JPH0979173A - Fluid driving device - Google Patents

Fluid driving device

Info

Publication number
JPH0979173A
JPH0979173A JP7230896A JP23089695A JPH0979173A JP H0979173 A JPH0979173 A JP H0979173A JP 7230896 A JP7230896 A JP 7230896A JP 23089695 A JP23089695 A JP 23089695A JP H0979173 A JPH0979173 A JP H0979173A
Authority
JP
Japan
Prior art keywords
fluid
drive
blade
secondary side
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7230896A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7230896A priority Critical patent/JPH0979173A/en
Publication of JPH0979173A publication Critical patent/JPH0979173A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance safety, reduce initial cost, and reduce motive power of a driving fluid by connecting a driving impeller and a secondary side rotary body to each other while separating them by a partition wall, and arranging a driving nozzle circuit where driving nozzles are oppositely arranged in respective ones of pump-in vanes and pump-out vanes arranged on both sides of a vane base part of the driving impeller. SOLUTION: A driving impeller 61 using a primary side fluid as a driving source of torque is arranged in a driving fluid passage 62 in which the primary side fluid flows, and a secondary side rotary body 63 becoming a pump impeller to circulate a secondary side fluid is arranged in a driving object fluid passage 64 in which the secondary side fluid flows. The driving impeller 61 and the secondary side rotary body 63 are oppositely arranged through a partition wall 65, and are connected to each other by a motive power transmitting means 66. In the driving impeller 61, plural pump-in vanes 61B are arranged on the driving outlet 72 side on one surface of a vane base part 61A, and plural pump 1 out vanes 61C are arranged on the partition wall 65 side. Driving nozzles 77A oppositely arranged in the pump-in vanes 61B and driving nozzles 77B oppositely arranged in the pump-out vanes 61C are arranged on the other end of a driving nozzle circuit 76.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集合住宅等の住棟セント
ラル給湯あるいは給湯暖房方式のように各住戸に強制循
環される高温の熱媒を動力源として利用する循環ポンプ
などの流体駆動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid drive device such as a circulation pump which uses as a power source a high temperature heating medium forcedly circulated in each dwelling unit, such as a central hot water supply system or a hot water supply and heating system of a dwelling such as an apartment house. It is a thing.

【0002】[0002]

【従来の技術】従来の流体を駆動源とする流体駆動装置
として、例えば特開平3−279521号公報に示され
るように図9の構成のポンプがある。
2. Description of the Related Art As a conventional fluid drive device using a fluid as a drive source, for example, there is a pump having a structure shown in FIG. 9 as disclosed in Japanese Patent Laid-Open No. 3-279521.

【0003】図9は、河川から河川水を取水し、河川水
の流れを利用して揚水するポンプで、軸流ランナ1を有
する横軸チューブラ型の水車2と単段インペラ3を備え
た横軸斜流型のポンプ4とが増速機5を介して一軸上に
結合され、ケーシング6内に収納されている。
FIG. 9 is a pump for taking river water from a river and pumping it by utilizing the flow of the river water. A horizontal turbine equipped with an axial runner 1 and a horizontal turbine 2 having a single-stage impeller 3 are provided. An axial mixed flow type pump 4 is uniaxially connected via a speed increaser 5 and is housed in a casing 6.

【0004】この構成において、取水路上流の河川水は
その落差により吸込管7から流入して水車2を稼働させ
るとともに、増速機5を介して水車2で駆動されるポン
プ4によってその一部が加圧され送水管8を経て送水さ
れ、水車2を稼働させた河川水の大部分は取水路下流へ
放出されて河川下流へ流出する。
In this structure, the river water upstream of the intake channel flows in from the suction pipe 7 due to its head to operate the water turbine 2, and a part of it is driven by the pump 4 driven by the water turbine 2 via the speed increaser 5. Is pressurized and is sent through the water pipe 8, and most of the river water that has operated the water turbine 2 is discharged to the downstream of the intake channel and flows out to the downstream of the river.

【0005】また、従来の流体を駆動源とする流体駆動
装置の他の例として、実開昭58−195644号公報
に示されるように図10の構成のポンプがある。
Another example of a conventional fluid drive device using a fluid as a drive source is a pump having the structure shown in FIG. 10 as disclosed in Japanese Utility Model Laid-Open No. 58-195644.

【0006】図10は、配管系統を流れる流体の力で水
車を回してローラポンプ等の定量吐出装置を駆動し、微
量の薬液を吸引吐出して上記配管系統に注入するポンプ
で、配管系統9内を流れる流体の流量に比例した回転力
を得る羽根車群10で構成した水車の出力軸11を配管
系統外へ貫通突出させてポンプ部12の駆動軸13とを
連結したもので、出力軸11は軸受14、15で支持さ
れるとともに軸シール部材16でシールを行っている。
FIG. 10 shows a pump for rotating a water wheel by the force of a fluid flowing through a piping system to drive a constant quantity discharge device such as a roller pump, sucking and discharging a small amount of a chemical solution and injecting it into the piping system. An output shaft 11 of a water turbine composed of an impeller group 10 that obtains a rotational force proportional to the flow rate of a fluid flowing therein, is connected to a drive shaft 13 of a pump unit 12 by penetrating and protruding outside the piping system. 11 is supported by bearings 14 and 15 and is sealed by a shaft seal member 16.

【0007】この構成において、配管系統9内を流れる
流体の力で羽根車群10を流体の流量に比例して回転さ
せて水車を稼働させ、出力軸11を介して直結されたポ
ンプ部12を駆動し、薬液タンク17より薬液18をチ
ューブ19を通して吸引し配管系統内に吐出注入するも
のである。
In this structure, the impeller group 10 is rotated by the force of the fluid flowing in the piping system 9 in proportion to the flow rate of the fluid to operate the water turbine, and the pump portion 12 directly connected via the output shaft 11 is connected. It is driven to suck the chemical solution 18 from the chemical solution tank 17 through the tube 19 and inject it into the piping system.

【0008】また、従来の住棟セントラル用給湯暖房装
置の例としては図11に示すものがある。すなわち、熱
媒(高温湯)を各住戸に向けて循環させ各住戸にて熱媒
と給水管からの低温水とを熱交換し、給湯、暖房するも
ので、住棟セントラル用熱源機20に住棟の各階および
各住戸に向けて熱媒往管21が配設されるとともに、熱
媒往管21の端部にて連結される熱媒復管22が配設さ
れ熱源側熱媒系路23を形成し、この熱源側熱媒系路2
3に熱媒循環ポンプ24を設けている。
An example of a conventional hot water supply / room heating device for a central residential building is shown in FIG. That is, the heat medium (high-temperature hot water) is circulated toward each dwelling unit, and the heat medium and the low-temperature water from the water supply pipe are heat-exchanged at each dwelling unit to heat and heat the hot water. The heat medium outward pipe 21 is arranged toward each floor and each dwelling unit of the dwelling, and the heat medium return pipe 22 connected at the end of the heat medium outward pipe 21 is arranged. 23, and the heat source side heat medium passage 2
3 is provided with a heat medium circulation pump 24.

【0009】各住戸の給湯暖房装置25は、熱媒往管2
1と熱媒給湯往管26を接続し、第一制御弁27と熱媒
給湯復管28を経て熱媒復管22に接続して給湯一次側
系路29を形成し、入口側にて給水管30に連通し出口
側の先端に給湯栓31を有する給湯二次側系路32とを
熱交換関係にした給湯熱交換器33を備えている。熱媒
給湯往管26と熱媒給湯復管28に対して並列に熱媒暖
房往管34、第二制御弁35と熱媒暖房復管36にて形
成する暖房一次側系路37を設け、入口側にてシスター
ン38よりの暖房往管39に連通し出口側に暖房用放熱
器40、暖房復管41の順に配設して循環系路を形成す
る暖房二次側系路42とを熱交換関係にした暖房熱交換
器43を備えている。さらに、風呂追い焚き往管44、
シスターン38に内蔵した風呂追い焚き用熱交換器4
5、風呂追い焚き復管46の順に配設して構成した風呂
追い焚き系路47を浴槽48に接続している。また、暖
房往管39の系路に暖房用ポンプ49を、風呂追い焚き
系路47に風呂用ポンプ50を設けたものである。
The hot water supply / room heating device 25 of each dwelling unit is composed of the heat transfer pipe 2
1 is connected to the heat medium hot water supply forward pipe 26, and is connected to the heat medium return pipe 22 via the first control valve 27 and the heat medium hot water return pipe 28 to form a hot water supply primary side system passage 29, and water is supplied at the inlet side. A hot water supply heat exchanger 33 is provided which communicates with the pipe 30 and has a hot water supply secondary side system passage 32 having a hot water supply tap 31 at the end on the outlet side in a heat exchange relationship. A heating primary side system passage 37 formed by the heating medium heating outward pipe 34, the second control valve 35, and the heating medium heating return pipe 36 is provided in parallel with the heating medium hot water returning pipe 26 and the heating medium hot water returning pipe 28, A heating secondary side system passage 42 which communicates with the heating outward pipe 39 from the systurn 38 on the inlet side and a heating radiator 40 and a heating return pipe 41 are arranged on the outlet side in this order to form a circulation system passage A heating heat exchanger 43 in an exchange relationship is provided. In addition, the bath-fired forward pipe 44,
Heat exchanger 4 for bath reheating built in Sistern 38
5. A bath reheating system passage 47 configured by arranging the bath reheating recuperation pipe 46 in this order is connected to the bathtub 48. In addition, a heating pump 49 is provided in the system path of the heating outward pipe 39, and a bath pump 50 is provided in the bath reheating system path 47.

