss or more) equivalent to that in the conventional example. be able to.

【0022】また、モールドIC4に凹部8を形成し、
当該凹部8に永久磁石10を固着したため、永久磁石1
0の位置決めを容易に行うことができる(組み付け作業
が容易になる)。さらに、永久磁石10の位置ズレを解
消することができるため、同磁石10による安定したバ
イアス磁界を維持することができ、磁気検出センサ2と
磁性体ロータ1との間のエアギャップを縮小化して高い
検出感度を得ることも可能になる。
Further, a recess 8 is formed in the mold IC 4,
Since the permanent magnet 10 is fixed to the concave portion 8, the permanent magnet 1
The positioning of 0 can be performed easily (the assembling work becomes easy). Further, since the positional displacement of the permanent magnet 10 can be eliminated, a stable bias magnetic field by the magnet 10 can be maintained, and the air gap between the magnetic detection sensor 2 and the magnetic rotor 1 can be reduced. It is also possible to obtain high detection sensitivity.

【0023】(第2の実施形態)次に、第2の実施形態
の磁気検出センサ21について図9を用いて説明する。
なお、図9(a)は磁気検出センサ21の内部構造を側
面から見た図に相当し、図9(b)は上面から見た図に
相当する。
(Second Embodiment) Next, the magnetic sensor 21 of the second embodiment will be described with reference to FIG.
9A corresponds to a side view of the internal structure of the magnetic detection sensor 21, and FIG. 9B corresponds to a top view thereof.

【0024】図9において、磁気検出センサ21は、M
REを含むセンサ素子22を内部にモールドしたモール
ドIC23を備える。つまり、モールドIC23内にお
いて、銅製のリードフレーム24にはセンサ素子(MR
E)22がマウントされており、センサ素子22とリー
ドフレーム24とはボンディングワイヤ25にて接続さ
れている。
In FIG. 9, the magnetic detection sensor 21 is M
A mold IC 23 having a sensor element 22 including RE molded therein is provided. In other words, in the mold IC 23, the sensor element (MR
E) 22 is mounted, and the sensor element 22 and the lead frame 24 are connected by a bonding wire 25.

【0025】また、リードフレーム24において、MR
Eマウント面の裏面(図では上面)には、磁性体ロータ
(図示しない)に向けてバイアス磁界を発生させるため
の永久磁石26が固着されている。この永久磁石26と
しては、上記第1の実施形態と同様に、比較的小型で且
つ磁気特性に優れたネオジウム(Nd)の焼結磁石を用
いているのが好ましく、同磁石26の固着位置は、磁性
体ロータに対して最適な磁界が発生できるよう設定され
ている。
In the lead frame 24, the MR
A permanent magnet 26 for generating a bias magnetic field toward a magnetic rotor (not shown) is fixed to the back surface (upper surface in the figure) of the E mount surface. As in the first embodiment, it is preferable to use a neodymium (Nd) sintered magnet, which is relatively small and has excellent magnetic characteristics, as the permanent magnet 26, and the fixed position of the magnet 26 is fixed. , Is set so that an optimum magnetic field can be generated for the magnetic rotor.

【0026】また、リードフレーム24上には、前記セ
ンサ素子22や永久磁石26他に例えばチップコンデン
サ27がマウントされている。そして、センサ素子2
2、永久磁石26、チップコンデンサ27及びリードフ
レーム24は、絶縁性の樹脂材(本実施形態では、エポ
キシ系樹脂)としてのモールド材28にてモールドされ
ている。
A chip capacitor 27 is mounted on the lead frame 24 in addition to the sensor element 22 and the permanent magnet 26. And the sensor element 2
2, the permanent magnet 26, the chip capacitor 27, and the lead frame 24 are molded with a molding material 28 as an insulating resin material (epoxy resin in this embodiment).

【0027】なお、センサ素子22には、上記第1の実
施形態と同様に、永久磁石26が発生する磁気ベクトル
に対して45度傾けた一対のMREを有する磁気回路が
構成されている。
The sensor element 22 is formed with a magnetic circuit having a pair of MREs inclined by 45 degrees with respect to the magnetic vector generated by the permanent magnet 26, as in the first embodiment.