【0010】そして、上記給湯暖房装置25は、電気モ
ータにて駆動する暖房用ポンプ49を運転し暖房熱交換
器43にて得た高温湯を暖房用放熱器40に送り暖房
し、また電気モータにて駆動する風呂用ポンプ50を運
転して風呂追い焚き用熱交換器45にて得た高温湯を浴
槽48に送り風呂追い焚きをするものである。
The hot water supply / room heating device 25 operates the heating pump 49 driven by an electric motor to send the high temperature hot water obtained by the heating heat exchanger 43 to the heating radiator 40 for heating, and the electric motor. The high-temperature hot water obtained by the bath-exchanging heat exchanger 45 is driven to drive the bath pump 50, which is then driven to the bath, to supplement the bath.

【0011】また、電動モータを駆動源とするポンプと
して、実開昭57−40686号公報に示されるように
図12の構成がある。
As a pump using an electric motor as a drive source, there is a configuration shown in FIG. 12 as disclosed in Japanese Utility Model Laid-Open No. 57-40686.

【0012】図12は、電動モータ50mの駆動軸51
に固定した回転体52に固定した永久磁石である駆動側
マグネット53を、ポンプ羽根車54に固定された永久
磁石である従動側マグネット55に隔壁56を介して対
向して設けたもので、このポンプ羽根車54はポンプケ
ーシング57に収納されるとともにポンプケーシング5
7に設けた固定軸58に回動自在に取り付けられてい
る。
FIG. 12 shows a drive shaft 51 of an electric motor 50m.
The drive-side magnet 53, which is a permanent magnet fixed to the rotating body 52 fixed to, is provided to face the driven-side magnet 55, which is a permanent magnet fixed to the pump impeller 54, via a partition wall 56. The pump impeller 54 is housed in the pump casing 57 and the pump casing 5
It is rotatably attached to a fixed shaft 58 provided on the No. 7.

【0013】この構成において、電動モータ50mによ
り駆動軸51を回転させるとこれと一体の回転体52と
ともに駆動側マグネット53が回転し、磁力により連結
された従動側マグネット55がポンプ羽根車54ととも
に回転し、吸込口59から吸引した流体を遠心力により
吐出口60より送り出す。
In this structure, when the drive shaft 51 is rotated by the electric motor 50m, the drive side magnet 53 is rotated together with the rotating body 52 integrated with the drive shaft 51, and the driven side magnet 55 connected by magnetic force is rotated together with the pump impeller 54. Then, the fluid sucked from the suction port 59 is sent out from the discharge port 60 by centrifugal force.

【0014】[0014]

【発明が解決しようとする課題】しかしながら従来の住
棟セントラル用として各住戸に設ける給湯暖房装置25
の構成では、暖房および風呂追い焚き時に暖房用ポンプ
49と風呂用ポンプ50を運転することになる。これら
は、いずれも電気モータにて駆動するポンプである。従
って、これら両ポンプはイニシャルコストが高い、寸法
が大きくなる、重量が大きい、さらに電気を消費するた
めランニングコストが高くつくなどの課題があった。
However, the hot water supply and heating device 25 provided in each dwelling unit for the central of the conventional dwelling building is provided.
With this configuration, the heating pump 49 and the bath pump 50 are operated when heating and reheating the bath. All of these are pumps driven by an electric motor. Therefore, these two pumps have the problems that the initial cost is high, the size is large, the weight is heavy, and the running cost is high because they consume electricity.

【0015】ポンプの駆動動力を流体の流動力で行う方
法があるが、上記図9に示した従来の構成では、水車の
回転数が低く水車自身でポンプ駆動に要求される回転数
が得られないため途中に増速機を設ける必要があり、イ
ニシャルコストが高価で一般家庭用に使用できるもので
はなく、また水車駆動流体とポンプにより搬送される流
体は分離されておらず全く同一であり、集合住宅等の住
棟セントラル給湯等に利用するには安全、衛生上の課題
があった。
There is a method in which the driving power of the pump is performed by the fluid force of the fluid, but in the conventional configuration shown in FIG. 9, the rotation speed of the water turbine is low and the rotation speed required to drive the pump by the water turbine itself is obtained. Since there is no gear, it is necessary to install a speed increaser on the way, the initial cost is high and it can not be used for general households, and the fluid driven by the turbine and the fluid conveyed by the pump are not separated and are exactly the same, There were safety and hygiene issues in using the central hot water supply for residential buildings such as apartments.

【0016】また、図10で示した従来の構成では、駆
動側流体とポンプで搬送される流体はポンプ部で軸シー
ル部材で仕切られて構成されるものの、住棟セントラル
給湯等に利用するには万一の時の駆動側とポンプ側の流
体の混入防止が不確実であり信頼性上の課題があり、さ
らに軸シール部材のため水車の出力軸の回転抵抗が大き
く、住棟セントラル給湯あるいは暖房等に利用するには
ポンプ側の流量が過小であり流量特性上の課題があっ
た。
Further, in the conventional structure shown in FIG. 10, the drive side fluid and the fluid conveyed by the pump are partitioned by the shaft sealing member in the pump portion, but are used for the central hot water supply of the residential building. In case of emergency, it is uncertain how to prevent the mixture of fluids on the drive side and the pump side, which poses a reliability problem.Because of the shaft seal member, the rotation resistance of the output shaft of the water turbine is large, so The flow rate on the pump side was too small to be used for heating, etc., and there was a problem with the flow rate characteristics.

【0017】そこで、発明者らは特開平6−18548
9号公報に示される流体駆動ポンプを提案し改良を進め
た。その結果、駆動側流体の限られた駆動力を有効に活
かすには回転抵抗を極力低減させることが重要であり、
電動モータ式ポンプではモータ入力上昇となるだけのこ
とも流体駆動ポンプでは無視できないことが判った。
Therefore, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 6-18548.
The fluid-driven pump shown in Japanese Patent No. 9 was proposed and improved. As a result, it is important to reduce the rotational resistance as much as possible in order to effectively utilize the limited driving force of the driving fluid.
It was found that the fact that the motor input increases only in the electric motor type pump cannot be ignored in the fluid driven pump.

【0018】即ち、図12に示した従来の構成では従動
側マグネット55がポンプ羽根車54の隔壁56側を占
有するため、ポンプ羽根車54の運転時に流体力により
生じる吸込口59方向への軸方向のスラスト力を低減さ
せ得ず、軸方向スラスト力により生じる軸受け部での摩
擦抵抗の増大を招いていた。
That is, in the conventional structure shown in FIG. 12, since the driven magnet 55 occupies the partition wall 56 side of the pump impeller 54, the shaft in the direction of the suction port 59 generated by the fluid force during the operation of the pump impeller 54. The thrust force in the axial direction cannot be reduced, and the frictional resistance in the bearing portion caused by the axial thrust force increases.

【0019】本発明は上記課題を解決するもので、住棟
セントラル給湯に利用でき、安全性が高くイニシャルコ
ストの安価で駆動流体動力を低減する高効率な流体駆動
装置を提供することを第一の目的としたものである。ま
た、駆動流体の負荷を軽減する上記流体駆動装置を提供
することを第二の目的としたものである。さらに、二次
側回転体の効率をより高めることを第三の目的とし、駆
動流体の負荷を低減することを第四の目的とし、流量可
変制御域の全域にわたる高効率化を第五の目的としたも
のである。
The present invention solves the above-mentioned problems, and it is a first object of the present invention to provide a highly efficient fluid drive device which can be used for hot water supply in a central area of a residential building, is highly safe, has a low initial cost, and reduces drive fluid power. The purpose is. A second object is to provide the above-mentioned fluid drive device that reduces the load of the drive fluid. Furthermore, the third purpose is to further increase the efficiency of the secondary side rotating body, the fourth purpose is to reduce the load of driving fluid, and the fifth purpose is to improve the efficiency over the entire flow rate variable control range. It is what

【0020】[0020]

【課題を解決するための手段】本発明は上記第一の目的
を達成するため、一次側流体を回転力の駆動源とする駆
動羽根車と、二次側回転体と、前記駆動羽根車と二次側
回転体とを気密に分離する隔壁と、前記駆動羽根車に設
けた駆動側の動力伝達体と前記二次側回転体に設けた従
動側の動力伝達体とを前記隔壁を介して対向させた動力
伝達手段と、前記駆動羽根車は羽根基部の片面に表羽根
を設け、さらに羽根基部の他の片面である前記隔壁側に
裏羽根と前記動力伝達体を設けるとともに前記表羽根側
と裏羽根側を連通する連通孔を有し、前記表羽根および
裏羽根の各々には一次側流体が噴出する駆動ノズルを個
別に対向配置した駆動ノズル回路を備えている。
In order to achieve the above-mentioned first object, the present invention provides a drive impeller having a primary fluid as a drive source of rotational force, a secondary rotor, and the drive impeller. A partition wall that airtightly separates the secondary-side rotating body, a drive-side power transmission body provided in the drive impeller, and a driven-side power transmission body provided in the secondary-side rotation body via the partition wall. The power transmission means facing each other and the drive impeller are provided with a front blade on one surface of a blade base portion, and a back blade and the power transmission body are provided on the other partition surface side of the blade base portion and the front blade side. A drive nozzle circuit in which drive nozzles for ejecting the primary side fluid are individually arranged to face each other.

【0021】また、第二の目的を達成するため、連駆動
ノズル回路には一次側流体の流量を制御する一次側流体
制御体を備えたものである。
Further, in order to achieve the second object, the continuous drive nozzle circuit is provided with a primary side fluid control body for controlling the flow rate of the primary side fluid.

【0022】また、第三の目的を達成するため、二次側
回転体は羽根基部の片面に表羽根を設けさらに羽根基部
の他の片面である隔壁側に裏羽根と前記動力伝達体を設
けるとともに前記表羽根側と裏羽根側を連通する連通孔
を有し、表羽根と裏羽根の各々には二次側流体が流出す
る二次側流体流出孔を個別に対向配置した二次側流体流
出回路を備えている。
Further, in order to achieve the third object, the secondary side rotating body is provided with a front blade on one surface of the blade base portion, and further is provided with a back blade and the power transmission body on the other side of the blade base portion which is a partition wall side. A secondary fluid that has a communication hole that communicates the front blade side and the back blade side with each other, and a secondary side fluid outflow hole through which the secondary side fluid flows out is individually opposed to each of the front blade and the back blade. Equipped with an outflow circuit.

【0023】また、第四の目的を達成するため、二次側
流体流出回路には二次側流体の流量を制御する二次側流
体制御体を備えたものである。
In order to achieve the fourth object, the secondary side fluid outflow circuit is provided with a secondary side fluid control body for controlling the flow rate of the secondary side fluid.

【0024】また、第五の目的を達成するため、一次側
流体制御体および二次側流体制御体を備えたものであ
る。
Further, in order to achieve the fifth object, a primary side fluid control body and a secondary side fluid control body are provided.

【0025】[0025]

【作用】本発明は上記構成によって第一の手段のものは
一次側流体を駆動羽根車に流動させて駆動羽根車を回転
させ、隔壁を介して対向する動力伝達体による動力伝達
手段で非接触で駆動羽根車と連結される二次側回転体が
回転し、二次側回転体を運転する動作が行われる。この
時、駆動羽根車の表羽根および裏羽根に対して各々設け
た駆動ノズルから一次側流体が適切に噴出するため駆動
力を高めた運転がなされるとともに、駆動羽根車は羽根
基部の両面に羽根を有するため、軸方向のスラスト力が
相殺されてスラスト抵抗の少ない回転運動がなされる。
According to the present invention having the above-mentioned structure, the first means of the present invention causes the primary side fluid to flow to the drive impeller to rotate the drive impeller, and the power transmitting means by the power transmitting body opposed via the partition wall does not contact. The secondary side rotating body connected to the drive impeller rotates, and the operation of operating the secondary side rotating body is performed. At this time, the primary nozzle fluid is appropriately ejected from the drive nozzles provided for the front and back blades of the drive impeller, so that the driving force is increased and the drive impeller is operated on both sides of the blade base. Since the blades are provided, the thrust force in the axial direction is canceled out, and the rotary motion with less thrust resistance is performed.

【0026】また、第二の手段のものは、駆動ノズル回
路に一次側流体制御体を設けて駆動流量を増大あるいは
低減する制御を行うもので、二次側の負荷に応じた一次
側流体を流動させて一次側流体のエネルギー損失を低減
した運転がなされる。
In the second means, a drive side fluid control body is provided in the drive nozzle circuit to perform control for increasing or decreasing the drive flow rate, and the primary side fluid according to the load on the secondary side is supplied. The operation is performed by reducing the energy loss of the primary side fluid by flowing the fluid.

【0027】また、第三の手段のものは、二次側回転体
の表羽根および裏羽根の各々に対応して適切な二次側流
体流出孔を設けることにより、二次側回転体を出た二次
側流体のエネルギー損失を低減した運転がなされる。
In the third means, the secondary rotor is discharged by providing an appropriate secondary fluid outlet hole corresponding to each of the front and back blades of the secondary rotor. The operation is performed with reduced energy loss of the secondary fluid.

【0028】また、第四の手段のものは、二次側流体の
負荷を制御して駆動流体の負担を軽減して高効率な運転
がなされる。
In the fourth means, the load of the secondary fluid is controlled to reduce the load of the driving fluid, and the highly efficient operation is performed.

【0029】また、第五の手段のものは、二次側流体の
負荷制御に応じて駆動流体の流量を可変制御することで
一次側流体のエネルギー損失を低減し、運転域全域にわ
たり高効率な運転がなされる。
In the fifth means, the flow rate of the driving fluid is variably controlled according to the load control of the secondary fluid to reduce the energy loss of the primary fluid, resulting in high efficiency over the entire operating range. Driving is done.

【0030】[0030]

【実施例】以下本発明の実施例を図1〜図8を参照して
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0031】図1および図4において、61は一次側流
体が流れる駆動流体通路62に設けられ一次側流体を回
転力の駆動源とする駆動羽根車であり、63は二次側流
体が流れる被駆動流体通路64に設けられ二次側流体を
循環させるポンプ羽根車となる二次側回転体である。6
5は駆動側羽根車61と二次側回転体63の間を気密に
分離する隔壁である。66は動力伝達手段であり、駆動
羽根車61に設けた駆動側の動力伝達体67と二次側回
転体63に設けた従動側の動力伝達体68とが隔壁65
を介して対向して配置されている。駆動羽根車61と二
次側回転体63はこの隔壁65を介して対向して配置さ
れるとともに動力伝達手段66により動力伝達可能に連
結されている。69は駆動羽根車61を回転自在に支持
する駆動側支持軸、70は二次側回転体63を回転自在
に支持する二次側側支持軸であり、どちらの支持軸も隔
壁65に支えられている。71は一次側流体が流入する
駆動入口、72は一次側流体が流出する駆動出口、73
は二次側流体が流入するポンプ入口である。74はポン
プ羽根車63を収納するポンプ室75に開口し、ポンプ
羽根車63の運転によりポンプ入口73から吸引された
二次側流体が加圧されて流出するポンプ出口である。
In FIGS. 1 and 4, reference numeral 61 is a drive impeller provided in a drive fluid passage 62 through which the primary fluid flows, and the primary fluid serves as a drive source of the rotational force, and 63 denotes a member through which the secondary fluid flows. It is a secondary side rotating body that is provided in the drive fluid passage 64 and serves as a pump impeller for circulating the secondary side fluid. 6
Reference numeral 5 denotes a partition wall that airtightly separates the drive-side impeller 61 and the secondary-side rotating body 63. Reference numeral 66 denotes a power transmission means, and a drive side power transmission body 67 provided on the drive impeller 61 and a driven side power transmission body 68 provided on the secondary side rotating body 63 are separated from each other by a partition wall 65.
Are arranged opposite to each other. The drive impeller 61 and the secondary side rotating body 63 are arranged so as to face each other via the partition wall 65, and are connected to each other by a power transmission means 66 so that power can be transmitted. 69 is a drive side support shaft that rotatably supports the drive impeller 61, and 70 is a secondary side support shaft that rotatably supports the secondary side rotating body 63. Both support shafts are supported by the partition wall 65. ing. Reference numeral 71 is a drive inlet into which the primary side fluid flows, 72 is a drive outlet from which the primary side fluid flows out, 73
Is a pump inlet into which the secondary fluid flows. Reference numeral 74 denotes a pump outlet that opens into a pump chamber 75 that houses the pump impeller 63, and the secondary side fluid sucked from the pump inlet 73 by the operation of the pump impeller 63 is pressurized and flows out.

【0032】駆動羽根車61は羽根基部61Aの片面の
駆動出口72側には羽根基部61Aから突出し径方向に
延びる複数の表羽根61Bが設けられ、さらに羽根基部
61Aの他の片面である隔壁65側には羽根基部61A
から突出し径方向に延びる複数の裏羽根61Cが設けら
れている。表羽根61Bおよび裏羽根61Cの羽根基部
61Aから立ち上がった高さ方向の先端部は側壁を持た
ないいわゆる開放型の羽根となっている。61Dは羽根
基部61Aを貫通し表羽根61B側と裏羽根61C側と
を連通させる連通孔である。61Eは羽根基部61Aに
設けた駆動側軸受である。
The drive impeller 61 is provided with a plurality of front blades 61B projecting from the blade base 61A and extending in the radial direction on one side of the blade base 61A on the side of the drive outlet 72, and a partition wall 65 which is the other side of the blade base 61A. 61A of blade bases on the side
A plurality of back blades 61 </ b> C that project from and extend in the radial direction are provided. The front end portions of the front blades 61B and the rear blades 61C in the height direction rising from the blade base portions 61A are so-called open type blades having no side wall. Reference numeral 61D is a communication hole that penetrates the blade base 61A and connects the front blade 61B side and the back blade 61C side. Reference numeral 61E is a drive side bearing provided on the blade base portion 61A.

【0033】76は一端が駆動入口71に連通する駆動
ノズル回路であり、駆動ノズル回路76の他端には表羽
根61Bに対向配置した駆動ノズル77Aと裏羽根61
Cに対向配置した駆動ノズル77Bが設けられている。
Reference numeral 76 denotes a drive nozzle circuit, one end of which communicates with the drive inlet 71, and the other end of the drive nozzle circuit 76 has a drive nozzle 77A and a back blade 61 which are arranged to face the front blade 61B.
A drive nozzle 77B is provided opposite to C.

【0034】78は駆動羽根車61および二次側回転体
63の両端に設けた軸方向のスラスト力を受けるスラス
ト体である。63Eは二次側軸受である。
Reference numeral 78 is a thrust body which is provided at both ends of the drive impeller 61 and the secondary side rotating body 63 and receives a thrust force in the axial direction. 63E is a secondary bearing.

【0035】なお、図2、図3には表羽根61Bと裏羽
根61Cが同じ形状の場合を示し、図4は羽根基部61
Aを有するため裏羽根の形状を任意に変えることができ
ることを示したもので、裏羽根61Cに加えて裏羽根6
1C’を付加している。
2 and 3 show the case where the front blade 61B and the rear blade 61C have the same shape, and FIG. 4 shows the blade base 61.
It shows that the shape of the back blade can be arbitrarily changed because it has A. In addition to the back blade 61C, the back blade 6
1C 'is added.

【0036】上記構成において、流体駆動装置の動作を
説明する。駆動入口71から駆動ノズル回路76に流入
した一次側流体は、駆動ノズル77Aおよび駆動ノズル
77Bからそれぞれ相対向する表羽根61Bおよび裏羽
根61Cに向かって噴出する。この駆動ノズル77A、
77Bから噴出する一次側流体の流動力により駆動羽根
車61が駆動側の動力伝達体67とともに駆動側支持軸
69に対し回転する。
The operation of the fluid drive system having the above structure will be described. The primary-side fluid flowing from the drive inlet 71 into the drive nozzle circuit 76 is jetted from the drive nozzle 77A and the drive nozzle 77B toward the front blade 61B and the back blade 61C, which face each other. This drive nozzle 77A,
The drive impeller 61 rotates with respect to the drive side support shaft 69 together with the drive side power transmission body 67 by the flow force of the primary side fluid ejected from 77B.

【0037】この駆動羽根車61の回転に伴い、従動側
の動力伝達体68により駆動側の動力伝達体67と非接
触で連結されているポンプ羽根車である二次側回転体6
3は二次側支持軸70を軸として回転する。
With the rotation of the drive impeller 61, the secondary side rotating body 6 which is a pump impeller is connected to the drive side power transmitting body 67 in a non-contact manner by the driven side power transmitting body 68.
3 rotates around the secondary side support shaft 70 as an axis.

【0038】駆動ノズル77A、77Bから噴出した一
次側流体は、それぞれ表羽根61Bおよび裏羽根61C
に衝突するとともに外周側から流入して駆動羽根車61
の回転力を発生して内周側から流出し駆動出口72に向
かう。なお裏羽根61Cに入った流体は内周側で連通孔
61Dを通過して表羽根61B側に合流する。
The primary fluid ejected from the drive nozzles 77A and 77B is the front blade 61B and the back blade 61C, respectively.
Drive impeller 61
Is generated and flows out from the inner peripheral side toward the drive outlet 72. The fluid that has entered the back blade 61C passes through the communication hole 61D on the inner peripheral side and merges with the front blade 61B side.

【0039】一方、被駆動流体通路64側ではポンプ羽
根車である二次側回転体63の回転により被駆動流体通
路64内の流体はポンプ入口73からポンプ室75に流
入し、加圧されてポンプ出口74から流出する。
On the other hand, on the driven fluid passage 64 side, the fluid in the driven fluid passage 64 flows into the pump chamber 75 from the pump inlet 73 and is pressurized by the rotation of the secondary rotating body 63 which is a pump impeller. It flows out from the pump outlet 74.

【0040】このように、駆動側において表羽根61B
および裏羽根61Cにそれぞれ駆動ノズル77Aおよび
77Bを設けているので、各々の羽根特性に適した駆動
ノズル仕様が設定できる。このため、駆動力を増大し駆
動特性に優れた駆動羽根車が実現でき、また表羽根61
Bおよび裏羽根61Cの設計の自由度が拡がるだけでな
く羽根形状と駆動ノズル仕様のマッチングによる回転軸
方向のスラスト力を低減することにより駆動側軸受61
E端部とスラスト体78との機械摩擦損失を減らした高
効率化が実現できる。
Thus, the front blade 61B on the drive side
Since the drive nozzles 77A and 77B are provided on the back blade 61C and the back blade 61C, respectively, drive nozzle specifications suitable for the respective blade characteristics can be set. Therefore, it is possible to realize a driving impeller having an increased driving force and excellent driving characteristics, and the front blade 61
The drive side bearing 61 is not only expanded by increasing the degree of freedom in designing the B and the rear blade 61C but also by reducing the thrust force in the rotating shaft direction due to the matching of the blade shape and the drive nozzle specifications.
It is possible to realize high efficiency by reducing mechanical friction loss between the E end portion and the thrust body 78.

【0041】また、駆動羽根車61において表羽根61
Bおよび裏羽根61Cとしてともに羽根先端に側板のな
い開放型の羽根とすることで、スラスト力が小さく駆動
側軸受61E端部とスラスト体78との機械的な摩擦抵
抗をより一層低減でき、さらに側板がある場合では側板
が回転して流体との摩擦抵抗であるいわゆる円板摩擦損
失が発生するのに対して側板がない開放型のため円板摩
擦損失が発生せず回転抵抗が低減できる。このような機
械摩擦抵抗および流体摩擦抵抗の低減により損失の少な
い高効率の流体駆動装置が実現できる。
In the drive impeller 61, the front blade 61
B and the back blade 61C are both open type blades with no side plate at the blade tip, so that the thrust force is small and the mechanical frictional resistance between the end of the drive side bearing 61E and the thrust body 78 can be further reduced. When there is a side plate, the side plate rotates and a so-called disc friction loss, which is a frictional resistance with the fluid, is generated, whereas the open type without the side plate does not cause the disc friction loss and the rotational resistance can be reduced. By reducing the mechanical friction resistance and the fluid friction resistance as described above, a highly efficient fluid drive device with less loss can be realized.

【0042】本実施例では駆動ノズル77A、77Bは
周方向で同じ位置に設けた場合を示したが、駆動ノズル
77A、77Bを周方向の異なる位置、例えば180度
回転した位置(図示せず)に設けて駆動ノズル77Aと
駆動ノズル77Bを互いに向き合う径方向位置とするこ
とで一次側流体の噴出力による駆動羽根車に加わる径方
向荷重を大幅に低減でき、駆動側支持軸69と駆動側軸
受61Eとの機械的な接触荷重を低減し、より一層摩擦
損失を低減した高効率化と軸受部の磨耗量を減じた高耐
久性化が実現できる。
In this embodiment, the driving nozzles 77A and 77B are provided at the same position in the circumferential direction, but the driving nozzles 77A and 77B are at different positions in the circumferential direction, for example, positions rotated by 180 degrees (not shown). By arranging the drive nozzle 77A and the drive nozzle 77B at radial positions facing each other, the radial load applied to the drive impeller due to the jetting force of the primary side fluid can be significantly reduced, and the drive side support shaft 69 and the drive side bearing The mechanical contact load with the 61E can be reduced, the friction loss can be further reduced, and the efficiency can be improved, and the wear amount of the bearing portion can be reduced, and the durability can be improved.

【0043】なお、図4のように裏羽根61C’を加え
て表羽根と裏羽根の形状を任意に変えることにより表羽
根、裏羽根の羽根特性の最適化ができ、より一層の高効
率化ができる。
As shown in FIG. 4, by adding a back blade 61C 'and arbitrarily changing the shapes of the front blade and the back blade, the blade characteristics of the front blade and the back blade can be optimized, and the efficiency is further improved. You can

【0044】本実施例によれば、表羽根、裏羽根の各々
の羽根特性に適した駆動ノズル仕様により、駆動力を高
めた高性能化が実現でき、羽根仕様の設計の自由度が向
上できるだけでなく、回転軸方向へのスラスト力の低減
により軸受部での機械摩擦抵抗による機械摩擦損失の低
減を実現でき、より一層の高効率化が実現できるという
効果がある。
According to the present embodiment, the drive nozzle specifications suitable for the respective blade characteristics of the front blade and the back blade can realize high performance with high driving force, and the degree of freedom in designing the blade specifications can be improved. In addition, the reduction of the thrust force in the direction of the rotation axis can reduce the mechanical friction loss due to the mechanical friction resistance in the bearing portion, which has the effect of further improving the efficiency.

【0045】また、羽根基部の両側に設けた表羽根およ
び裏羽根に対して駆動ノズルを設けているので表羽根と
裏羽根の形状を変えてそれぞれ任意に最適化でき、設計
自由度の大きな羽根車の実現とより一層の高効率化がで
きるという効果がある。
Further, since the drive nozzles are provided for the front blade and the back blade provided on both sides of the blade base, the shapes of the front blade and the back blade can be changed to be optimized respectively, and the blade having a large degree of design freedom. This has the effect of realizing a car and making it even more efficient.

【0046】次に、図5に示す本発明の第二の実施例に
ついて説明する。なお、図1〜図4に示した実施例と同
一機能、同一部材のところは同一符号を付与し詳細な説
明は省略する。
Next, a second embodiment of the present invention shown in FIG. 5 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 4 are designated by the same reference numerals and detailed description thereof will be omitted.

【0047】79は駆動ノズル回路76に設けた一次側
流体制御体である。この一次側流体制御体79は表羽根
61Bに対向する駆動ノズル77A側に設けられ、開孔
79Aを持つボール状の弁部79B、弁駆動部79Cお
よび弁部79Bと弁駆動部79Cを連結する連結体79
Dを有している。
Reference numeral 79 is a primary side fluid controller provided in the drive nozzle circuit 76. The primary side fluid control body 79 is provided on the side of the drive nozzle 77A facing the front blade 61B and connects the ball-shaped valve portion 79B having the opening 79A, the valve drive portion 79C, and the valve portion 79B to the valve drive portion 79C. Connector 79
D.

【0048】上記構成において、流体駆動装置の動作を
説明する。一次側流体による駆動羽根車61の回転駆動
およびこの駆動羽根車61の回転に伴うポンプ羽根車で
ある二次側回転体63の運転動作は第一の実施例と同じ
であり、一次側流体制御体79は二次側流体の負荷に応
じて開閉あるいは開度調整を行うものである。
The operation of the fluid drive system having the above structure will be described. The drive operation of the drive impeller 61 by the primary fluid and the operation of the secondary rotor 63, which is a pump impeller associated with the rotation of the drive impeller 61, are the same as those in the first embodiment. The body 79 opens and closes or adjusts the opening according to the load of the secondary side fluid.

【0049】すなわち、流体駆動装置の回転起動時は開
孔79Aが全開になるように弁駆動部79Cによりボー
ル状の弁部79Bを連結体79Dを介して回転駆動す
る。弁駆動部79Cを電動モータなどとすれば外部入力
により簡単に動作できる。
That is, when the fluid drive device is started to rotate, the ball-shaped valve portion 79B is rotationally driven by the valve drive portion 79C through the connecting body 79D so that the opening 79A is fully opened. If the valve drive unit 79C is an electric motor or the like, it can be easily operated by an external input.

【0050】流体駆動装置が起動した後は、二次側流体
の負荷に応じて弁部79Bの開度を増減して一次側流体
の流量を増減制御するものである。
After the fluid drive device is activated, the opening of the valve portion 79B is increased / decreased according to the load of the secondary fluid to control the flow rate of the primary fluid.

【0051】このように駆動ノズル回路76に一次側流
体制御体79を設けているので、確実な起動運転がで
き、また起動後は二次側流体の負荷に応じて一次側流体
の流量を最小に設定できるため一次側流体の負荷を低減
した運転ができる。そのため一次側流体のエネルギー損
失の低減ができるとともに効率の高い流体駆動装置が実
現でき、さらに多数の流体駆動装置を同じ一次側流体で
駆動できることになり一次側流体の利用効率を高めるこ
とができる。
Since the drive-side nozzle circuit 76 is provided with the primary-side fluid control body 79 as described above, a reliable start-up operation can be performed, and after the start-up, the flow rate of the primary-side fluid is minimized according to the load of the secondary-side fluid. Since it can be set to, operation can be performed with a reduced load on the primary side fluid. Therefore, the energy loss of the primary side fluid can be reduced and a highly efficient fluid drive device can be realized, and more fluid drive devices can be driven by the same primary side fluid, so that the utilization efficiency of the primary side fluid can be improved.

【0052】また、一次側流体制御体79は駆動ノズル
回路76の駆動ノズル77A側にのみ設置する例を示し
たが、この場合は駆動ノズル77Bの裏羽根61C側は
常時最適の一次側流体の噴出衝突が得られるため連通孔
61Eの流動抵抗などで効率低下しやすい裏羽根61C
を効率低下なしで有効利用できる。
Although the primary side fluid control body 79 is installed only on the drive nozzle 77A side of the drive nozzle circuit 76, in this case, the back blade 61C side of the drive nozzle 77B is always the optimum primary side fluid. Since the jet collision is obtained, the efficiency of the back blade 61C is likely to decrease due to the flow resistance of the communication hole 61E.
Can be effectively used without lowering efficiency.

【0053】二次側流体の負荷を検出する方法として、
ポンプ羽根車である二次側回転体63の回転数の検知や
二次側流体の流体圧力(例えばポンプ出口74側の圧
力)の検知や二次側流体の流量の検知あるいは二次側流
体の利用用途(例えば暖房あるいは風呂追い焚きなど)
による設定さらには暖房などにおいては二次側流体の温
度などが可能である。なお、ここでは流体駆動装置の起
動時に弁部79Bの開孔79Aを全開にする場合を示し
たが、起動力が十分ある場合は必ずしも開孔79Aを全
開にする必要がないのは言うまでもなく、また一次側流
体制御体79を駆動ノズル回路76の合流部の上流側に
設けても良くあるいは駆動ノズル77A、77Bの両方
に設けても良いのは言うまでもなく、流量変化幅を大き
くできる。
As a method for detecting the load of the secondary side fluid,
Detection of the rotational speed of the secondary-side rotating body 63 that is a pump impeller, detection of the fluid pressure of the secondary-side fluid (for example, pressure on the pump outlet 74 side), detection of the flow rate of the secondary-side fluid, or detection of the secondary-side fluid Usage (eg heating or bath reheating)
In addition, the temperature of the secondary side fluid can be set in the setting by, for example, heating. Although the case where the opening 79A of the valve portion 79B is fully opened is shown here when the fluid drive device is started, it goes without saying that it is not always necessary to fully open the hole 79A when the starting force is sufficient. Further, it goes without saying that the primary side fluid control body 79 may be provided on the upstream side of the merging portion of the drive nozzle circuit 76 or may be provided on both of the drive nozzles 77A and 77B, so that the variation range of the flow rate can be increased.

【0054】以上のように、本発明の第二の実施例によ
れば図1の第一の実施例と同様の効果が得られるととも
に、一次側流体のエネルギー損失を低減して効率の高か
い流体駆動装置が実現できるという効果があり、さらに
同じ一次側流体で多数の流体駆動装置を駆動でき一次側
流体の利用効率を高めるという効果がある。
As described above, according to the second embodiment of the present invention, the same effect as that of the first embodiment of FIG. 1 can be obtained, and the energy loss of the primary side fluid can be reduced to achieve high efficiency. There is an effect that a fluid drive device can be realized, and further, there is an effect that a large number of fluid drive devices can be driven by the same primary fluid and the utilization efficiency of the primary fluid can be improved.

【0055】次に、図6に示す本発明第三の実施例につ
いて説明する。なお、図1〜図4に示した実施例と同一
機能、同一部材のところは同一符号を付与し詳細な説明
は省略する。
Next, a third embodiment of the present invention shown in FIG. 6 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 4 are designated by the same reference numerals and detailed description thereof will be omitted.

【0056】ポンプ羽根車である二次側回転体63は羽
根基部63Aの片面のポンプ入口73側には羽根基部6
3Aから突出し径方向に延びる複数の表羽根63Bが設
けられ、さらに羽根基部63Aの他の片面である隔壁6
5側には羽根基部63Aから突出し径方向に延びる複数
の裏羽根63Cが設けられている。表羽根63Bおよび
裏羽根63Cの羽根基部63Aから立ち上がった高さ方
向の先端部は側壁を持たないいわゆる開放型の羽根とな
っている。63Dは羽根基部63Aを貫通し表羽根63
B側と裏羽根63C側とを連通させる連通孔である。6
3Eは羽根基部63Aに設けた二次側軸受である。
The secondary rotor 63, which is a pump impeller, has a blade base 6 on the side of the pump inlet 73 on one side of the blade base 63A.
A plurality of front blades 63B that project from 3A and extend in the radial direction are provided, and the partition wall 6 that is the other surface of the blade base 63A.
A plurality of back blades 63C are provided on the fifth side and project from the blade base 63A and extend in the radial direction. The front end portions of the front blade 63B and the rear blade 63C in the height direction rising from the blade base portion 63A are so-called open type blades having no side wall. 63D penetrates the blade base portion 63A and passes through the front blade 63.
It is a communication hole that connects the B side and the back blade 63C side. 6
3E is a secondary bearing provided on the blade base 63A.

【0057】80は一端がポンプ出口74に連通する二
次側流体流出回路であり、二次側流体流出回路80の他
端には表羽根63Bに対向配置した二次側流体流出孔8
1Aと裏羽根63Cに対向配置した二次側流体流出孔8
1Bが設けられている。
Reference numeral 80 denotes a secondary side fluid outflow circuit, one end of which communicates with the pump outlet 74, and the other end of the secondary side fluid outflow circuit 80 has a secondary side fluid outflow hole 8 facing the front blade 63B.
Secondary-side fluid outflow hole 8 arranged to face 1A and back blade 63C
1B is provided.

【0058】82はポンプ室75を表羽根63B側と裏
羽根63C側に区切る分割突起部で、羽根基部63Aと
の隙間が小さくなるように羽根基部63Aに向けて環状
に突出させて表羽根63B側と裏羽根63C側を分割し
ている。
Reference numeral 82 denotes a divided projection that divides the pump chamber 75 into the front blade 63B side and the back blade 63C side, and is projected annularly toward the blade base 63A so that the clearance between the pump chamber 75 and the blade base 63A becomes smaller. The side and the back blade 63C side are divided.

【0059】なお、二次側回転体63の表羽根63Bお
よび裏羽根63Cの形状は図2〜図4に示した第一の実
施例の駆動羽根車61の場合と同様に設定できるのでこ
こでは図を省略する。
The shapes of the front blade 63B and the rear blade 63C of the secondary side rotating body 63 can be set in the same manner as in the case of the drive impeller 61 of the first embodiment shown in FIGS. Illustration is omitted.

【0060】上記構成において、流体駆動装置の動作を
説明する。駆動側の動作は図1に示した第一の実施例と
同じなので省略し、ここでは二次側回転体63側につい
て述べる。二次側回転体63の回転に伴いポンプ入口7
3から吸入した二次側流体の一部は表羽根63B側を通
って加圧されて二次側流体流出孔81Aから二次側流体
流出回路80に入り、残りの二次側流体は連通孔63D
を通って裏羽根63C側に入り加圧されて二次側流体流
出孔81Bから二次側流体流出回路80に流入する。二
次側流体流出回路80で合流した表羽根63B側と裏羽
根63C側の二次側流体はポンプ出口74から流出す
る。
The operation of the fluid drive system having the above structure will be described. Since the operation on the drive side is the same as that of the first embodiment shown in FIG. 1, the description thereof will be omitted. Here, the secondary side rotating body 63 side will be described. With the rotation of the secondary side rotating body 63, the pump inlet 7
A part of the secondary side fluid sucked from 3 is pressurized through the front blade 63B side and enters the secondary side fluid outflow circuit 80 from the secondary side fluid outflow hole 81A, and the remaining secondary side fluid is a communication hole. 63D
Through it, enters the rear blade 63C, is pressurized, and flows into the secondary fluid outflow circuit 80 from the secondary fluid outflow hole 81B. The secondary side fluids on the front blade 63B side and the back blade 63C side that have merged in the secondary side fluid outflow circuit 80 flow out from the pump outlet 74.