【0028】そして上記構成の磁気検出センサ21によ
れば、上記第1に実施形態と同様に、センサの小型化を
実現することができる。また、永久磁石26の組み付け
を容易に行うことができる。さらに、永久磁石26の位
置ズレを解消することができるため、同磁石26による
安定したバイアス磁界を維持することができ、磁気検出
センサ21と磁性体ロータとの間のエアギャップを縮小
化して高い検出感度を得ることも可能になる。
According to the magnetic sensor 21 having the above structure, the sensor can be miniaturized as in the first embodiment. Further, the permanent magnet 26 can be easily assembled. Further, since the positional deviation of the permanent magnet 26 can be eliminated, a stable bias magnetic field by the magnet 26 can be maintained, and the air gap between the magnetic detection sensor 21 and the magnetic rotor can be reduced to be high. It is also possible to obtain detection sensitivity.

【0029】なお本発明は、上記各実施形態の他に以下
の如く具体化することもできる。 (1)第1の実施形態(図1)の変形例として、磁気検
出センサ2を図10のように構成してもよい。つまり、
図10において、モールドIC4の図示上面には、位置
決め部としての断面矩形状の突部29が左右一対で設け
られており、その突部29の間に永久磁石10が固着さ
れている。図示はしないが、この突部29は永久磁石1
0の周囲を囲むように、四方に設けてもよい。また、突
部29の形状は断面三角状にする等、図示の形状に限定
されるものではない。
The present invention can be embodied as follows in addition to the above embodiments. (1) As a modification of the first embodiment (FIG. 1), the magnetic detection sensor 2 may be configured as shown in FIG. That is,
In FIG. 10, a pair of left and right protrusions 29 having a rectangular cross section are provided on the upper surface of the mold IC 4 as positioning portions, and the permanent magnet 10 is fixed between the protrusions 29. Although not shown, the protrusion 29 is formed by the permanent magnet 1
It may be provided in four directions so as to surround 0. Further, the shape of the protrusion 29 is not limited to the illustrated shape, such as a triangular cross section.

【0030】(2)上記第1の実施形態の他の形態とし
て、永久磁石10の底面(固着面)に突起(又は凹部)
を形成し、モールドIC4の固着面(図1の上面)には
前記永久磁石10の突起(又は凹部)に係合する形状の
位置決め部を形成するようにしてもよい。
(2) As another form of the first embodiment, a projection (or a recess) is formed on the bottom surface (fixed surface) of the permanent magnet 10.
It is also possible to form a positioning portion having a shape that engages with the protrusion (or recess) of the permanent magnet 10 on the fixing surface (the upper surface in FIG. 1) of the mold IC 4.

【0031】(3)上記各実施形態では、小型で且つ磁
気特性に優れた永久磁石としてネオジウム磁石を用いた
が、同様の性能を有する希土類−コバルト磁石等、他の
希土類磁石を用いてもよい。
(3) In each of the above-mentioned embodiments, the neodymium magnet is used as a permanent magnet having a small size and excellent magnetic characteristics. However, other rare earth magnets such as rare earth-cobalt magnets having similar performance may be used. .

【0032】(4)組み立て時のハンドリングを容易に
するため、磁石を着磁なしの状態でモ−ルドパッケージ
やリードフレームに組み付け、その後で磁化(着磁)す
るようにしてもよい。
(4) In order to facilitate handling at the time of assembly, the magnet may be assembled to the mold package or the lead frame without being magnetized and then magnetized (magnetized).

【0033】[0033]

【発明の効果】請求項1〜3に記載の発明によれば、小
型化を図りつつ、組み付けを容易に行うことができると
いう優れた効果を発揮する。
According to the invention described in claims 1 to 3, the excellent effect that the assembling can be easily performed while achieving the miniaturization is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施形態における磁気検出装置の構成を
示す断面図。
FIG. 1 is a sectional view showing a configuration of a magnetic detection device according to a first embodiment.

【図2】第1の実施形態における磁気検出装置を示す斜
視図。
FIG. 2 is a perspective view showing a magnetic detection device according to the first embodiment.

【図3】センサ素子の正面図。FIG. 3 is a front view of a sensor element.

【図4】信号処理を示すタイムチャート。FIG. 4 is a time chart showing signal processing.

【図5】MREの方向性を示す斜視図。FIG. 5 is a perspective view showing the directionality of the MRE.

【図6】MREの方向性を示す側面図。FIG. 6 is a side view showing the directionality of the MRE.

【図7】MREの抵抗値を示すグラフ。FIG. 7 is a graph showing the resistance value of MRE.

【図8】MREに加わる磁気ベクトルの方向を示す斜視
図。
FIG. 8 is a perspective view showing directions of magnetic vectors applied to the MRE.

【図9】第2の実施形態における磁気検出センサを示す
図。
FIG. 9 is a diagram showing a magnetic detection sensor according to a second embodiment.