【0061】本実施例では二次側回転体63は羽根基部
63Aの両側に表羽根63Bと裏羽根63Cを設けてい
るので、回転軸方向のスラスト力を低減でき二次側軸受
63Eの端部とスラスト体78との機械摩擦抵抗が低減
され摩擦損失の少ない運転がなされるだけでなく、表羽
根63B、裏羽根63Cの各羽根の流量特性に対して形
状、位置、寸法などを適切に設定できる二次側流体流出
孔81A、81Bにより、二次側流体の流動損失を小さ
くして二次側回転体の高効率化ができ、このため一次側
流体の駆動力を小さくした低入力化ができる。
In this embodiment, since the secondary rotor 63 has the front blade 63B and the back blade 63C on both sides of the blade base 63A, the thrust force in the rotation axis direction can be reduced and the end portion of the secondary bearing 63E can be reduced. The mechanical frictional resistance between the thrust body 78 and the thrust body 78 is reduced and operation with less friction loss is performed, and the shape, position, size, etc. are appropriately set for the flow rate characteristics of each of the front blade 63B and the rear blade 63C. The possible secondary side fluid outflow holes 81A and 81B can reduce the flow loss of the secondary side fluid to improve the efficiency of the secondary side rotating body, and thus reduce the driving force of the primary side fluid and reduce the input power. it can.

【0062】また、分割突起部82で二次側流体は表羽
根63B側と裏羽根63C側が分離されているため、二
次側回転体63の外周部での両流体の衝突あるいは干渉
が防止されて流動抵抗をより一層低減できる。
Further, since the secondary side fluid is separated from the front vane 63B side and the rear vane 63C side by the split protrusions 82, collision or interference of both fluids on the outer peripheral portion of the secondary side rotating body 63 is prevented. The flow resistance can be further reduced.

【0063】なお、分割突起部82は二次側回転体63
側にのみ設ける場合を示したが、駆動羽根車61側にも
設けることにより性能向上することは言うまでもない。
It should be noted that the dividing projection 82 is the secondary side rotating body 63.
Although the case where it is provided only on the side is shown, it goes without saying that the performance is improved by providing it on the side of the drive impeller 61 as well.

【0064】以上のように、本発明の第三の実施例によ
れば図1の第一の実施例と同様の効果が得られるととも
に、二次側回転体側において流動抵抗を低減して高効率
化できるという効果があり、またスラスト力低減による
摩擦損失の低減による効率化ができ、そのため一次側流
体の低入力化ができるという効果がある。
As described above, according to the third embodiment of the present invention, the same effect as that of the first embodiment of FIG. 1 can be obtained, and the flow resistance on the secondary side rotating body side is reduced to achieve high efficiency. In addition, the thrust force can be reduced, and the friction loss can be reduced to improve the efficiency. Therefore, the input of the primary fluid can be reduced.

【0065】次に、図7に示す本発明第四の実施例につ
いて説明する。なお、図1〜図4および図6に示した実
施例と同一機能、同一部材のところは同一符号を付与し
詳細な説明は省略する。
Next, a fourth embodiment of the present invention shown in FIG. 7 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 4 and 6 are designated by the same reference numerals and detailed description thereof will be omitted.

【0066】83は二次側流体流出回路80に設けた二
次側流体制御体である。この二次側流体制御体83は表
羽根63Bに対向する二次側流体流出孔81Aに設けら
れ、開孔83Aを持つボール状の弁部83B、弁駆動部
83Cおよび弁部83Bと弁駆動部83Cを連結する連
結体83Dを有している。
Reference numeral 83 is a secondary side fluid control body provided in the secondary side fluid outflow circuit 80. This secondary side fluid control body 83 is provided in the secondary side fluid outflow hole 81A facing the front blade 63B, and has a ball-shaped valve portion 83B having an opening 83A, a valve driving portion 83C, a valve portion 83B and a valve driving portion. It has the connection body 83D which connects 83C.

【0067】上記構成において、流体駆動装置の動作を
説明する。駆動側の動作および二次側回転体の二次側流
体流出孔81A、81Bの動作は本発明第一および第三
の実施例と同様なので、ここでは二次側流体制御体83
の動作について説明する。二次側流体制御体83は二次
側流体の負荷あるいは用途に応じてボール状の弁部83
Bを開閉あるいは開度を増減して二次側流体の流量を制
御するもので、弁駆動部83Cによりボール状の弁部8
3Bを連結体83Dを介して回転駆動する。
The operation of the fluid drive system having the above structure will be described. Since the operation on the drive side and the operation of the secondary side fluid outflow holes 81A and 81B of the secondary side rotating body are the same as those of the first and third embodiments of the present invention, here, the secondary side fluid control body 83 is used.
The operation of will be described. The secondary-side fluid control body 83 is a ball-shaped valve portion 83 depending on the load or application of the secondary-side fluid.
B controls the flow rate of the secondary side fluid by opening / closing or increasing / decreasing the opening degree.
3B is rotationally driven via the connecting body 83D.

【0068】例えば、二次側流体により暖房する暖房装
置などの場合、暖房開始時に大きい暖房能力が必要なと
きは弁部83Bの開度を増大して二次側流体を多く循環
供給し、室温が設定値に達した暖房安定時は弁部83B
の開度を低減あるいは閉止して二次側流体の循環量を小
さくする。このようにして二次側の負荷を必要最小量に
設定して一次側流体の必要駆動力を制御し、一次側流体
の負担を低減する。
For example, in the case of a heating device which heats with a secondary fluid, when a large heating capacity is required at the start of heating, the opening of the valve portion 83B is increased to circulate and supply a large amount of the secondary fluid to the room temperature. When the temperature reaches the set value and the heating is stable, the valve section 83B
The amount of circulation of the secondary side fluid is reduced by reducing or closing the opening degree of. In this way, the load on the secondary side is set to the required minimum amount, the required driving force of the primary side fluid is controlled, and the load on the primary side fluid is reduced.

【0069】また、ポンプ羽根車である二次側回転体6
3は羽根基部63Aの両側に表羽根63Bと裏羽根63
Cを設けているので、回転軸方向のスラスト力を低減で
き、二次側軸受63Eの端部での機械摩擦抵抗が低減で
き摩擦損失の少ない回転が得られ、二次側回転体63の
高効率化と一次側流体の駆動力を小さくした低入力化が
できる。
Further, the secondary rotor 6 which is a pump impeller
3 is a front blade 63B and a back blade 63 on both sides of the blade base 63A.
Since C is provided, the thrust force in the rotation axis direction can be reduced, the mechanical frictional resistance at the end of the secondary bearing 63E can be reduced, and rotation with less friction loss can be obtained. It is possible to improve efficiency and lower the input by reducing the driving force of the primary fluid.

【0070】また、二次側流体制御体83は二次側流体
流出回路80の二次側流体流出孔81A側に設置する例
を示したが、この場合は二次側流体流出孔81B側の裏
羽根63C側は常時最適の流出孔の設定ができるため、
連通孔63Dなどにより効率低下しやすい裏羽根63C
を効率低下なしで有効利用できる。
Further, although the example in which the secondary side fluid control body 83 is installed on the side of the secondary side fluid outflow hole 81A of the secondary side fluid outflow circuit 80 is shown, in this case, it is on the side of the secondary side fluid outflow hole 81B. Since the back blade 63C side can always set the optimum outflow hole,
Back blade 63C whose efficiency tends to decrease due to communication holes 63D
Can be effectively used without lowering efficiency.

【0071】このように二次側流体の負荷を可変設定し
て必要な負荷をいつも設定できるので、駆動側となる一
次側流体の負担を小さくでき、さらに二次側回転体63
での機械摩擦損失が小さくでき効率の高い運転ができ
る。
In this way, the load of the secondary fluid can be variably set so that the required load can always be set. Therefore, the load of the primary fluid on the drive side can be reduced, and the secondary rotating body 63 can be further reduced.
The mechanical friction loss can be reduced and highly efficient operation can be performed.

【0072】なお、この弁駆動部83Cを電動モータな
どとすれば外部入力により簡単に動作でき、また二次側
流体制御体83は二次側流体流出回路80の合流部の下
流側に設けても良くあるいは二次側流体流出孔81A、
81Bの両方に設けても良いのは言うまでもなく、より
負荷可変幅の大きい設定ができる。
If the valve drive section 83C is an electric motor or the like, it can be easily operated by an external input, and the secondary side fluid control body 83 is provided on the downstream side of the confluence section of the secondary side fluid outflow circuit 80. Good or secondary side fluid outflow hole 81A,
Needless to say, it may be provided on both 81B, and a wider variable load range can be set.

【0073】以上のように、本発明の第四の実施例によ
れば図1の第一の実施例および図6の第三の実施例と同
様の効果が得られるとともに、二次側流体の負荷を可変
設定でき一次側流体の負担を低減できるとともに低入力
化できるという効果がある。
As described above, according to the fourth embodiment of the present invention, the same effects as those of the first embodiment of FIG. 1 and the third embodiment of FIG. The load can be variably set, and the load on the primary side fluid can be reduced and the input can be reduced.

【0074】また、軸受部の摩擦抵抗を減らして二次側
回転体を高効率化できるという効果がある。
Further, there is an effect that the frictional resistance of the bearing portion can be reduced and the efficiency of the secondary side rotating body can be improved.

【0075】次に、図8に示す本発明の第五の実施例に
ついて説明する。なお、図1〜図7に示した実施例と同
一機能、同一部材のところは同一符号を付与し詳細な説
明は省略する。
Next explained is the fifth embodiment of the invention shown in FIG. The same functions and members as those of the embodiment shown in FIGS. 1 to 7 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0076】図8において、駆動羽根車61の羽根基部
61Aの両側に設けた表羽根61Bおよび裏羽根61C
に対向して駆動ノズル77A、77Bを配置し、一次側
流体制御体79を駆動ノズル回路76の駆動ノズル77
A側に設けている。また、二次側回転体63の羽根基部
63Aの両側に設けた表羽根63Bおよび裏羽根63C
に対向して二次側流体流出孔81A、81Bを配置し、
二次側流体制御体83を二次側流体流出回路80の二次
側流体流出孔81A側に設けている。
In FIG. 8, the front blade 61B and the rear blade 61C provided on both sides of the blade base 61A of the drive impeller 61.
Drive nozzles 77A and 77B are arranged so as to face each other and the primary side fluid control body 79 is connected to the drive nozzle 77 of the drive nozzle circuit 76.
It is provided on the A side. Further, the front blade 63B and the back blade 63C provided on both sides of the blade base 63A of the secondary side rotating body 63.
The secondary side fluid outflow holes 81A and 81B facing each other,
The secondary side fluid control body 83 is provided on the secondary side fluid outflow hole 81A side of the secondary side fluid outflow circuit 80.

【0077】一次側流体制御体79および二次側流体制
御体83は開孔79A、83Aを持つボール状の弁部7
9B、83Bと、弁駆動部79C、83Cおよび連結体
79D、83Dを有している。
The primary side fluid control body 79 and the secondary side fluid control body 83 have a ball-shaped valve portion 7 having openings 79A and 83A.
9B and 83B, valve drive parts 79C and 83C, and connection bodies 79D and 83D.

【0078】上記構成において、流体駆動装置の一次側
および二次側流体制御体の動作を中心に説明する。流体
駆動装置の回転起動時は一次側流体制御体79の弁部7
9Bを全開するなど開度を大きくして確実な起動を行
い、起動後は二次側の負荷に応じて弁部79Bの開度を
増減して一次側流体の流量を増減制御する。一方、二次
側回転体63側の二次側流体制御体83では、二次側流
体の負荷あるいは用途に応じて弁部83Bを開閉あるい
は開度の増減して二次側流体の流量を制御する。
In the above structure, the operation of the primary and secondary side fluid control units of the fluid drive system will be mainly described. At the time of starting the rotation of the fluid drive device, the valve portion 7 of the primary side fluid control body 79
9B is fully opened to increase the opening degree for reliable start-up, and after the start-up, the opening degree of the valve portion 79B is increased or decreased according to the load on the secondary side to control the flow rate of the primary side fluid. On the other hand, in the secondary side fluid control body 83 on the secondary side rotating body 63 side, the flow rate of the secondary side fluid is controlled by opening / closing the valve portion 83B or increasing / decreasing the opening degree according to the load of the secondary side fluid or the application. To do.

【0079】例えば、二次側回転体63をポンプ羽根車
とした場合、二次側流体制御体83の弁部83Bを閉止
して二次側流体の流量を小さくし、一次側流体制御体7
9の弁部79Bを全開することにより駆動羽根車61の
回転数を増大させ、小流量で大揚程の特性を持つ流体駆
動ポンプとできる。また、二次側流体制御体83の弁部
83Bを全開と一次側流体制御体79の弁部79Bを全
開した大流量・大揚程の流体駆動ポンプ、あるいは二次
側流体制御体83の弁部83Bの全開と一次側流体制御
体79の弁部79Bの閉止による大流量・小揚程の流体
駆動ポンプなど幅広い使用特性を実現できる。
For example, when the secondary rotating body 63 is a pump impeller, the valve portion 83B of the secondary fluid control body 83 is closed to reduce the flow rate of the secondary fluid, and the primary fluid control body 7 is provided.
By fully opening the valve portion 79B of No. 9, the rotational speed of the drive impeller 61 is increased, and a fluid drive pump having a small flow rate and large head characteristic can be obtained. In addition, a fluid drive pump of a large flow rate and a large head, in which the valve portion 83B of the secondary side fluid control body 83 is fully opened and the valve portion 79B of the primary side fluid control body 79 is fully opened, or the valve portion of the secondary side fluid control body 83. By fully opening 83B and closing the valve portion 79B of the primary side fluid control body 79, a wide range of usage characteristics such as a fluid-driven pump with a large flow rate and a small head can be realized.

【0080】このように二次側流体の負荷を二次側流体
制御体83で可変設定可能であり、必要な二次側流体の
負荷を最適に設定するとともに、この二次側負荷に対し
て駆動側である一次側流体の流量を一次側流体制御体7
9で最適に設定して、一次側流体の負担をより一層小さ
くできるとともに流動損失を減らした高効率化が流量可
変域の全域にわたりできる。また、二次側流体の流量可
変域が拡大されるとともに一次側流体の流量可変域を付
加することにより、流体駆動装置の利用可能範囲の拡大
により用途の自由度拡大と利便性向上が実現できる。
As described above, the load of the secondary side fluid can be variably set by the secondary side fluid control body 83, and the necessary load of the secondary side fluid can be optimally set, and the secondary side load can be The flow rate of the primary fluid on the drive side is set to
The optimum setting can be made at 9 to further reduce the load on the primary side fluid and to achieve high efficiency with reduced flow loss over the entire flow rate variable range. In addition, the flow rate variable range of the secondary side fluid is expanded and the flow rate variable range of the primary side fluid is added, so that the usable range of the fluid drive device can be expanded and the degree of freedom of use and the improvement of convenience can be realized. .

【0081】以上のように、本発明の第五の実施例によ
れば図1の第一の実施例と同様の効果が得られるととも
に、一次側流体の負担をより一層小さくできるとともに
流量可変域全域にわたり高効率化が実現できるという効
果がある。
As described above, according to the fifth embodiment of the present invention, the same effect as that of the first embodiment of FIG. 1 can be obtained, the load on the primary side fluid can be further reduced, and the flow rate variable range can be reduced. There is an effect that high efficiency can be realized over the entire area.

【0082】また、流量可変域の増大により利用可能範
囲が拡大し用途の自由度拡大と利便性向上が実現できる
という効果がある。
Further, there is an effect that the usable range is expanded due to the increase of the variable flow rate range, and the flexibility of use and the convenience can be improved.

【0083】[0083]

【発明の効果】以上の説明から明らかなように本発明の
流体駆動装置によれば次の効果が得られる。
As is apparent from the above description, the fluid drive device of the present invention has the following effects.

【0084】駆動羽根車と二次側回転体とを隔壁で分離
しつつ動力伝達手段で連結し、駆動羽根車の羽根基部の
両側に設けた表羽根および裏羽根の各々に駆動ノズルを
対向配置した駆動ノズル回路を設けたので、表羽根およ
び裏羽根の各々に適した駆動ノズル仕様が設定でき、駆
動力を高め高性能がアップする。
The drive impeller and the secondary side rotating body are separated by a partition wall and connected by a power transmission means, and drive nozzles are arranged opposite to each of the front and back blades provided on both sides of the blade base of the drive impeller. Since the drive nozzle circuit is provided, the drive nozzle specifications suitable for each of the front blade and the back blade can be set, and the driving force is increased and the high performance is improved.

【0085】また、駆動側における軸方向のスラスト力
を小さくして機械摩擦損失を低減し、より一層効率がア
ップする。
Further, the axial thrust force on the drive side is reduced to reduce the mechanical friction loss and the efficiency is further improved.

【0086】さらに、駆動ノズル仕様を表羽根および裏
羽根に適した設定ができるため、表羽根および裏羽根の
形状は任意に変えることができ、設計の自由度を向上に
よる高効率化が実現できる。
Further, since the drive nozzle specifications can be set to be suitable for the front and back blades, the shapes of the front and back blades can be arbitrarily changed, and high efficiency can be realized by improving the degree of freedom in design. .

【0087】また、第二の発明の流体駆動装置は、駆動
ノズル回路に一次側流量制御体を備えているので、一次
側流体のエネルギー損失を低減でき、高効率化が実現で
きる。
In the fluid drive system according to the second aspect of the invention, since the drive nozzle circuit is provided with the primary side flow rate control member, energy loss of the primary side fluid can be reduced and high efficiency can be realized.

【0088】さらに、同じ一次側流体で多数の流体駆動
装置を駆動でき、一次側流体の利用効率を向上できる。
Further, a large number of fluid driving devices can be driven by the same primary fluid, and the utilization efficiency of the primary fluid can be improved.

【0089】また、第三の発明の流体駆動装置は、二次
側回転体は羽根基部の両側に設けた表羽根および裏羽根
の各々に二次側流体流出孔を個別に対向配置した二次側
流体流出回路を設けているので、二次側回転体側におい
て流動抵抗を低減して二次側での高効率化ができる。
In the fluid drive system according to the third aspect of the present invention, the secondary side rotating body has a secondary side fluid outflow hole individually opposed to each of the front blade and the back blade provided on both sides of the blade base. Since the side fluid outflow circuit is provided, it is possible to reduce flow resistance on the secondary side rotating body side and improve efficiency on the secondary side.

【0090】さらに、二次側において軸方向のスラスト
力を低下でき、機械摩擦損失の低減による高効率化がで
き、一次側流体の低入力化ができる。
Further, the thrust force in the axial direction can be reduced on the secondary side, the efficiency can be improved by reducing the mechanical friction loss, and the input of the primary side fluid can be reduced.

【0091】また、第四の発明の流体駆動装置は、二次
側流体流出回路に二次側流体制御体を設けているので、
二次側流体の負荷を可変設定でき一次側流体の負担を最
小化し一次側流体のより一層の低入力化ができる。
Further, in the fluid drive system of the fourth aspect of the present invention, since the secondary side fluid control circuit is provided in the secondary side fluid outflow circuit,
The load of the secondary fluid can be variably set, and the load on the primary fluid can be minimized to further reduce the input power of the primary fluid.

【0092】また、第五の発明の流体駆動装置は、一次
側流体制御体および二次側流体制御体を備えているの
で、流量可変域の全域にわたり高効率化と一次側流体の
低入力化ができる。
Since the fluid drive system of the fifth aspect of the invention is provided with the primary side fluid control body and the secondary side fluid control body, the efficiency is improved and the primary side fluid input is reduced over the entire flow rate variable range. You can

【0093】さらに、流量可変域を増大でき利用可能範
囲が拡大できるため用途の自由度が拡大し利便性が向上
する。
Furthermore, since the variable flow rate range can be increased and the usable range can be expanded, the degree of freedom of use is expanded and the convenience is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例における流体駆動装置の
断面図
FIG. 1 is a sectional view of a fluid drive system according to a first embodiment of the present invention.

【図2】上記図1の駆動羽根車の表羽根の平面図FIG. 2 is a plan view of front blades of the driving impeller shown in FIG.

【図3】上記図1の駆動羽根車の裏羽根の平面図FIG. 3 is a plan view of a back blade of the drive impeller of FIG.

【図4】上記図1の他の実施例の駆動羽根車の裏羽根の
平面図
FIG. 4 is a plan view of the back blade of the driving impeller of another embodiment of FIG.

【図5】本発明の第二の実施例における流体駆動装置の
断面図
FIG. 5 is a sectional view of a fluid drive system according to a second embodiment of the present invention.

【図6】本発明の第三の実施例における流体駆動装置の
断面図
FIG. 6 is a sectional view of a fluid drive system according to a third embodiment of the present invention.

【図7】本発明の第四の実施例における流体駆動装置の
断面図
FIG. 7 is a sectional view of a fluid drive unit according to a fourth embodiment of the present invention.

【図8】本発明の第五の実施例における流体駆動装置の
断面図
FIG. 8 is a sectional view of a fluid drive system according to a fifth embodiment of the present invention.

【図9】従来の流体を駆動源とするポンプの構成図FIG. 9 is a configuration diagram of a conventional pump using a fluid as a drive source.

【図10】従来の流体を駆動源とする他のポンプの構成
FIG. 10 is a configuration diagram of another conventional pump using a fluid as a drive source.

【図11】従来の住棟セントラル給湯暖房装置のシステ
ム構成図
[Fig. 11] System configuration diagram of a conventional central hot water supply / room heating system for a residential building

【図12】従来の電動モータを駆動源とするポンプの構
成図
FIG. 12 is a configuration diagram of a conventional pump that uses an electric motor as a drive source.

【符号の説明】[Explanation of symbols]

61 駆動羽根車 63 二次側回転体 65 隔壁 66 動力伝達手段 67、68 動力伝達体 61A、63A 羽根基部 61B、63B 表羽根 61C、63C 裏羽根 61D、63D 連通孔 76 駆動ノズル回路 77A、77B 駆動ノズル 79 一次側流体制御体 80 二次側流体流出回路 81A、81B 二次側流体流出孔 83 二次側流体制御体 61 Drive Impeller 63 Secondary Rotating Body 65 Partition 66 Power Transmission Means 67, 68 Power Transmission 61A, 63A Blade Base 61B, 63B Front Blade 61C, 63C Back Blade 61D, 63D Communication Hole 76 Drive Nozzle Circuit 77A, 77B Drive Nozzle 79 Primary side fluid control body 80 Secondary side fluid outflow circuit 81A, 81B Secondary side fluid outflow hole 83 Secondary side fluid control body

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】一次側流体を回転力の駆動源とする駆動羽
根車と、二次側回転体と、前記駆動羽根車と二次側回転
体とを気密に分離する隔壁と、前記駆動羽根車に設けた
駆動側の動力伝達体と前記二次側回転体に設けた従動側
の動力伝達体とを前記隔壁を介して対向させた動力伝達
手段と、前記駆動羽根車は羽根基部の片面に表羽根を設
け、さらに前記羽根基部の他の片面である前記隔壁側に
裏羽根と前記動力伝達体を設けるとともに前記表羽根側
と裏羽根側を連通する連通孔を有し、前記表羽根および
裏羽根の各々には一次側流体が噴出する駆動ノズルを個
別に対向配置した駆動ノズル回路を有する流体駆動装
置。
1. A drive impeller that uses a primary fluid as a drive source of rotational force, a secondary rotor, a partition wall that airtightly separates the drive impeller and the secondary rotor, and the drive blade. A power transmission means in which a drive-side power transmission body provided in the vehicle and a driven-side power transmission body provided in the secondary-side rotating body are opposed to each other via the partition wall, and the drive impeller has one surface of a blade base portion. A front blade, and a partition wall, which is the other surface of the blade base, with a back blade and the power transmission body, and a communication hole for communicating the front blade side with the back blade side. And a fluid drive device having a drive nozzle circuit in which drive nozzles for ejecting the primary side fluid are individually opposed to each other on each of the back blades.
【請求項2】駆動ノズル回路には一次側流体の流量を制
御する一次側流体制御体を備えた請求項1記載の流体駆
動装置。
2. The fluid drive device according to claim 1, wherein the drive nozzle circuit includes a primary side fluid control body for controlling the flow rate of the primary side fluid.
【請求項3】二次側回転体は羽根基部の片面に表羽根を
設け、さらに前記羽根基部の他の片面である隔壁側に裏
羽根と動力伝達体を設けるとともに前記表羽根側と裏羽
根側を連通する連通孔を有し、前記表羽根と裏羽根の各
々には二次側流体が流出する二次側流体の流出孔を個別
に対向配置した二次側流体流出回路を有する請求項1記
載の流体駆動装置。
3. A secondary side rotating body is provided with a front blade on one surface of a blade base portion, and further is provided with a back blade and a power transmission body on the other side of the blade base portion, that is, a partition wall side. A secondary side fluid outflow circuit in which each of the front vane and the back vane has a secondary side fluid outflow port in which a secondary side fluid outflow port through which the secondary side fluid flows out is individually opposed to each other. 2. The fluid drive system according to 1.
【請求項4】二次側流体流出回路には二次側流体の流量
を制御する二次側流体制御体を備えた請求項3記載の流
体駆動装置。
4. The fluid drive system according to claim 3, wherein the secondary side fluid outflow circuit is provided with a secondary side fluid controller for controlling the flow rate of the secondary side fluid.
【請求項5】一次側流体制御体および二次側流体制御体
を備えた請求項2又はび請求項4記載の流体駆動装置。
5. The fluid drive system according to claim 2, further comprising a primary side fluid control body and a secondary side fluid control body.
JP7230896A 1995-09-08 1995-09-08 Fluid driving device Pending JPH0979173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7230896A JPH0979173A (en) 1995-09-08 1995-09-08 Fluid driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7230896A JPH0979173A (en) 1995-09-08 1995-09-08 Fluid driving device

Publications (1)

Publication Number Publication Date
JPH0979173A true JPH0979173A (en) 1997-03-25

Family

ID=16915002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7230896A Pending JPH0979173A (en) 1995-09-08 1995-09-08 Fluid driving device

Country Status (1)

Country Link
JP (1) JPH0979173A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114921A1 (en) * 2012-01-30 2013-08-08 株式会社日立産機システム Impeller system having axial gap rotor
CN105736387A (en) * 2016-02-17 2016-07-06 中山浩发节能科技有限公司 Water suction pump driven by tap water pressure
CN106545498A (en) * 2016-12-07 2017-03-29 哈尔滨工程大学 A kind of shower wall hanging self-suction type cold and hot water mixing pump of optimization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114921A1 (en) * 2012-01-30 2013-08-08 株式会社日立産機システム Impeller system having axial gap rotor
JP2013155649A (en) * 2012-01-30 2013-08-15 Hitachi Industrial Equipment Systems Co Ltd Impeller system having axial gap rotor
CN105736387A (en) * 2016-02-17 2016-07-06 中山浩发节能科技有限公司 Water suction pump driven by tap water pressure
CN106545498A (en) * 2016-12-07 2017-03-29 哈尔滨工程大学 A kind of shower wall hanging self-suction type cold and hot water mixing pump of optimization

Similar Documents

Publication Publication Date Title
US7341424B2 (en) Turbines and methods of generating power
EP1242719B1 (en) Viscous drag impeller components incorporated into pumps, turbines and transmissions
US6779964B2 (en) Viscous drag impeller components incorporated into pumps, turbines and transmissions
JPH0979173A (en) Fluid driving device
WO2001035003A1 (en) Power transmission device
CN209925077U (en) Cooling water pump for self-cooling engine
KR100569259B1 (en) Pump for discharging water both direction having two impeller
JPH0942139A (en) Fluid driving device
JPH09195914A (en) Fluid driving device
JP3723985B2 (en) Fluid driven pump
CN209856037U (en) Fluid pressurization energy-saving centrifugal pump that intakes
WO2011114345A1 (en) An energy saving pump with multiple impellers
JPH08135591A (en) Fluid drive pump
JPH0925868A (en) Impeller and fluid driving device using same
JPH07317693A (en) Fluid drive pump
KR20060020358A (en) Both direction circular pump
CN217206915U (en) Vertical shaft water-cooling double-suction pump
CN218669891U (en) Centrifugal compressor capacity adjusting device and centrifugal compressor
JPH0763187A (en) Fluid driving pump
CN111997913B (en) Mute type reversal back pressure water delivery pump
CN219840800U (en) Low-energy-consumption zero-pressure circulating pump
CN115341620B (en) Non-negative pressure water supply equipment with automatic pipe network pressurization and flow stabilization functions
CN221444882U (en) Cooling tower of hydrodynamic fan of circulating water reuse system
CN217632946U (en) Centrifugal circulating pump
CN215521047U (en) Driving plate of electric control silicone oil fan clutch