【図10】他の実施形態の磁気検出センサを示す構成
図。
FIG. 10 is a configuration diagram showing a magnetic detection sensor of another embodiment.

【図11】従来の技術における磁気検出装置の構成を示
す斜視図。
FIG. 11 is a perspective view showing a configuration of a magnetic detection device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1…被検出対象としての磁性体ロータ、2…磁気検出セ
ンサ、4…モールドパッケージとしてのモールドIC、
5…リードフレーム、8…位置決め部としての凹部、1
0…バイアス磁石としての永久磁石、11,12…MR
E(磁気抵抗素子)、21…磁気検出センサ、22…M
RE(磁気抵抗素子)を含むセンサ素子、23…モール
ドパッケージとしてのモールドIC、24…リードフレ
ーム、26…バイアス磁石としての永久磁石、29…位
置決め部としての突部。
DESCRIPTION OF SYMBOLS 1 ... Magnetic rotor as a detection target, 2 ... Magnetic detection sensor, 4 ... Mold IC as a mold package,
5 ... Lead frame, 8 ... Recessed portion as positioning portion, 1
0 ... Permanent magnet as bias magnet, 11, 12 ... MR
E (Magnetic resistance element), 21 ... Magnetic detection sensor, 22 ... M
A sensor element including RE (magnetoresistive element), 23 ... Mold IC as mold package, 24 ... Lead frame, 26 ... Permanent magnet as bias magnet, 29 ... Projection as positioning section.

フロントページの続き (72)発明者 加藤 良浩 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内Front Page Continuation (72) Inventor Yoshihiro Kato 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】被検出対象の運動を抵抗変化により検出す
る磁気抵抗素子をリードフレーム上に設け、該磁気抵抗
素子を前記リードフレームと共に絶縁性樹脂材からなる
モールドパッケージで封入した磁気検出センサにおい
て、 前記モールドパッケージの外表面の所定面をバイアス磁
石の固着面とすると共に、この面に形成した位置決め部
を用いてバイアス磁石を配置したことを特徴とする磁気
検出センサ。
1. A magnetic detection sensor in which a magnetoresistive element for detecting a motion of an object to be detected is detected on a lead frame, and the magnetoresistive element is enclosed together with the lead frame in a mold package made of an insulating resin material. A magnetic detection sensor, wherein a predetermined surface of the outer surface of the mold package is used as a fixing surface of a bias magnet, and the bias magnet is arranged by using a positioning portion formed on this surface.
【請求項2】被検出対象の運動を抵抗変化により検出す
る磁気抵抗素子をリードフレームに設け、該磁気抵抗素
子を前記リードフレームと共に絶縁性樹脂材からなるモ
ールドパッケージで封入した磁気検出センサにおいて、 前記リードフレームにバイアス磁石を載置し、該バイア
ス磁石をモールドパッケージ内に封入したことを特徴と
する磁気検出センサ。
2. A magnetic detection sensor, wherein a lead frame is provided with a magnetoresistive element for detecting movement of an object to be detected by resistance change, and the magnetoresistive element is enclosed together with the lead frame in a mold package made of an insulating resin material. A magnetic detection sensor, wherein a bias magnet is placed on the lead frame, and the bias magnet is enclosed in a mold package.
【請求項3】前記バイアス磁石は、希土類磁石である請
求項1又は2に記載の磁気検出センサ。
3. The magnetic detection sensor according to claim 1, wherein the bias magnet is a rare earth magnet.
JP23300995A 1995-09-11 1995-09-11 Magnetic detection sensor and method of manufacturing the same Expired - Fee Related JP3603406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23300995A JP3603406B2 (en) 1995-09-11 1995-09-11 Magnetic detection sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23300995A JP3603406B2 (en) 1995-09-11 1995-09-11 Magnetic detection sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0979865A true JPH0979865A (en) 1997-03-28
JP3603406B2 JP3603406B2 (en) 2004-12-22

Family

ID=16948392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23300995A Expired - Fee Related JP3603406B2 (en) 1995-09-11 1995-09-11 Magnetic detection sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3603406B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852098A1 (en) * 2003-03-03 2004-09-10 Denso Corp MAGENTIC SENSOR AND METHOD FOR MANUFACTURING THE SAME
JP2004301743A (en) * 2003-03-31 2004-10-28 Denso Corp Magnetic detector and manufacturing method therefor
JP2007101230A (en) * 2005-09-30 2007-04-19 Denso Corp Rotation detection device
WO2008008140A2 (en) * 2006-07-14 2008-01-17 Allegro Microsystems, Inc. Methods and apparatus for passive attachment of components for integrated circuits
EP1958256A1 (en) * 2005-12-05 2008-08-20 Honeywell International Inc. Chip on lead frame for small package speed sensor
JP2008232902A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Rotation sensor and method for manufacturing the same
US7676914B2 (en) 2006-04-14 2010-03-16 Allegro Microsystems, Inc. Methods for sensor having capacitor on chip
US7687882B2 (en) 2006-04-14 2010-03-30 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having multiple dies with at least one on chip capacitor
JP2011196965A (en) * 2010-03-24 2011-10-06 Denso Corp Magnetic sensor
US20120319682A1 (en) * 2007-12-04 2012-12-20 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
CN103090891A (en) * 2011-11-04 2013-05-08 英飞凌科技股份有限公司 Magnetic Sensor Device And A Method For Fabricating The Same
JP2014052267A (en) * 2012-09-06 2014-03-20 Seiko Npc Corp Sensitivity adjusting method for magnetic sensor modules
JP2015038507A (en) * 2008-12-05 2015-02-26 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensors and methods for fabricating magnetic field sensors
US9121880B2 (en) 2011-11-04 2015-09-01 Infineon Technologies Ag Magnetic sensor device
US20150355291A1 (en) * 2014-06-06 2015-12-10 Infineon Technologies Ag Magnetic sensor device with ring-shaped magnet
KR20160004301A (en) * 2013-04-26 2016-01-12 알레그로 마이크로시스템스, 엘엘씨 Integrated circuit package having a split lead frame and a magnet
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
JP2017096822A (en) * 2015-11-26 2017-06-01 株式会社東海理化電機製作所 Magnetic sensor device
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
JP2017207402A (en) * 2016-05-19 2017-11-24 株式会社ジェイテクト Sensor unit and sensor device
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US10411498B2 (en) 2015-10-21 2019-09-10 Allegro Microsystems, Llc Apparatus and methods for extending sensor integrated circuit operation through a power disturbance
JP2019191016A (en) * 2018-04-25 2019-10-31 マグネデザイン株式会社 Super-thin high-sensitivity magnetic sensor
US10978897B2 (en) 2018-04-02 2021-04-13 Allegro Microsystems, Llc Systems and methods for suppressing undesirable voltage supply artifacts
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1311569C (en) * 2003-03-03 2007-04-18 株式会社电装 Magnetic sensor and producing method thereof
US7250760B2 (en) 2003-03-03 2007-07-31 Denso Corporation Magnetic sensor
FR2852098A1 (en) * 2003-03-03 2004-09-10 Denso Corp MAGENTIC SENSOR AND METHOD FOR MANUFACTURING THE SAME
DE102004010126B4 (en) * 2003-03-03 2015-03-12 Denso Corporation Magnetic field sensor and method for producing the same
JP2004301743A (en) * 2003-03-31 2004-10-28 Denso Corp Magnetic detector and manufacturing method therefor
US7459905B2 (en) 2005-09-30 2008-12-02 Denso Corporation Rotation detector having sensor chip and biasing magnet
JP2007101230A (en) * 2005-09-30 2007-04-19 Denso Corp Rotation detection device
EP1958256A1 (en) * 2005-12-05 2008-08-20 Honeywell International Inc. Chip on lead frame for small package speed sensor
US7687882B2 (en) 2006-04-14 2010-03-30 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having multiple dies with at least one on chip capacitor
US7676914B2 (en) 2006-04-14 2010-03-16 Allegro Microsystems, Inc. Methods for sensor having capacitor on chip
JP2009544149A (en) * 2006-07-14 2009-12-10 アレグロ・マイクロシステムズ・インコーポレーテッド Method and apparatus for passive mounting of components for integrated circuits
WO2008008140A3 (en) * 2006-07-14 2008-05-08 Allegro Microsystems Inc Methods and apparatus for passive attachment of components for integrated circuits
JP2018082203A (en) * 2006-07-14 2018-05-24 アレグロ・マイクロシステムズ・エルエルシー Sensor
JP2016225634A (en) * 2006-07-14 2016-12-28 アレグロ・マイクロシステムズ・エルエルシー Sensor
CN105321921A (en) * 2006-07-14 2016-02-10 阿莱戈微***有限责任公司 Methods and apparatus for passive attachment of components for integrated circuits
WO2008008140A2 (en) * 2006-07-14 2008-01-17 Allegro Microsystems, Inc. Methods and apparatus for passive attachment of components for integrated circuits
US9228860B2 (en) 2006-07-14 2016-01-05 Allegro Microsystems, Llc Sensor and method of providing a sensor
JP2014060404A (en) * 2006-07-14 2014-04-03 Allegro Microsystems Llc Sensor
JP2008232902A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Rotation sensor and method for manufacturing the same
US20120319682A1 (en) * 2007-12-04 2012-12-20 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
US20140084403A1 (en) * 2007-12-04 2014-03-27 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
US10355197B2 (en) 2007-12-04 2019-07-16 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic materials having different magnetic remanences
US9812636B2 (en) * 2007-12-04 2017-11-07 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
US9559293B2 (en) * 2007-12-04 2017-01-31 Infineon Technologies Ag Integrated circuit including sensor having injection molded magnetic material
JP2015038507A (en) * 2008-12-05 2015-02-26 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensors and methods for fabricating magnetic field sensors
JP2011196965A (en) * 2010-03-24 2011-10-06 Denso Corp Magnetic sensor
US9121880B2 (en) 2011-11-04 2015-09-01 Infineon Technologies Ag Magnetic sensor device
US9201123B2 (en) 2011-11-04 2015-12-01 Infineon Technologies Ag Magnetic sensor device and a method for fabricating the same
CN103090891A (en) * 2011-11-04 2013-05-08 英飞凌科技股份有限公司 Magnetic Sensor Device And A Method For Fabricating The Same
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US11961920B2 (en) 2012-03-20 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel
US11444209B2 (en) 2012-03-20 2022-09-13 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil enclosed with a semiconductor die by a mold material
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
JP2014052267A (en) * 2012-09-06 2014-03-20 Seiko Npc Corp Sensitivity adjusting method for magnetic sensor modules
KR20160004301A (en) * 2013-04-26 2016-01-12 알레그로 마이크로시스템스, 엘엘씨 Integrated circuit package having a split lead frame and a magnet
JP2016522892A (en) * 2013-04-26 2016-08-04 アレグロ・マイクロシステムズ・エルエルシー Integrated circuit package having split lead frame and magnet
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US20150355291A1 (en) * 2014-06-06 2015-12-10 Infineon Technologies Ag Magnetic sensor device with ring-shaped magnet
US9927498B2 (en) * 2014-06-06 2018-03-27 Infineon Technologies Ag Magnetic sensor device comprising a ring-shaped magnet and a sensor chip in a common package
US10411498B2 (en) 2015-10-21 2019-09-10 Allegro Microsystems, Llc Apparatus and methods for extending sensor integrated circuit operation through a power disturbance
JP2017096822A (en) * 2015-11-26 2017-06-01 株式会社東海理化電機製作所 Magnetic sensor device
JP2017207402A (en) * 2016-05-19 2017-11-24 株式会社ジェイテクト Sensor unit and sensor device
US10978897B2 (en) 2018-04-02 2021-04-13 Allegro Microsystems, Llc Systems and methods for suppressing undesirable voltage supply artifacts
JP2019191016A (en) * 2018-04-25 2019-10-31 マグネデザイン株式会社 Super-thin high-sensitivity magnetic sensor
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile

Also Published As

Publication number Publication date
JP3603406B2 (en) 2004-12-22

Similar Documents

Publication Publication Date Title
JPH0979865A (en) Magnetic detecting sensor
US6593734B1 (en) Contactless position sensor with optimized magnetic volume and magneto sensitive probe
US4677378A (en) Displacement sensor including a magnetically responsive member and a pair of piezoelectric elements
JP2000161989A (en) Rotation sensor
WO2022153356A1 (en) Power generation element, magnetic sensor, and encoder
JPH06249607A (en) Rotational angle sensor
JPH05126512A (en) Angle detector
US7012422B2 (en) Non-contact type position sensor
JP3170916B2 (en) Magnetic detector
CN112393748B (en) System with magnetic field shielding structure
JP3460424B2 (en) Magnetic sensor
JP3427489B2 (en) Position detection device
JP3061225B2 (en) Magneto-electric conversion type rotation angle sensor
JP3233129B2 (en) Magnetic detector
JP4385915B2 (en) Rotation detector
JP5479796B2 (en) Component arrangement structure of magnetic sensor
WO2024075465A1 (en) Power generation element, power generation system, and encoder
JPH0736291Y2 (en) Electromagnetic type moving state detector
JPH07294540A (en) Magnetism detection device
JP4281537B2 (en) Rotation detection sensor device
JP2544565Y2 (en) Electromagnetic type moving state detector
JP4487807B2 (en) Rotation detector
JPH04212016A (en) Rotation number detector
JPH09287911A (en) Apparatus for detecting rotational shift
JPS5951223B2 (en) rotor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees