JPH09195914A - Fluid driving device - Google Patents

Fluid driving device

Info

Publication number
JPH09195914A
JPH09195914A JP8009753A JP975396A JPH09195914A JP H09195914 A JPH09195914 A JP H09195914A JP 8009753 A JP8009753 A JP 8009753A JP 975396 A JP975396 A JP 975396A JP H09195914 A JPH09195914 A JP H09195914A
Authority
JP
Japan
Prior art keywords
fluid
blades
blade
drive
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8009753A
Other languages
Japanese (ja)
Inventor
Shigeru Iwanaga
茂 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8009753A priority Critical patent/JPH09195914A/en
Publication of JPH09195914A publication Critical patent/JPH09195914A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To diminish pressure loss of driving fluid and rotational resistance by making the blade opening passage of the water turbine of a part opposed to a driving nozzle to serve as a reflux channel, and guiding the flowing direction of an ejection flow by blades so as to make reverse rotation and fluid motion. SOLUTION: In a water turbine 55, blades 56 are supported by a blade base 57, and passages 58 between blades are formed between the blades 56. A driving nozzle 59 is arranged by being opposed to the peripheries 56a of the blades 56 so as to circumferentially eject driving fluid. Passages between blades opposed to the driving nozzle 59 forms cross flow channels 62. A reverse rotational pressure receiving part makes a flowing direction ejected from the driving nozzle 59 to smoothly reverse against the rotational direction of the blades 56, and a fluid motion guide introduces the ejection flow of the reverse rotational pressure receiving part to a discharge hole 63. Reinforcing ribs 68 are arranged on the blades 56 and arranged on the side surfaces thereof. Therefore, rotation driving force taken out from driving fluid can be increased, fluid resistant loss of driving fluid can be diminished, and a water turbine having high efficiency can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は流体の力を利用して
駆動する流体駆動装置に関し、更に詳しくは、集合住宅
等の住棟セントラル給湯あるいは給湯暖房方式のように
各住戸に強制循環される高温の熱媒を動力源とする循環
ポンプ等に利用するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid drive device that is driven by utilizing the force of fluid, and more specifically, it is forcibly circulated to each dwelling unit such as a central hot water supply system or a hot water supply heating system of a residential building such as an apartment house. It is used for a circulation pump or the like that uses a high-temperature heat medium as a power source.

【0002】[0002]

【従来の技術】従来の水車により駆動するポンプとし
て、例えば特開平3−279521号公報に示されるよ
うに図15の構成がある。
2. Description of the Related Art As a conventional pump driven by a water turbine, there is a structure shown in FIG. 15 as disclosed in, for example, Japanese Patent Laid-Open No. 3-279521.

【0003】図15は、河川から河川水を取水し、河川
水の流れを利用した水車により駆動するポンプで、軸流
ランナ1を有する横軸チューブラ型の水車2と単段イン
ペラ3を備えた横軸斜流型のポンプ4とが増速機5を介
して一軸上に結合され、ケーシング6内に収納されてい
る。
FIG. 15 shows a pump which takes in river water from a river and is driven by a water turbine that utilizes the flow of the river water. The pump has a horizontal axis tubular type water wheel 2 having an axial runner 1 and a single-stage impeller 3. A horizontal oblique flow type pump 4 is uniaxially connected via a speed increasing gear 5, and is housed in a casing 6.

【0004】この構成において、取水路上流の河川水は
その落差により吸込管7から流入して水車2を稼働させ
るとともに、増速機5を介して水車2で駆動されるポン
プ4によってその一部が加圧され送水管8を経て送水さ
れ、水車2を稼働させた河川水の大部分は取水路下流へ
放出されて河川下流へ流出する。
In this structure, the river water upstream of the intake channel flows in from the suction pipe 7 due to its head to operate the water turbine 2, and a part of it is driven by the pump 4 driven by the water turbine 2 via the speed increaser 5. Is pressurized and is sent through the water pipe 8, and most of the river water that has operated the water turbine 2 is discharged to the downstream of the intake channel and flows out to the downstream of the river.

【0005】また、従来の水車により駆動するポンプの
他の例として、実開昭58−195644号公報に示さ
れる図16、図17の構成がある。
Further, as another example of a conventional pump driven by a water turbine, there is a configuration shown in FIGS. 16 and 17 shown in Japanese Utility Model Laid-Open No. 58-195644.

【0006】図16、図17は、配管系統を流れる流体
の力で接線流羽根車型の水車を回してローラポンプ等の
定量吐出装置を駆動し、微量の薬液を吸引吐出して上記
配管系統に注入するポンプで、配管系統9内を流れる流
体の流量に比例した回転力を得る羽根車群10で構成し
た水車の出力軸11を配管系統外へ貫通突出させてポン
プ部12の駆動軸13とを連結したもので、出力軸11
は軸受14、15で支持されるとともに軸シール部材1
6でシールを行っている。
In FIGS. 16 and 17, the tangential flow impeller type water wheel is rotated by the force of the fluid flowing through the pipe system to drive a constant amount discharge device such as a roller pump to suck and discharge a small amount of chemical liquid to the above pipe system. In the pump for injecting, the output shaft 11 of the water turbine composed of the impeller group 10 that obtains a rotational force proportional to the flow rate of the fluid flowing in the piping system 9 is projected through the outside of the piping system to the drive shaft 13 of the pump unit 12. Output shaft 11
Is supported by bearings 14 and 15, and the shaft seal member 1
Sealing is done at 6.

【0007】この構成において、配管系統9内を流れる
流体の力で羽根車群10を流体の流量に比例して回転さ
せて水車を稼働させ、出力軸11を介して直結されたポ
ンプ部12を駆動し、薬液タンク17より薬液18をチ
ューブ19を通して吸引し配管系統内に吐出注入するも
のである。
In this structure, the impeller group 10 is rotated by the force of the fluid flowing in the piping system 9 in proportion to the flow rate of the fluid to operate the water turbine, and the pump portion 12 directly connected via the output shaft 11 is connected. It is driven to suck the chemical solution 18 from the chemical solution tank 17 through the tube 19 and inject it into the piping system.

【0008】また、従来の水車の例として実開昭56−
85072号公報に示される図18、図19の構成があ
る。
Further, as an example of a conventional water turbine, a full-scale model 56-
There is a configuration shown in FIG. 18 and FIG. 19 shown in Japanese Patent No. 85072.

【0009】図18、図19は、羽根車であるランナ2
0と、その外周部に設けた駆動流体の流入路となる渦巻
きケーシング21と、ステーベーン22およびガイドベ
ーン23をランナ20の外周部に設けている。
18 and 19 show the runner 2 which is an impeller.
0, a spiral casing 21 which is provided on the outer peripheral portion thereof and serves as an inflow passage for the driving fluid, and a stay vane 22 and a guide vane 23 are provided on the outer peripheral portion of the runner 20.

【0010】この構成において、渦巻きケーシング21
に流入した駆動流体はステーベーン22およびガイドベ
ーン23により整流されるとともにランナ20の外周全
域より羽根車内に流入し、ランナ20を回転させるとと
もに中心側より流出する。
In this configuration, the spiral casing 21
The drive fluid that has flowed in is rectified by the stay vanes 22 and the guide vanes 23, flows into the impeller from the entire outer periphery of the runner 20, rotates the runner 20, and flows out from the center side.

【0011】また、従来の住棟セントラル用給湯暖房装
置の例としては図20に示すものがある。すなわち、熱
媒(高温湯)を各住戸に向けて循環させ各住戸にて熱媒
と給水管からの低温水とを熱交換し、給湯、暖房するも
ので、住棟セントラル用熱源機24に住棟の各階および
各住戸に向けて熱媒往管25が配設されるとともに、熱
媒往管25の端部にて連結される熱媒復管26が配設さ
れ熱源側熱媒系路27を形成し、この熱源側熱媒系路2
7に熱媒循環ポンプ28を設けている。
FIG. 20 shows an example of a conventional hot water supply / room heating device for a central residential area. That is, the heating medium (high-temperature hot water) is circulated toward each dwelling unit to exchange heat between the heating medium and the low-temperature water from the water supply pipe in each dwelling unit, thereby supplying hot water and heating. The heat medium outward pipe 25 is arranged toward each floor and each dwelling unit of the dwelling, and the heat medium return pipe 26 connected at the end of the heat medium outward pipe 25 is arranged, and the heat source side heat medium system path is provided. 27 is formed, and the heat source side heat medium passage 2
7, a heat medium circulation pump 28 is provided.

【0012】各住戸の給湯暖房装置29は、熱媒往管2
5と熱媒給湯往管30を接続し、第一制御弁31と熱媒
給湯復管32を経て熱媒復管26に接続して給湯一次側
系路33を形成し、入口側にて給水管34に連通し出口
側の先端に給湯栓35を有する給湯二次側系路36とを
熱交換関係にした給湯熱交換器37を備えている。熱媒
給湯往管30と熱媒給湯復管32に対して並列に熱媒暖
房往管38、第二制御弁39と熱媒暖房復管40にて形
成する暖房一次側系路41を設け、入口側にてシスター
ン42よりの暖房往管43に連通し出口側に暖房用放熱
器44、暖房復管45の順に配設して循環系路を形成す
る暖房二次側系路46とを熱交換関係にした暖房熱交換
器47を備えている。さらに、風呂追い焚き往管48、
シスターン42に内蔵した風呂追い焚き用熱交換器4
9、風呂追い焚き復管50の順に配設して構成した風呂
追い焚き系路51を浴槽52に接続している。また、暖
房往管43の系路に暖房用ポンプ53を、風呂追い焚き
系路51に風呂用ポンプ54を設けたものである。
The hot water supply / room heating device 29 of each dwelling unit is provided with the heat transfer pipe 2
5 is connected to the heat medium hot water supply forward pipe 30, and is connected to the heat medium return pipe 26 via the first control valve 31 and the heat medium hot water return pipe 32 to form the hot water supply primary side system passage 33, and water is supplied at the inlet side. A hot water supply heat exchanger 37 is provided which is in communication with the pipe 34 and has a heat exchange relationship with a hot water supply secondary side system passage 36 having a hot water supply tap 35 at the end on the outlet side. A heating primary side system passage 41 formed by a heating medium heating outward pipe 38, a second control valve 39 and a heating medium heating return pipe 40 is provided in parallel with the heating medium hot water feeding pipe 30 and the heating medium hot water returning pipe 32, A heating secondary side system passage 46 that communicates with the heating outward pipe 43 from the cistern 42 on the inlet side and a heating radiator 44 and a heating return pipe 45 are sequentially arranged on the outlet side to form a circulation system passage A heating heat exchanger 47 in an exchange relationship is provided. In addition, a bath-fired forward tube 48,
Heat exchanger 4 for bath reheating built in Sistern 42
9. A bath reheating system passage 51, which is configured by arranging the bath reheating recuperation pipe 50 in this order, is connected to the bathtub 52. In addition, a heating pump 53 is provided in the system path of the heating outward pipe 43, and a bath pump 54 is provided in the bath reheating system path 51.

【0013】[0013]

【発明が解決しようとする課題】しかしながら従来の住
棟セントラル用として各住戸に設ける給湯暖房装置29
の構成では、暖房および風呂追い焚き時に暖房用ポンプ
53と風呂用ポンプ54を運転することになる。これら
は、いずれも電気モータにて駆動するポンプである。従
って、これら両ポンプはイニシャルコストが高い、寸法
が大きくなる、重量が大きい、さらに電気を消費するた
めランニングコストが高くつくなどの課題があった。
However, the hot-water supply and heating device 29 provided in each dwelling unit for the conventional central dwelling unit
With this configuration, the heating pump 53 and the bath pump 54 are operated during heating and bath reheating. All of these are pumps driven by an electric motor. Therefore, these two pumps have the problems that the initial cost is high, the size is large, the weight is heavy, and the running cost is high because they consume electricity.

【0014】ポンプの駆動動力を流体の流動力で行う方
法があるが、上記図15に示した従来の構成では、水車
の回転数が低く水車自身でポンプ駆動に要求される回転
数が得られないため途中に増速機を設ける必要があり、
イニシャルコストが高価で一般家庭用に使用できるもの
ではなく、また水車駆動流体とポンプにより搬送される
流体は分離されておらず全く同一であり、集合住宅等の
住棟セントラル給湯等に利用するには安全、衛生上の課
題があった。
Although there is a method in which the driving power of the pump is performed by the fluid force of the fluid, in the conventional configuration shown in FIG. 15, the rotation speed of the water turbine is low and the rotation speed required for driving the pump by the water turbine itself can be obtained. It is not necessary to install a speed increaser on the way,
The initial cost is high and it cannot be used for general households, and the fluid driven by the water turbine and the fluid conveyed by the pump are not separated and are exactly the same. Had safety and hygiene issues.

【0015】また、図16、図17で示した従来の構成
では、駆動側流体とポンプで搬送される流体はポンプ部
で軸シール部材で仕切られて構成されるものの、住棟セ
ントラル給湯等に利用するには万一の時の駆動側とポン
プ側の流体の混入防止が不確実であり信頼性上の課題が
あり、さらに軸シール部材のため水車の出力軸の回転抵
抗が大きく、住棟セントラル給湯あるいは暖房等に利用
するにはポンプ側の流量が過小であり流量特性上の課題
があった。
Further, in the conventional construction shown in FIGS. 16 and 17, the drive side fluid and the fluid conveyed by the pump are partitioned by the shaft sealing member in the pump portion, but are used for the central hot water supply of the dwelling. In order to use it, it is uncertain how to prevent the mixture of the fluid on the drive side and the pump side in case of emergency, and there is a problem in reliability.In addition, the rotation resistance of the output shaft of the water turbine is large due to the shaft seal member, so The flow rate on the pump side was too small to be used for central hot water supply or heating, and there was a problem in terms of flow rate characteristics.

【0016】また、図18、図19で示した従来の構成
では、駆動流体の必要流量が大きくなり過ぎて上記した
住棟セントラル給湯用などに実用するには駆動流量上の
課題があった。
Further, in the conventional structure shown in FIGS. 18 and 19, the required flow rate of the driving fluid becomes too large, and there is a problem in terms of the driving flow rate for practical use such as for the central hot water supply of the residential building.

【0017】そこで、発明者らは特開平6−18548
9号公報に示される流体駆動ポンプを提案し改良を進め
た。その結果、駆動側流体の限られた駆動力を有効に活
かすには水車およびポンプの各効率を改善することが重
要であり、なかでも特に少流量の駆動流体でも効率良く
作動する水車を開発することが大きな課題であった。
Therefore, the inventors of the present invention disclosed in Japanese Patent Laid-Open No. 6-18548.
The fluid-driven pump shown in Japanese Patent No. 9 was proposed and improved. As a result, it is important to improve the efficiency of each turbine and pump in order to effectively utilize the limited driving force of the driving fluid, and in particular, to develop a turbine that can efficiently operate even with a small flow of driving fluid. That was a big issue.

【0018】本発明は上記課題を解決するもので、駆動
流体流量の少ない場合に利用でき、また、駆動流体の圧
力損失や回転抵抗の小さい小型コンパクトな流体駆動装
置を提供することを目的としたものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a small and compact fluid drive device which can be used when the flow rate of the drive fluid is small and in which the pressure loss of the drive fluid and the rotational resistance are small. It is a thing.

【0019】[0019]

【課題を解決するための手段】本発明の流体駆動装置
は、駆動ノズルから噴出する流体の力によって回転する
水車において、駆動ノズルに対向する部分の水車の羽根
開通路は羽根の外周部および羽根の軸方向側面を固定壁
に設けた近接壁で囲った環流流路とし、羽根は駆動ノズ
ルからの噴出流の流れ方向を反転する反転受圧部と内周
側に設けた流動案内部とを備えているものである。
According to the fluid drive device of the present invention, in a water turbine that is rotated by the force of the fluid ejected from the drive nozzle, the blade open passage of the water turbine at the portion facing the drive nozzle is the outer peripheral portion of the blade and the blade. The axial side surface of is a recirculation flow path surrounded by a proximity wall provided on a fixed wall, and the vane is provided with a reversing pressure receiving portion that reverses the flow direction of the jet flow from the drive nozzle and a flow guide portion provided on the inner peripheral side. It is what

【0020】本発明によれば大きな回転駆動力を取り出
すことができ、また流量損失が低減するので効率が向上
できる。
According to the present invention, a large rotational driving force can be taken out, and the flow loss is reduced, so that the efficiency can be improved.

【0021】[0021]

【発明の実施の形態】本発明は上記目的を達成するた
め、径方向に延びる複数の羽根とこれら羽根の間に形成
した羽根間通路とこれら羽根を径方向中心側で支持する
羽根基部を有する水車と、前記羽根外周部に対向して局
所的に配置し周方向に駆動流体を噴出させる駆動ノズル
と、羽根中心部に対向配置した流出孔と、前記駆動ノズ
ルに対向する部分の羽根間通路は羽根の外周部および羽
根の軸方向側面を固定壁に設けた近接壁で接近して囲っ
た貫流流路と、前記固定壁に設け前記水車を支持する支
持軸とを有し、前記羽根は駆動ノズルからの噴出流の流
れ方向を反転する反転受圧部と内周側に設けた流動案内
部を備えたものである。
BEST MODE FOR CARRYING OUT THE INVENTION In order to achieve the above object, the present invention has a plurality of radially extending blades, an inter-blade passage formed between these blades, and a blade base portion for supporting these blades on the radial center side. A water turbine, a drive nozzle that is locally disposed so as to face the outer peripheral portion of the blade and ejects a drive fluid in the circumferential direction, an outflow hole that is disposed so as to face the center portion of the blade, and an inter-blade passage in a portion that faces the drive nozzle. Has a through-flow passage in which the outer peripheral portion of the blade and the axial side surface of the blade are closely surrounded by a proximity wall provided in the fixed wall, and a support shaft provided in the fixed wall for supporting the water turbine, and the blade is It is provided with a reversing pressure receiving portion for reversing the flow direction of the jet flow from the drive nozzle and a flow guide portion provided on the inner peripheral side.

【0022】また、反転受圧部は水車の回転時にその出
口部において噴出流体の周方向速度成分がほぼゼロとす
る曲率で形成し、流動案内部は噴出流体の周方向速度成
分がほぼゼロを維持する領域としたものである。
Further, the reversing pressure receiving portion is formed with a curvature such that the circumferential velocity component of the jetted fluid becomes substantially zero at the outlet portion of the water turbine when it rotates, and the flow guide portion maintains the circumferential velocity component of the jetted fluid at almost zero. It is the area to do.

【0023】また、羽根の軸方向側面の固定壁には駆動
流体が噴出する側面噴出口を設けたものである。
Further, the fixed wall on the side surface in the axial direction of the blade is provided with a side surface ejection port for ejecting the driving fluid.

【0024】また、側面噴出口は外周側に設けた孔を内
周側より小さくして、外周側での噴出速度は内周側の側
面噴出口での噴出速度より速くしたものである。
Further, the side surface ejection port has a hole formed on the outer peripheral side smaller than the inner peripheral side so that the ejection speed on the outer peripheral side is higher than the ejection speed on the inner peripheral side surface ejection port.

【0025】また、支持軸を設けた固定壁は複数の部材
からなる積層壁とし、この積層壁間に空間部を設けたも
のである。
The fixed wall provided with the support shaft is a laminated wall composed of a plurality of members, and a space is provided between the laminated walls.

【0026】また、側面噴出口は積層壁間の空間部と分
岐孔とを介して駆動ノズル側に連通したものである。
Further, the side surface ejection port communicates with the drive nozzle side through the space between the laminated walls and the branch hole.

【0027】また、積層壁間の空間部は多数の凹状溝に
より形成し凹状溝の端部を外部に連通させたものであ
る。
The space between the laminated walls is formed by a large number of concave grooves, and the ends of the concave grooves communicate with the outside.

【0028】また、支持軸は積層壁の間に挟んで保持し
たものである。本発明は上記構成によって、駆動ノズル
から噴出した駆動流体は駆動ノズルに対向した羽根間通
路のみを貫流して流出孔に向かうとともに、羽根の反転
受圧部による噴出流の流体力を無駄なく集中して羽根に
加える動作がなされ、流動案内部により駆動流体の流動
抵抗の低減がなされ、駆動流体の流量が少ない場合でも
駆動力の大きな運転がなされる。
The supporting shaft is held by being sandwiched between the laminated walls. According to the present invention, the drive fluid ejected from the drive nozzle flows through only the inter-blade passage facing the drive nozzle toward the outflow hole, and the fluid force of the jet flow by the reversing pressure receiving portion of the vane is concentrated without waste. The flow guide portion reduces the flow resistance of the driving fluid, and the driving force is large even when the flow rate of the driving fluid is small.

【0029】また、水車回転時において反転受圧部で流
体力の受圧力の極大化と流動案内部での流動抵抗の極小
化がなされる。
Further, when the water turbine is rotated, the pressure of the fluid force is maximized in the reverse pressure receiving portion and the flow resistance in the flow guide portion is minimized.

【0030】また、羽根の軸方向側面の固定壁から羽根
に向かって噴出する流体により発生する軸方向のスラス
ト力が駆動ノズルからの噴出流により発生する軸方向ス
ラスト力を低減するため軸受け部における機械摩擦抵抗
を減じて損失を低減した運転がなされる。
In addition, the axial thrust force generated by the fluid jetted from the fixed wall on the axial side surface of the blade toward the blade reduces the axial thrust force generated by the jet flow from the drive nozzle in the bearing portion. Operation is performed with reduced mechanical friction resistance and reduced loss.

【0031】また、側面噴出口からの噴出流により軸方
向のスラスト力の低減がなされるとともに、水車の回転
周速度が大きい外周側には内周側よりも噴出速度の速い
流れが側面噴出口から噴出されるため水車を傾ける力す
なわち水車支持軸に対する曲げモーメントが発生し、こ
の曲げモーメントが外周部の駆動ノズルから噴出して軸
方向の流出孔へ流動する駆動流体により発生する回転支
持軸に対する曲げモーメントを低減する方向に作用して
軸受け部における機械摩擦損失を低減した運転がなされ
る。
Further, the thrust force in the axial direction is reduced by the jet flow from the side jet outlet, and a flow having a jet speed higher than that on the inner circumferential side is provided on the outer peripheral side where the rotational peripheral velocity of the turbine is large. Since it is ejected from the turbine, a tilting force of the water turbine, that is, a bending moment with respect to the turbine support shaft is generated. The operation is performed in the direction of reducing the bending moment to reduce the mechanical friction loss in the bearing portion.

【0032】また、流出孔とは反対側の軸方向側面の固
定壁を複数の部材からなる積層壁とすることにより固定
壁の材質を駆動側流体と利用側流体のそれぞれに適した
仕様選定がなされ、積層壁間に設けた空間部により固定
壁の軽量化がなされる。
Further, by making the fixed wall on the axial side opposite to the outflow hole a laminated wall composed of a plurality of members, the material of the fixed wall can be selected to be suitable for the driving side fluid and the utilization side fluid. The weight of the fixed wall is reduced by the space provided between the laminated walls.

【0033】また、複数の部材間に形成した空間部を側
面噴出口と駆動ノズル側に連通させることにより連通流
路の加工が簡単容易とし側面噴出構成の低コストでの実
現がなされる。
Further, by connecting the space formed between the plurality of members to the side face ejection port and the drive nozzle side, the communication flow passage can be easily processed easily, and the side face ejection structure can be realized at a low cost.

【0034】また、積層壁間の空間部を多数の溝で形成
しその端部を外部に連通することにより駆動流体側の積
層壁に万一腐食などにより穴があいても駆動流体が空間
部の溝を通って外部に漏出することにより利用側には漏
洩することなく異常を知ることができ安全性を高めた運
転がなされる。
Further, by forming a space between the laminated walls with a large number of grooves and communicating the ends thereof to the outside, even if a hole is formed in the laminated wall on the side of the driving fluid due to corrosion or the like, the driving fluid will have a space. By leaking to the outside through the groove of, the user side can know the abnormality without leaking and the operation with enhanced safety is performed.

【0035】また、積層壁間に支持軸の一部を挟んで固
定保持することにより支持軸の固定方法の簡素化がなさ
れ、支持軸の加工性を高めた設計がなされる。
Further, by fixing and holding a part of the support shaft between the laminated walls, the method of fixing the support shaft can be simplified, and the workability of the support shaft can be improved.

【0036】以下本発明の実施例を図1〜図14を参照
して説明する。まず図1〜図4に示す本発明の第一およ
び第二の実施例について説明する。なお、ここでは本発
明の水車によりポンプを駆動する場合について述べる。
An embodiment of the present invention will be described below with reference to FIGS. First, the first and second embodiments of the present invention shown in FIGS. 1 to 4 will be described. The case of driving a pump by the water turbine of the present invention will be described here.

【0037】55は径方向に延びる複数の羽根56を径
方向中心側の羽根基部57で支持するとともにこれら羽
根56の間に羽根間通路58を形成した水車である。5
9は羽根56の外周部56aに対向して局所的に配置さ
れるとともに駆動流体を周方向に噴出する駆動ノズルで
あり、この駆動ノズル59に対向する羽根間通路58a
は羽根56の外周部56aおよび羽根56の軸方向側面
56bを固定壁60に設けた近接壁61で接近して囲わ
れて貫流流路62を形成している。固定壁60は駆動ノ
ズル59および羽根中心部に対向配置した流出孔63を
設けた水車ケーシング60aと水車55を回転支持する
水車支持軸64を設けた隔壁60bで形成され、近接壁
61は水車ケーシング60aに設けた周方向の近接壁6
1aと軸方向側面56bに対向する近接壁61bおよび
隔壁60bに設けた軸方向側面56bに対向する近接壁
61cで形成されている。65は羽根基部57に設けた
動力伝達手段であり、磁力により回転力を伝達するマグ
ネットカップリングとして隔壁60b側に設けられてい
る。
Reference numeral 55 denotes a water turbine in which a plurality of blades 56 extending in the radial direction are supported by a blade base portion 57 on the radial center side and an inter-blade passage 58 is formed between the blades 56. 5
Reference numeral 9 denotes a drive nozzle that is locally arranged so as to face the outer peripheral portion 56a of the blade 56 and ejects a drive fluid in the circumferential direction. The inter-blade passage 58a that faces the drive nozzle 59 is provided.
The outer peripheral portion 56a of the blade 56 and the axial side surface 56b of the blade 56 are closely surrounded by a proximity wall 61 provided in the fixed wall 60 to form a flow passage 62. The fixed wall 60 is formed by a water turbine casing 60a provided with a drive nozzle 59 and an outflow hole 63 arranged opposite to the center of the blade, and a partition wall 60b provided with a water turbine support shaft 64 for rotatably supporting the water turbine 55, and the adjacent wall 61 is a water turbine casing. Circumferential proximity wall 6 provided on 60a
1a and a proximity wall 61b that faces the axial side surface 56b, and a proximity wall 61c that faces the axial side surface 56b provided on the partition wall 60b. Reference numeral 65 denotes a power transmission means provided on the blade base 57, which is provided on the partition wall 60b side as a magnetic coupling for transmitting a rotational force by a magnetic force.

【0038】66は羽根56の回転方向(矢印B)に対
して後面側に設け駆動ノズル59から接線方向(矢印
C)に噴出した流れ方向を滑らかに反転させる反転受圧
部であり、67は反転受圧部66の内周側に設け噴出流
を流出孔63に導く流動案内部でありここではほぼ直線
状に形成されている。68は羽根56に設けた補強リブ
で流出孔63から遠い側の羽根56の側面に配置してい
る。
Reference numeral 66 denotes a reversing pressure receiving portion which is provided on the rear surface side with respect to the rotation direction of the blade 56 (arrow B) and smoothly reverses the flow direction ejected from the drive nozzle 59 in the tangential direction (arrow C). The flow guide portion is provided on the inner peripheral side of the pressure receiving portion 66 and guides the jet flow to the outflow hole 63, and is formed in a substantially linear shape here. 68 is a reinforcing rib provided on the blade 56, and is arranged on the side surface of the blade 56 on the side far from the outflow hole 63.

【0039】69はポンプケーシング70により形成さ
れるポンプ室71に収納された二次側流体を循環させる
ポンプ羽根車であり、隔壁60bを介して水車55とは
気密に分離されている。72はポンプ羽根車69に設け
た動力伝達手段であり、磁力により回転力を伝達するマ
グネットカップリングが水車55側の動力伝達手段65
に対向する位置に設けてられている。73は二次側流体
の吸入孔、74は二次側流体の吐出孔であり、いずれも
ポンプケーシング70に設けられている。75はポンプ
羽根車69を回転支持するポンプ支持軸である。
Reference numeral 69 denotes a pump impeller which circulates a secondary fluid contained in a pump chamber 71 formed by a pump casing 70, and is hermetically separated from the water turbine 55 via a partition wall 60b. Reference numeral 72 denotes a power transmission means provided on the pump impeller 69, and a magnetic coupling for transmitting a rotational force by a magnetic force is a power transmission means 65 on the water wheel 55 side.
Is provided at a position facing the. Reference numeral 73 is a suction hole for the secondary side fluid, and 74 is a discharge hole for the secondary side fluid, both of which are provided in the pump casing 70. Reference numeral 75 denotes a pump support shaft that rotatably supports the pump impeller 69.

【0040】上記構成において、流体駆動装置の動作を
説明する。まず本発明の第一の実施例では、局所的に設
けた駆動ノズル59から噴出した駆動流体は、羽根間通
路58が周方向の近接壁61a、軸方向側面の近接壁6
1bおよび61cにより接近して囲われているため、駆
動ノズル59に対向した羽根間通路58aのみを貫流通
路62として中心側に設けた流出孔63に向かい、この
間に羽根56に流体エネルギーを加えて水車55を図2
の時計方向(矢印B)に回転させる。このとき、接線方
向に噴出した噴出流は反転受圧部66に衝突してその流
動方向を支持軸に向かう径方向に順次滑らかに流動抵抗
の小さい状態で偏向されるとともに、反転受圧部66の
出口部66aにおいて流動方向を矢印Dに示すように駆
動ノズル59から噴出した流れ方向と反対の速度成分を
持つ流れに反転させて噴出流の持つ流動エネルギーを無
駄なく集中して羽根56に加える。さらに噴出流となっ
た駆動流体は流動案内部67によってその流れを整えて
滑らかに流出孔63に向かって流動し、流出孔63から
流出する。
The operation of the fluid drive system having the above structure will be described. First, in the first embodiment of the present invention, the drive fluid ejected from the locally provided drive nozzle 59 has the inter-blade passage 58 in the circumferential proximity wall 61 a and the axial side wall 6 in the proximity wall 6.
Since they are closely surrounded by 1b and 61c, only the inter-blade passage 58a facing the drive nozzle 59 is directed to the outflow hole 63 provided on the center side as the through-flow passage 62, and fluid energy is applied to the vanes 56 in the meantime. Fig. 2 shows the water wheel 55
Rotate in the clockwise direction (arrow B). At this time, the jet flow jetted out in the tangential direction collides with the reversing pressure receiving portion 66, and its flow direction is sequentially and smoothly deflected in the radial direction toward the support shaft with a small flow resistance, and at the outlet of the reversing pressure receiving portion 66. In the portion 66a, the flow direction is reversed to a flow having a velocity component opposite to the flow direction ejected from the drive nozzle 59 as shown by the arrow D, and the flow energy of the ejected flow is concentrated on the vanes 56 without waste. Further, the drive fluid that has become the jet flow is rectified by the flow guide portion 67, smoothly flows toward the outflow hole 63, and flows out from the outflow hole 63.

【0041】ところで、水車55の回転により次の羽根
56が駆動ノズル59の開口部にさしかかった一瞬の間
は噴出流が羽根間通路58a、58bの二つの通路を貫
流流路62とするが、羽根56の外周先端が駆動ノズル
59の開口部を通過すると次の羽根間通路58bが唯一
の貫流流路62として作用する。このように瞬時は複数
の羽根間通路58を貫流するが、基本的には駆動ノズル
59に対向する羽根間通路58のみが貫流流路62とし
て作用するものである。
By the way, during the moment when the next blade 56 approaches the opening of the drive nozzle 59 by the rotation of the water wheel 55, the jet flow uses two passages 58a and 58b as interflow passages 62, When the outer peripheral tip of the blade 56 passes through the opening of the drive nozzle 59, the next inter-blade passage 58b acts as the only flow passage 62. As described above, the plurality of inter-blade passages 58 flow instantaneously, but basically only the inter-blade passage 58 facing the drive nozzle 59 acts as the flow passage 62.

【0042】なお、羽根56と近接壁61は接触による
摺動摩擦損失の発生を防止するためにわずかのクリアラ
ンスを設けて配置するため、駆動ノズル59から噴出し
た駆動流体が駆動ノズルに対向しない他の羽根間通路5
8cにわずかではあるが漏洩を生じる。
Since the vanes 56 and the proximity wall 61 are arranged with a slight clearance in order to prevent the occurrence of sliding friction loss due to contact, the drive fluid ejected from the drive nozzle 59 does not face the drive nozzle. Passage 5
There is a slight leak in 8c.

【0043】この水車55の回転により動力伝達手段6
5、72で連結されたポンプ羽根車69が回転し、二次
側の流体を吸入孔73から吸い込んでポンプ作用を加え
て昇圧して吐出孔74より流出させる。
The rotation of the water wheel 55 causes power transmission means 6
The pump impeller 69 connected by 5 and 72 rotates, sucks the fluid on the secondary side from the suction hole 73, applies a pump action to increase the pressure, and causes the fluid to flow out from the discharge hole 74.

【0044】このように、駆動ノズル59から噴出した
駆動流体は対向する羽根間通路にのみを貫流するととも
に、反転受圧部66により流れが偏向されてその流体力
を無駄なく集中して羽根に加え且つ偏向における流動抵
抗が小さくなる。そのため駆動流体から取り出す回転駆
動力が大きくなりまた駆動流体の流動抵抗損失が小さく
でき、駆動流体の流量が少ない場合でも大きな回転駆動
力が得られるとともに、駆動流体の流動損失低減により
高効率の水車が実現できる。
As described above, the drive fluid ejected from the drive nozzle 59 flows only through the passages between the opposing blades, and the flow is deflected by the reverse pressure receiving portion 66 so that the fluid force is concentrated on the blades without waste. In addition, the flow resistance in deflection becomes small. Therefore, the rotational drive force taken out from the drive fluid becomes large, and the flow resistance loss of the drive fluid can be made small, so that a large rotary drive force can be obtained even when the flow rate of the drive fluid is small, and the flow loss of the drive fluid can be reduced, resulting in a highly efficient turbine Can be realized.

【0045】また、羽根形状は加工の簡単な二次元形状
で良く、さらに固定壁に近接壁を設けるという簡単な構
成のため、加工性に優れるとともに構成の簡素化による
小型コンパクト化により低コスト化がなされる。
Further, the blade shape may be a two-dimensional shape which can be easily processed, and the fixed wall is provided with a proximity wall, so that the workability is excellent and the cost is reduced due to the simplification of the structure to reduce the size and size. Is done.

【0046】図3は羽根形状の他の実施例を示したもの
で、反転受圧部66を羽根56の内周側に拡げるととも
に、流動案内部67は羽根基部57のボス部57aに軸
方向に延びる凹部として形成している。この実施例によ
れば水車55の外径を小さくしたままで反転受圧部66
を大きくできるため、流れを反転させるための径方向ス
ペースを確保でき偏向における流動抵抗をより低減する
羽根形状を実現できる。
FIG. 3 shows another embodiment of the blade shape. The reverse pressure receiving portion 66 is expanded to the inner peripheral side of the blade 56, and the flow guide portion 67 is axially attached to the boss portion 57a of the blade base portion 57. It is formed as an extending recess. According to this embodiment, the reversing pressure receiving portion 66 is used while keeping the outer diameter of the water turbine 55 small.
Since it can be increased, a radial space for reversing the flow can be secured, and a blade shape that further reduces the flow resistance in deflection can be realized.

【0047】従って、偏向における流動抵抗をより低減
してより高効率化でき、また水車の外径を小さくしてよ
り小型化できる。
Therefore, the flow resistance in the deflection can be further reduced and the efficiency can be made higher, and the outer diameter of the water turbine can be made smaller and the size can be further reduced.

【0048】以上のように本発明の第一の実施例によれ
ば、大きな回転駆動力を取り出すことができるという効
果があり、流動損失低減により高効率化できるという効
果がある。
As described above, according to the first embodiment of the present invention, there is an effect that a large rotational driving force can be taken out, and there is an effect that efficiency can be improved by reducing flow loss.

【0049】また、加工の容易な羽根形状と構成の簡素
化により小型コンパクト化と低コスト化が実現できると
いう効果がある。
Further, there is an effect that the size and the size can be reduced and the cost can be reduced by simplifying the shape of the blade which can be easily processed.

【0050】なお、本実施例では水車によりポンプを駆
動する場合を示したが、送風用ファンあるいは発電装置
など他の負荷を駆動しても同様の効果があるのは云うま
でもない。
Although the pump is driven by the water turbine in this embodiment, it goes without saying that the same effect can be obtained by driving another load such as a blower fan or a power generator.

【0051】次に、本発明の第二の実施例では、図4に
示すように反転受圧部66を曲率を有する曲面で形成
し、出口部66aにおける噴出流の流れ方向の速度Uを
周方向速度成分Urと径方向速度成分Udに分解すると
ともに、水車55の回転による反転受圧部66の出口部
66aにおける周速度Vに対して噴出流の周方向速度成
分Urが同等になるように反転受圧部66の出口部66
aの羽根角度αを設定したものである。さらに流動案内
部67は上記したように噴出流の周方向速度成分がほぼ
ゼロを保つようにその角度を設定するものである。
Next, in the second embodiment of the present invention, as shown in FIG. 4, the reverse pressure receiving portion 66 is formed by a curved surface having a curvature, and the velocity U in the flow direction of the jet flow at the outlet portion 66a is set in the circumferential direction. The velocity component Ur and the radial velocity component Ud are decomposed, and the reverse pressure receiving is performed so that the circumferential velocity component Ur of the jet flow is equal to the peripheral velocity V at the outlet 66a of the reverse pressure receiving part 66 due to the rotation of the water turbine 55. Exit 66 of section 66
The blade angle α of a is set. Further, the flow guide portion 67 sets its angle so that the circumferential velocity component of the jet flow is kept substantially zero, as described above.

【0052】反転受圧部66の出口部66aの羽根角度
をこのように設定した状態では、水車55の回転した
時、羽根間通路58を流れる噴出流は判定受圧部66の
出口部66aにおいて、静止座標からみた周方向速度成
分がほぼゼロとなる。従って、反転受圧部66で噴出流
の持つ流体力を最大限取り出すことになり羽根56の受
圧力が極大化できる。また、出口部66aから流出孔6
3までは静止座標からみた噴出流の周方向速度はほぼゼ
ロが保たれるため、周方向速度により発生する遠心力が
低減されて噴出流の流動抵抗が小さくでき、流動抵抗の
極小化ができる。
With the blade angle of the outlet portion 66a of the reversing pressure receiving portion 66 set in this way, when the water turbine 55 rotates, the jet flow flowing through the inter-blade passage 58 is stationary at the outlet portion 66a of the determination pressure receiving portion 66. The circumferential velocity component seen from the coordinates is almost zero. Therefore, the reversing pressure receiving portion 66 maximizes the fluid force of the jet flow, and the pressure receiving force of the blades 56 can be maximized. In addition, the outlet port 66a through the outflow hole 6
Up to 3, the circumferential velocity of the jet flow seen from the stationary coordinate is kept at almost zero, so the centrifugal force generated by the circumferential velocity is reduced, and the flow resistance of the jet flow can be reduced, and the flow resistance can be minimized. .

【0053】以上のように本発明の第二の実施例によれ
ば、駆動流体から取り出す駆動力の極大化と駆動流体の
流動抵抗の極小化によって少ない駆動流体流量で高出力
化と高効率化ができるという効果がある。
As described above, according to the second embodiment of the present invention, by maximizing the driving force to be taken out from the driving fluid and minimizing the flow resistance of the driving fluid, high output and high efficiency can be achieved with a small driving fluid flow rate. There is an effect that can be.

【0054】次に、図5に示す本発明の第三の実施例に
ついて説明する。なお、図1〜図4に示した実施例と同
一機能、同一部材のところは同一符号を付与し詳細な説
明は省略する。
Next, a third embodiment of the present invention shown in FIG. 5 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 4 are designated by the same reference numerals and detailed description thereof will be omitted.

【0055】76は羽根56の軸方向側面56bの固定
壁60である隔壁60bに設けた側面噴出口であり、こ
の側面噴出口76は径方向あるいは周方向の任意の位置
に配置されるとともに、その一端は羽根56の軸方向側
面56bに対して開口し、他端は噴出流体を供給する隔
壁60bに設けた空間部77に連通している。78は羽
根基部57に設けた軸受け部であり、軸受け部78の両
端部はスラストディスク79で軸方向の力を支持してい
る。
Reference numeral 76 denotes a side surface ejection port provided on a partition wall 60b which is a fixed wall 60 on the axial side surface 56b of the blade 56. The side surface ejection port 76 is arranged at an arbitrary position in the radial direction or the circumferential direction, and One end thereof opens to the axial side surface 56b of the blade 56, and the other end communicates with a space 77 provided in the partition wall 60b for supplying the jetted fluid. Reference numeral 78 denotes a bearing portion provided on the blade base portion 57, and both ends of the bearing portion 78 support thrust in the axial direction by thrust disks 79.

【0056】上記構成において、流体駆動装置の動作を
説明する。駆動ノズル59より噴出した駆動流体は駆動
ノズル59に対向する羽根間通路58である貫流流路6
2に入り、羽根56に流体エネルギーを加えて水車55
を回転させて流出孔63から流出する。この流動過程に
おいて駆動流体は流出孔63からの流出方向とは反対向
きの軸方向スラスト力を羽根56に加えことにより、軸
受け部78のスラストディスク79で機械摩擦抵抗損失
が発生する。
The operation of the fluid drive system having the above structure will be described. The drive fluid ejected from the drive nozzle 59 is an inter-blade passage 58 facing the drive nozzle 59, which is the through-flow passage 6.
2 and add fluid energy to the blades 56 to add water to the turbine 55
Is rotated to flow out from the outflow hole 63. In this flowing process, the drive fluid applies an axial thrust force in the direction opposite to the outflow direction from the outflow hole 63 to the blades 56, so that a mechanical frictional resistance loss occurs in the thrust disk 79 of the bearing portion 78.

【0057】これに対して、側面噴出口76から羽根5
6の軸方向側面56bに向かって噴出した少量の駆動流
体は羽根56に流出孔63の方向に軸方向スラスト力を
加える作用により上記した駆動ノズル59から噴出した
駆動流体による軸方向スラスト力を低減させ、軸受け部
78のスラストディスク79で発生する機械摩擦損失を
減少させることができる。
On the other hand, from the side jet port 76 to the blade 5
A small amount of the driving fluid ejected toward the axial side surface 56b of No. 6 reduces the axial thrust force due to the driving fluid ejected from the above-mentioned drive nozzle 59 by the action of applying the axial thrust force to the vanes 56 in the direction of the outflow holes 63. Therefore, the mechanical friction loss generated in the thrust disk 79 of the bearing portion 78 can be reduced.

【0058】また、羽根56の外周側に駆動ノズル59
を設けるため、駆動ノズル59からの噴出流が羽根56
の外周側に加える軸方向スラスト力は支持軸64に対す
る曲げモーメントを水車55に発生させるが、側面噴出
口76からの噴出流はこの曲げモーメントを低減する方
向に作用する。このため支持軸64に加わる曲げモーメ
ントにより軸受け部78に発生する機械摩擦損失が低減
できる。
A drive nozzle 59 is provided on the outer peripheral side of the blade 56.
Is provided so that the jet flow from the drive nozzle 59 is generated by the blade 56.
The axial thrust force applied to the outer peripheral side of the turbine causes a bending moment with respect to the support shaft 64 in the water turbine 55, but the jet flow from the side surface jet outlet 76 acts in a direction to reduce this bending moment. Therefore, mechanical friction loss generated in the bearing portion 78 due to the bending moment applied to the support shaft 64 can be reduced.

【0059】さらに、側面噴出口76からの噴出流は羽
根56の軸方向側面56bと固定壁60である隔壁60
bとの間に流体膜を形成するため羽根56の軸方向側面
56bと固定壁60である隔壁60bとの接触が防止さ
れ、羽根56と固定壁60との隙間寸法をより小さく設
定できる。このため駆動流体の貫流流路62から他の羽
根間通路58への漏洩が低減されて水車55の駆動力の
増大と効率向上を実現できる。
Further, the jet flow from the side jet outlet 76 is provided with the axial side face 56b of the blade 56 and the partition wall 60 which is the fixed wall 60.
Since a fluid film is formed between the blade b and the axial side surface 56b of the blade 56, the contact with the partition wall 60b which is the fixed wall 60 is prevented, and the gap size between the blade 56 and the fixed wall 60 can be set smaller. Therefore, the leakage of the drive fluid from the through flow passage 62 to the other inter-blade passages 58 is reduced, and the driving force of the water turbine 55 can be increased and the efficiency can be improved.

【0060】以上のように、本発明の第三の実施例によ
れば図1〜図3の第一の実施例と同様の効果が得られる
とともに、側面噴出口76からの噴出流により軸方向ス
ラスト力の低減による軸受け部での機械摩擦損失を低減
できるという効果があり、また水車に加わる支持軸に対
する曲げモーメントの低減による軸受け部での機械摩擦
損失を低減できるという効果がある。さらに、羽根と固
定壁の隙間寸法を小さくでき駆動流体の漏洩防止により
水車駆動力の増大と効率向上が実現できるという効果が
ある。
As described above, according to the third embodiment of the present invention, the same effect as that of the first embodiment shown in FIGS. 1 to 3 can be obtained, and the jet flow from the side jet nozzle 76 causes the axial direction. There is an effect that the mechanical friction loss at the bearing portion can be reduced by reducing the thrust force, and an effect that the mechanical friction loss at the bearing portion can be reduced by reducing the bending moment with respect to the support shaft applied to the water turbine. Further, there is an effect that the size of the gap between the blade and the fixed wall can be reduced and the leakage of the driving fluid can be prevented to increase the turbine driving force and improve the efficiency.

【0061】次に、図6、図7に示す本発明の第四の実
施例について説明する。なお、図1〜図5に示した実施
例と同一機能、同一部材のところは同一符号を付与し詳
細な説明は省略する。
Next, a fourth embodiment of the present invention shown in FIGS. 6 and 7 will be described. The same functions and members as those in the embodiment shown in FIGS. 1 to 5 are designated by the same reference numerals and detailed description thereof will be omitted.

【0062】図6において、側面噴出口76は固定壁6
0である隔壁60bの径方向の異なる位置に複数個設け
るとともに外周側の開口径は内周側よりも小さくして、
外周側の側面噴出口76aからの噴出速度は内周側の側
面噴出口76bからの噴出速度よりも速くしたものであ
る。
In FIG. 6, the side ejection port 76 is the fixed wall 6
A plurality of 0 partition walls 60b are provided at different positions in the radial direction, and the opening diameter on the outer peripheral side is smaller than that on the inner peripheral side.
The ejection speed from the outer peripheral side surface ejection port 76a is higher than the ejection speed from the inner peripheral side surface ejection port 76b.

【0063】上記構成において、流体駆動装置の動作を
説明する。水車55は駆動ノズル59から噴出する駆動
流体により回転力を受けるとともに軸方向のスラスト力
が同時に付加される。この軸方向のスラスト力は側面噴
出口76からの噴出流により前述と同様に低減される。
ところが、ここでは外周側の側面噴出口76aからの噴
出速度が内周側の側面噴出口76bからの噴出速度より
速いため、水車55はこの側面噴出口76からの噴出流
により支持軸64に対して図中反時計回りの曲げモーメ
ントを受ける。この側面噴出口76からの噴出流による
曲げモーメントは、外周側に設けた駆動ノズル59から
噴出する駆動流体が水車に及ぼす支持軸64に対する図
中時計回りの曲げモーメントを打ち消す作用を果たす。
The operation of the fluid drive system having the above structure will be described. The water turbine 55 receives a rotational force by the drive fluid ejected from the drive nozzle 59, and at the same time, an axial thrust force is applied. The thrust force in the axial direction is reduced by the jet flow from the side face jet outlets 76 as described above.
However, here, since the ejection speed from the outer peripheral side surface ejection port 76a is higher than the ejection speed from the inner peripheral side surface ejection port 76b, the water turbine 55 causes the ejection flow from the side surface ejection port 76 to the support shaft 64. Receives a counterclockwise bending moment in the figure. The bending moment caused by the jet flow from the side surface jet outlet 76 serves to cancel the clockwise bending moment on the support shaft 64 exerted on the water turbine by the driving fluid jetted from the driving nozzle 59 provided on the outer peripheral side.

【0064】このため、支持軸64に加わる曲げモーメ
ントが大幅に低減されて軸受け部78での曲げモーメン
トによる機械摩擦損失が大幅に低下でき水車の効率向上
ができる。また羽根56の支持軸64に対する傾きが緩
和されるため羽根の材質として重量の軽い樹脂など金属
材料よりも剛性の小さい材料が使用可能にできるため軽
量化でき、さらに量産加工性に優れた樹脂材料などによ
り低コスト化できる。
Therefore, the bending moment applied to the support shaft 64 is greatly reduced, the mechanical friction loss due to the bending moment at the bearing 78 is significantly reduced, and the efficiency of the water turbine can be improved. Further, since the inclination of the blade 56 with respect to the support shaft 64 is relaxed, it is possible to use a material having a rigidity lower than that of a metal material such as a resin having a light weight as a material of the blade. The cost can be reduced by

【0065】図7は他の実施例を示したもので、側面噴
出口76は羽根56の回転方向(矢印F)に傾きβを設
けている。従って、側面噴出口76からの噴出流は羽根
56の回転方向に向かって噴出し、前述したスラスト力
および曲げモーメントを低減させるだけでなく水車55
の回転方向への駆動力を高めることができる。
FIG. 7 shows another embodiment, in which the side face ejection port 76 is provided with an inclination β in the rotation direction (arrow F) of the blade 56. Therefore, the jet flow from the side jet outlet 76 jets in the rotation direction of the blades 56 and not only reduces the thrust force and the bending moment described above but also the water turbine 55.
The driving force in the rotation direction of can be increased.

【0066】以上のように、本発明の第四の実施例によ
れば図5の第三の実施例と同様の効果が得られるととも
に、曲げモーメントによる軸受け部での機械摩擦損失が
大幅に低減でき水車の効率向上ができるという効果があ
る。また、樹脂などの軽くて量産加工性に優れた材料が
使用できるため軽量化でき低コスト化できるという効果
がある。
As described above, according to the fourth embodiment of the present invention, the same effect as that of the third embodiment of FIG. 5 can be obtained, and the mechanical friction loss in the bearing portion due to the bending moment is greatly reduced. The effect is that the efficiency of the water turbine can be improved. In addition, since a material such as resin that is light and has excellent workability in mass production can be used, there is an effect that the weight can be reduced and the cost can be reduced.

【0067】次に、図8に示す本発明の第五の実施例に
ついて説明する。なお、図1〜図7に示した実施例と同
一機能、同一部材のところは同一符号を付与し詳細な説
明は省略する。
Next, a fifth embodiment of the present invention shown in FIG. 8 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 7 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0068】80は支持軸64側の固定壁60である隔
壁60bを複数の部材から形成した積層壁であり、空間
部77はこの複数の部材の少なくとも一方に凹部を設け
ることにより積層壁80間に構成している。
Reference numeral 80 denotes a laminated wall in which a partition wall 60b, which is the fixed wall 60 on the support shaft 64 side, is formed from a plurality of members, and the space portion 77 is provided with a concave portion in at least one of the plurality of members to form a space between the laminated walls 80. Is configured.

【0069】上記構成において、流体駆動装置の動作を
説明する。駆動ノズル59からの駆動流体が流れる水車
55側と、他の流体に接する利用側であるポンプ室71
とはこの積層壁80により分離されている。積層壁80
の駆動流体側80aと利用流体側80bは異なる材料で
構成できるため駆動側および利用側流体のそれぞれに適
した隔壁材質を選定できる。従って、それぞれの流体に
対する耐食性を高めた材料の組み合わせが可能となり装
置の耐久性を向上できる。
The operation of the fluid drive system having the above structure will be described. The water turbine 55 side through which the drive fluid from the drive nozzle 59 flows, and the pump chamber 71 which is the use side in contact with another fluid
And are separated by this laminated wall 80. Laminated wall 80
Since the drive fluid side 80a and the use fluid side 80b can be made of different materials, it is possible to select a partition material suitable for each of the drive side and use side fluids. Therefore, it is possible to combine materials having improved corrosion resistance against respective fluids, and the durability of the device can be improved.

【0070】また、積層壁80間に設けた空間部77に
より隔壁60bの軽量化ができる。さらに、薄板状の材
料で積層壁80を構成する場合では空間部77(図示せ
ず)を形成するために薄板を屈曲することで隔壁60b
の耐圧強度を高めることができ、薄板材料を屈曲加工す
ることにより量産性を高め低コスト化できる。
The space portion 77 provided between the laminated walls 80 can reduce the weight of the partition wall 60b. Further, when the laminated wall 80 is made of a thin plate-shaped material, the thin plate is bent to form the space 77 (not shown), so that the partition wall 60b is formed.
It is possible to increase the withstand pressure strength, and by bending the thin plate material, mass productivity can be improved and cost can be reduced.

【0071】以上のように、本発明の第五の実施例によ
れば図1〜図3に示した第一の実施例と同様の効果が得
られるとともに、駆動側および利用側の流体に適した隔
壁材料が自由に選定でき装置の耐久性を高めることがで
きるという効果がある。また、空間部の形成により軽量
化できるという効果がある。さらに、薄板状の材料を屈
曲加工して空間部を形成でき量産性を高め低コスト化で
きるという効果がある。
As described above, according to the fifth embodiment of the present invention, the same effect as that of the first embodiment shown in FIGS. 1 to 3 can be obtained, and it is suitable for the fluid on the driving side and the user side. The effect is that the partition wall material can be freely selected and the durability of the device can be enhanced. Further, there is an effect that the weight can be reduced by forming the space portion. Further, there is an effect that a thin plate-shaped material can be bent to form a space portion, mass productivity can be improved, and cost can be reduced.

【0072】次に、図9、図10に示す本発明の第六の
実施例について説明する。なお、図1〜図8に示した実
施例と同一機能、同一部材のところは同一符号を付与し
詳細な説明は省略する。
Next, a sixth embodiment of the present invention shown in FIGS. 9 and 10 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 8 are designated by the same reference numerals and detailed description thereof will be omitted.

【0073】81は一端は駆動ノズル59側に開口し、
他端は積層壁80間の空間部77を外周側に拡げた拡大
空間部77aに開口する分岐孔であり、固定壁60の一
部である水車ケーシング60aに設けている。従って、
積層壁80間の空間部77に一端を開口する側面噴出口
76はこの分岐孔81を介して駆動ノズル59側に連通
している。
One end of 81 is opened toward the drive nozzle 59,
The other end is a branch hole that opens to an enlarged space 77a in which the space 77 between the laminated walls 80 is expanded to the outer peripheral side, and is provided in the water turbine casing 60a that is a part of the fixed wall 60. Therefore,
The side face ejection port 76 having one end opened in the space 77 between the laminated walls 80 communicates with the drive nozzle 59 side through the branch hole 81.

【0074】上記構成において、流体駆動装置の動作を
説明する。駆動ノズル59部の駆動流体はその一部が分
岐孔81を通って積層壁80間の空間部77に流入し、
空間部77内を流動して側面噴出口76から羽根56に
向かって噴出して前述したスラスト力あるいは曲げモー
メントの低減作用を行う。駆動ノズル59部から側面噴
出口76に向かう通路は互いに接する水車ケーシング6
0aと隔壁60bである積層壁80との内部に構成され
るため、構成部材の数が最小化され簡素化できるととも
に通路をコンパクトに形成して小型化ができる。さら
に、積層壁80で通路および空間部77を形成するため
側面噴出口の孔加工が容易にでき孔寸法の高精度加工が
低コストで実現できる。
The operation of the fluid drive system having the above structure will be described. A part of the driving fluid in the driving nozzle 59 flows into the space 77 between the laminated walls 80 through the branch hole 81,
It flows in the space 77 and is ejected from the side face ejection port 76 toward the vanes 56 to reduce the thrust force or bending moment described above. The passage extending from the drive nozzle 59 to the side jet outlet 76 is in contact with the turbine casing 6
0a and the laminated wall 80 which is the partition wall 60b, the number of constituent members can be minimized and simplified, and the passage can be formed compact and downsized. Furthermore, since the passage and the space portion 77 are formed by the laminated wall 80, it is possible to easily form holes in the side surface ejection ports and realize highly accurate hole size processing at low cost.

【0075】以上のように、本発明の第六の実施例によ
れば第三の実施例と同様の効果が得られるとともに、固
定壁の内部に通路が構成できるため構成部材の数が最小
化され簡素化できるという効果がある。また、通路をコ
ンパクトに形成して装置の小型化ができるという効果が
ある。さらに、積層壁で通路および側面噴出口を形成す
るので側面噴出口の孔加工の加工性が向上でき孔寸法の
高精度加工が低コストで実現できるという効果がある。
As described above, according to the sixth embodiment of the present invention, the same effect as that of the third embodiment is obtained, and since the passage can be formed inside the fixed wall, the number of constituent members is minimized. The effect is that it can be simplified. Further, there is an effect that the passage can be formed compact and the device can be downsized. Further, since the passage and the side surface ejection port are formed by the laminated wall, there is an effect that the workability of the hole processing of the side surface ejection port can be improved and highly accurate processing of the hole size can be realized at low cost.

【0076】次に、図11、図12に示す本発明の第七
の実施例について説明する。なお、図1〜図10に示し
た実施例と同一機能、同一部材のところは同一符号を付
与し詳細な説明は省略する。
Next, a seventh embodiment of the present invention shown in FIGS. 11 and 12 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 10 are designated by the same reference numerals and detailed description thereof will be omitted.

【0077】82は積層壁80間の少なくとも一方に設
けた凹状溝であり、空間部77は凹状溝82を多数設け
て形成されるとともに、凹状溝82の端部は装置の外部
に連通している。なお、図12はすべての凹状溝82の
端部が外部に連通する場合を示したが、凹状溝の端部を
複数集合させた後で少数の開放孔(図示せず)を設けて
も良いのは云うまでもない。
Reference numeral 82 denotes a concave groove provided in at least one of the laminated walls 80. The space 77 is formed by providing a large number of concave grooves 82, and the ends of the concave grooves 82 communicate with the outside of the apparatus. There is. Although FIG. 12 shows the case where the ends of all the concave grooves 82 communicate with the outside, a small number of open holes (not shown) may be provided after collecting the ends of the concave grooves. Needless to say.

【0078】上記構成において、流体駆動装置の動作を
説明する。駆動側流体と利用側流体を分離する固定壁6
0である隔壁60bは複数の部材からなる積層壁80で
構成されるため、その材質は駆動側と利用側でそれぞれ
の流体に適した耐食性、耐久性に優れたものを選定でき
る。しかし、もし万一異常が発生して積層壁80の一方
の流体側に穴があいた場合(両方の流体側が同時に穴が
あくことはほとんどあり得ないと考えられる)、穴があ
いた側の流体が積層壁80間に設けた凹状溝82に入
り、凹状溝82を伝って外部に浸みだしてくる。この漏
れだした流体により異常が生じたことが判るため、駆動
側流体と利用側流体が互いに混入するすることが事前に
防止できる。特に、利用側流体を給湯に使用する場合で
は安全確保の上で重要性が高いものである。また、他の
用途に使う場合でも駆動側と利用側の流体の混入を防止
することは機器の運転保証上あるいは機器の耐久信頼性
においても重要である。
The operation of the fluid drive system having the above structure will be described. Fixed wall 6 for separating drive side fluid and use side fluid
Since the partition wall 60b of 0 is composed of the laminated wall 80 composed of a plurality of members, it is possible to select a material having excellent corrosion resistance and durability suitable for each fluid on the drive side and the use side. However, if an abnormality occurs and there is a hole on one fluid side of the laminated wall 80 (it is unlikely that both fluid sides will have holes at the same time), the fluid on the holed side will be It enters into the concave groove 82 provided between the laminated walls 80, propagates through the concave groove 82, and seeps out to the outside. Since it can be understood that an abnormality has occurred due to the leaked fluid, it is possible to prevent the drive-side fluid and the usage-side fluid from mixing with each other in advance. In particular, when the user-side fluid is used for hot water supply, it is of great importance for ensuring safety. Further, even when used for other purposes, it is important to prevent the mixing of the fluid on the drive side and the fluid on the use side in terms of the operation guarantee of the equipment or in the durability and reliability of the equipment.

【0079】以上のように、本発明の第七の実施例によ
れば第五の実施例と同様の効果が得られるとともに、固
定壁である隔壁の穴あき異常を検知して駆動側と利用側
の流体の混入を防止でき安全性が確保できるという効果
がある。また、流体相互の混入が防止できるため機器の
運転を保証でき耐久信頼性を向上できるという効果があ
る。
As described above, according to the seventh embodiment of the present invention, the same effect as that of the fifth embodiment can be obtained, and it is used with the driving side by detecting the perforated abnormality of the partition wall which is the fixed wall. This is effective in preventing the mixture of the fluid on the side and ensuring safety. Further, since fluids can be prevented from mixing with each other, there is an effect that the operation of the equipment can be guaranteed and the durability and reliability can be improved.

【0080】次に、図13、図14に示す本発明の第八
の実施例について説明する。なお、図1〜図12に示し
た実施例と同一機能、同一部材のところは同一符号を付
与し詳細な説明は省略する。
Next, an eighth embodiment of the present invention shown in FIGS. 13 and 14 will be described. The same functions and members as those of the embodiment shown in FIGS. 1 to 12 are designated by the same reference numerals and detailed description thereof will be omitted.

【0081】支持軸64は水車55とポンプ羽根車69
とを同軸状に回転支持するもので、水車55側とポンプ
羽根車69側とを一体にするとともに、中央部に径を大
きくした段差部64aを設けている。この段差部64a
を積層壁80間の凹部80cに収納し挟みつけることに
より支持軸64を保持している。83は支持軸64と積
層壁80の間に設けたシール部である。なお、支持軸6
4の積層壁80に対する回り止めとして、段差部64a
に設けた平面部64bと凹部80cに設けた平面部(図
示せず)とをかみ合わせることができる。
The support shaft 64 is a water turbine 55 and a pump impeller 69.
And is coaxially rotatably supported, and the water turbine 55 side and the pump impeller 69 side are integrated, and a step portion 64a having a large diameter is provided in the central portion. This step 64a
The support shafts 64 are held by accommodating and sandwiching them in the recesses 80c between the laminated walls 80. Reference numeral 83 is a seal portion provided between the support shaft 64 and the laminated wall 80. The support shaft 6
4 as a rotation stopper for the laminated wall 80
It is possible to engage the flat surface portion 64b provided on the upper surface with the flat surface portion (not shown) provided on the recessed portion 80c.

【0082】上記構成において、流体駆動装置の動作を
説明する。装置の組立時において、支持軸64は積層壁
80の一方にシール部83を介して挿入し、そのあと積
層壁80の他方をシール部83を介してはめ込むととも
に積層壁80をビスなどで固着することで支持軸の組付
けが簡単にできる。また、支持軸64が駆動側と利用側
が一体化できるため両軸が同時加工でき加工性が向上す
るとともに部品点数が削減できるため低コスト化ができ
る。さらに、軸の交換が容易にできるためメンテナンス
性が向上でき機器の耐久信頼性を向上できる。
The operation of the fluid drive system having the above structure will be described. At the time of assembling the device, the support shaft 64 is inserted into one of the laminated walls 80 via the seal portion 83, then the other of the laminated walls 80 is fitted into the laminated wall 80 via the seal portion 83, and the laminated wall 80 is fixed with screws or the like. This makes it easy to assemble the support shaft. Further, since the drive shaft and the use side of the support shaft 64 can be integrated, both shafts can be simultaneously processed, the workability is improved, and the number of parts can be reduced, so that the cost can be reduced. Further, since the shaft can be easily replaced, the maintainability can be improved and the durability and reliability of the device can be improved.

【0083】図14は他の実施例を示したもので、支持
軸64を駆動側支持軸64cと利用側支持軸64dとに
分離するとともに、駆動側支持軸64cと利用側支持軸
64dとはその端部に設けた段差部64aを積層壁80
の凹部80cに挿入し互いに嵌合部64eで接触しては
め合わせたものである。
FIG. 14 shows another embodiment. The support shaft 64 is separated into a drive side support shaft 64c and a use side support shaft 64d, and the drive side support shaft 64c and the use side support shaft 64d are separated from each other. The stepped portion 64a provided at the end of the laminated wall 80
Are inserted into the recesses 80c of the above and are fitted and brought into contact with each other at the fitting portions 64e.

【0084】支持軸64を駆動側と利用側に分離するこ
とにより、それぞれの流体に適した支持軸64の材質を
選定でき設計の自由度が向上するとともに組立加工性お
よびメンテナンス性は図13の実施例と同様に維持でき
る。
By separating the support shaft 64 into the drive side and the use side, the material of the support shaft 64 suitable for each fluid can be selected, the degree of freedom in design is improved, and the assembling workability and the maintainability are as shown in FIG. It can be maintained as in the example.

【0085】以上のように、本発明の第八の実施例によ
れば第五の実施例と同様の効果が得られるとともに、支
持軸の固定方法の簡素化ができ支持軸の加工性を高めた
設計ができるという効果がある。また、支持軸の着脱が
容易にできるためメンテナンス性が向上でき機器の耐久
信頼性が向上できるという効果がある。
As described above, according to the eighth embodiment of the present invention, the same effect as that of the fifth embodiment can be obtained, and the method of fixing the support shaft can be simplified to improve the workability of the support shaft. There is an effect that a customized design can be performed. Further, since the support shaft can be easily attached and detached, there is an effect that the maintainability can be improved and the durability and reliability of the device can be improved.

【0086】[0086]

【発明の効果】以上の説明から明らかなように本発明の
流体駆動装置は、局所的に配置した駆動ノズルに対向す
る羽根間通路を固定壁に設けた近接壁で接近して囲って
貫流流路を設け、水車羽根は噴出流の流れ方向を反転す
る反転受圧部と内周側に設けた流動案内部を設けている
ので、大きな回転駆動力を取り出すことができ、流動損
失低減により高効率化でき、そして加工の容易な羽根形
状と構成の簡素化により小型コンパクト化と低コスト化
が実現できるという効果がある。
As is apparent from the above description, in the fluid drive device of the present invention, the inter-blade passage opposed to the locally arranged drive nozzle is closely surrounded by the adjacent wall provided in the fixed wall to flow through the flow passage. A passage is provided, and the turbine blade has a reversing pressure receiving portion that reverses the flow direction of the jet flow and a flow guide portion that is provided on the inner peripheral side, so a large rotational driving force can be taken out and flow loss is reduced, resulting in high efficiency. Further, there is an effect that the size and size can be reduced and the cost can be reduced by simplifying the blade shape and the structure that can be easily processed.

【0087】また、反転受圧部の出口および流動案内部
の周方向速度成分をほぼゼロとするので、駆動流体から
取り出す駆動力の極大化と駆動流体の流動抵抗の極小化
によって少ない駆動流体流量で高出力化と高効率化がで
きるという効果がある。
Further, since the circumferential velocity components of the outlet of the reversing pressure receiving portion and the flow guide portion are set to substantially zero, the driving force taken out from the driving fluid is maximized and the flow resistance of the driving fluid is minimized to reduce the flow rate of the driving fluid. There is an effect that high output and high efficiency can be achieved.

【0088】また、羽根の軸方向側面の固定壁には側面
噴出口を設けているので、軸方向スラスト力の低減によ
る軸受け部での機械摩擦損失を低減できるという効果が
あり、また水車に加わる支持軸に対する曲げモーメント
の低減による軸受け部での機械摩擦損失を低減できると
いう効果がある。さらに、羽根と固定壁の隙間寸法を小
さくでき駆動流体の漏洩防止により水車駆動力の増大と
効率向上が実現できるという効果がある。
Further, since the side wall jet port is provided on the fixed wall on the side surface in the axial direction of the blade, there is an effect that mechanical friction loss in the bearing portion due to the reduction of the axial thrust force can be reduced, and it is added to the water turbine. There is an effect that the mechanical friction loss at the bearing portion can be reduced due to the reduction of the bending moment with respect to the support shaft. Further, there is an effect that the size of the gap between the blade and the fixed wall can be reduced and the leakage of the driving fluid can be prevented to increase the turbine driving force and improve the efficiency.

【0089】また、外周側の側面噴出口の口径を内周側
よりも小さくしているので、曲げモーメントによる軸受
け部での機械摩擦損失が大幅に低減でき水車の効率向上
ができるという効果がある。また、樹脂などの軽くて量
産加工性に優れた材料が使用できるため軽量化でき低コ
スト化できるという効果がある。
Further, since the diameter of the side surface ejection port on the outer peripheral side is made smaller than that on the inner peripheral side, there is an effect that the mechanical friction loss at the bearing portion due to the bending moment can be greatly reduced and the efficiency of the water turbine can be improved. . In addition, since a material such as resin that is light and has excellent workability in mass production can be used, there is an effect that the weight can be reduced and the cost can be reduced.

【0090】また、支持軸側の固定壁を複数の部材から
なる積層壁としこの積層壁間に空間部を設けているの
で、駆動側および利用側の流体に適した隔壁材料が自由
に選定でき装置の耐久性を高めることができるという効
果がある。また空間部の形成により軽量化できるという
効果がある。さらに、薄板状の材料を屈曲加工して空間
部を形成でき量産性を高め低コスト化できるという効果
がある。
Further, since the fixed wall on the support shaft side is a laminated wall made up of a plurality of members and a space is provided between the laminated walls, a partition wall material suitable for the drive side and utilization side fluids can be freely selected. This has the effect of increasing the durability of the device. Further, there is an effect that the weight can be reduced by forming the space portion. Further, there is an effect that a thin plate-shaped material can be bent to form a space portion, mass productivity can be improved, and cost can be reduced.

【0091】また、側面噴出口は空間部と分岐孔を介し
て駆動ノズルに連通させているので、固定壁の内部に通
路が構成できるため構成部材の数が最小化され簡素化で
きるという効果がある。また、通路をコンパクトに形成
して装置の小型化ができるという効果がある。さらに、
積層壁で通路および側面噴出口を形成するので側面噴出
口の孔加工の加工性が向上でき孔寸法の高精度加工が低
コストで実現できるという効果がある。
Further, since the side face ejection port communicates with the drive nozzle through the space and the branch hole, the passage can be formed inside the fixed wall, so that the number of constituent members can be minimized and simplified. is there. Further, there is an effect that the passage can be formed compact and the device can be downsized. further,
Since the passage and the side jet are formed by the laminated wall, there is an effect that the workability of the hole of the side jet can be improved and high precision machining of the hole size can be realized at low cost.

【0092】また、多数の凹状溝により積層壁間の空間
部を形成しているので、固定壁である隔壁の穴あき異常
を検知して駆動側と利用側の流体の混入を防止でき安全
性が確保できるという効果がある。また、流体相互の混
入が防止できるため機器の運転を保証でき耐久信頼性を
向上できるという効果がある。
Further, since the space between the laminated walls is formed by a large number of concave grooves, abnormality of perforation of the partition wall, which is the fixed wall, can be detected to prevent mixture of fluid on the drive side and the use side. Is effective. Further, since fluids can be prevented from mixing with each other, there is an effect that the operation of the equipment can be guaranteed and the durability and reliability can be improved.

【0093】また、第八の発明の流体駆動装置は、支持
軸は積層壁の間に挟んで保持しているので、支持軸の固
定方法の簡素化ができ支持軸の加工性を高めた設計がで
きるという効果がある。また、支持軸の着脱が容易にで
きるためメンテナンス性が向上でき機器の耐久信頼性が
向上できるという効果がある。
Further, in the fluid drive unit according to the eighth aspect of the present invention, since the support shaft is sandwiched and held between the laminated walls, the method of fixing the support shaft can be simplified and the workability of the support shaft is improved. There is an effect that can be. Further, since the support shaft can be easily attached and detached, there is an effect that the maintainability can be improved and the durability and reliability of the device can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例における流体駆動装置の
断面図
FIG. 1 is a sectional view of a fluid drive system according to a first embodiment of the present invention.

【図2】上記図1の流体駆動装置のA−A断面図2 is a cross-sectional view taken along the line AA of the fluid drive system of FIG.

【図3】上記図2の他の実施例における水車のA−A断
面図
FIG. 3 is a cross-sectional view taken along the line AA of the water turbine according to another embodiment of FIG.

【図4】本発明の第二の実施例における反転受圧部出口
における流体速度線図
FIG. 4 is a fluid velocity diagram at the outlet of the reverse pressure receiving portion in the second embodiment of the present invention.

【図5】本発明の第三の実施例における流体駆動装置の
断面図
FIG. 5 is a sectional view of a fluid drive system according to a third embodiment of the present invention.

【図6】本発明の第四の実施例における流体駆動装置の
断面図
FIG. 6 is a sectional view of a fluid drive system according to a fourth embodiment of the present invention.

【図7】上記図6の他の実施例における流体駆動装置の
E−E断面図
FIG. 7 is a cross-sectional view taken along line EE of the fluid drive system in another embodiment of FIG.

【図8】本発明の第五の実施例における流体駆動装置の
断面図
FIG. 8 is a sectional view of a fluid drive system according to a fifth embodiment of the present invention.

【図9】本発明の第六の実施例における流体駆動装置の
断面図
FIG. 9 is a sectional view of a fluid drive system according to a sixth embodiment of the present invention.

【図10】上記図9の他の実施例における流体駆動装置
のA−A断面図
10 is a cross-sectional view taken along the line AA of the fluid drive device in another embodiment of FIG.

【図11】本発明の第七の実施例における流体駆動装置
の断面図
FIG. 11 is a sectional view of a fluid drive system according to a seventh embodiment of the present invention.

【図12】上記図11における流体駆動装置の外観図12 is an external view of the fluid drive system shown in FIG.

【図13】本発明の第八の実施例における流体駆動装置
の断面図
FIG. 13 is a sectional view of a fluid drive system in an eighth embodiment of the present invention.

【図14】上記図13の他の実施例における流体駆動装
置の断面図
FIG. 14 is a cross-sectional view of a fluid drive system according to another embodiment of FIG.

【図15】従来の流体を駆動源とするポンプの構成図FIG. 15 is a configuration diagram of a conventional pump using a fluid as a drive source.

【図16】従来の流体を駆動源とする他のポンプの構成
FIG. 16 is a block diagram of another conventional pump using a fluid as a drive source.

【図17】上記図19の水車部構成図FIG. 17 is a configuration diagram of the water turbine unit shown in FIG.

【図18】従来の流体により駆動する水車の平面断面図FIG. 18 is a plan sectional view of a conventional water-driven water turbine.

【図19】上記図21の水車の正面断面図FIG. 19 is a front sectional view of the water turbine of FIG. 21.

【図20】従来の住棟セントラル給湯暖房装置のシステ
ム構成図
[Fig. 20] System configuration diagram of the conventional central hot water supply / room heating system for a residential building

【符号の説明】[Explanation of symbols]

55 水車 56 羽根 57 羽根基部 58 羽根間通路 59 駆動ノズル 60 固定壁 61 近接壁 62 貫流流路 63 流出孔 64 支持軸 66 反転受圧部 67 流動案内部 77 空間部 80 積層壁 81 分岐孔 82 凹状溝 55 Water turbine 56 Blades 57 Blade base portion 58 Inter-blade passage 59 Drive nozzle 60 Fixed wall 61 Proximity wall 62 Through flow passage 63 Outflow hole 64 Support shaft 66 Reverse pressure receiving portion 67 Flow guide portion 77 Space portion 80 Laminated wall 81 Branch hole 82 Concave groove

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】径方向に延びる複数の羽根とこれら羽根の
間に形成した羽根間通路とこれら羽根を径方向中心側で
支持する羽根基部を有する水車と、前記羽根外周部に対
向して局所的に配置し周方向に駆動流体を噴出させる駆
動ノズルと、羽根中心部に対向配置した流出孔と、前記
駆動ノズルに対向する部分の羽根間通路は羽根の外周部
および羽根の軸方向側面を固定壁に設けた近接壁で接近
して囲った貫流流路と、前記固定壁に設け前記水車を支
持する支持軸とを有し、前記羽根は駆動ノズルからの噴
出流の流れ方向を反転する反転受圧部と内周側に設けた
流動案内部を備えた流体駆動装置。
1. A water turbine having a plurality of blades extending in a radial direction, an inter-blade passage formed between the blades, a blade base portion supporting the blades on the radial center side, and a local portion facing the blade outer peripheral portion. Drive nozzles for ejecting the drive fluid in the circumferential direction, the outlet holes arranged to face the center of the blades, and the inter-blade passages in the portion facing the drive nozzles are provided on the outer peripheral portion of the blades and on the axial side surface of the blades. It has a through-flow passage closely surrounded by a proximity wall provided on a fixed wall, and a support shaft provided on the fixed wall for supporting the water turbine, and the vanes reverse the flow direction of the jet flow from the drive nozzle. A fluid drive device comprising a reverse pressure receiving portion and a flow guide portion provided on the inner peripheral side.
【請求項2】反転受圧部は水車の回転時にその出口部に
おいて噴出流体の周方向速度成分がほぼゼロとする曲率
で形成し、流動案内部は噴出流体の周方向速度成分がほ
ぼゼロを維持する領域とした請求項1記載の流体駆動装
置。
2. The reversing pressure receiving portion is formed with a curvature so that the circumferential velocity component of the jetted fluid becomes almost zero at the outlet portion of the water turbine when it rotates, and the flow guide portion maintains the circumferential velocity component of the jetted fluid at almost zero. The fluid drive device according to claim 1, wherein the fluid drive device is set as a region to be formed.
【請求項3】羽根の軸方向側面の固定壁には駆動流体が
噴出する側面噴出口を設けた請求項1記載の流体駆動装
置。
3. A fluid drive device according to claim 1, wherein a side wall ejection port through which a drive fluid is ejected is provided on the fixed wall on the side surface in the axial direction of the blade.
【請求項4】側面噴出口は外周側に設けた孔を内周側よ
り小さくして、外周側での噴出速度は内周側の側面噴出
口での噴出速度より速くした請求項3記載の流体駆動装
置。
4. A side jet outlet according to claim 3, wherein the hole provided on the outer peripheral side is smaller than the inner peripheral side so that the jet speed on the outer peripheral side is faster than the jet speed on the inner peripheral side jet outlet. Fluid drive.
【請求項5】支持軸を設けた固定壁は複数の部材からな
る積層壁とし、この積層壁間に空間部を設けた請求項1
記載の流体駆動装置。
5. A fixed wall provided with a support shaft is a laminated wall composed of a plurality of members, and a space is provided between the laminated walls.
The fluid drive device described.
【請求項6】側面噴出口は積層壁間の空間部と分岐孔と
を介して駆動ノズル側に連通した請求項3記載の流体駆
動装置。
6. The fluid drive device according to claim 3, wherein the side face ejection port communicates with the drive nozzle side through a space between the laminated walls and a branch hole.
【請求項7】積層壁間の空間部は多数の凹状溝により形
成し凹状溝の端部を外部に連通させた請求項5記載の流
体駆動装置。
7. The fluid drive device according to claim 5, wherein the space between the laminated walls is formed by a large number of concave grooves, and the ends of the concave grooves communicate with the outside.
【請求項8】支持軸は積層壁の間に挟んで保持した請求
項5記載の流体駆動装置。
8. The fluid drive device according to claim 5, wherein the support shaft is held by being sandwiched between the laminated walls.
JP8009753A 1996-01-24 1996-01-24 Fluid driving device Pending JPH09195914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8009753A JPH09195914A (en) 1996-01-24 1996-01-24 Fluid driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8009753A JPH09195914A (en) 1996-01-24 1996-01-24 Fluid driving device

Publications (1)

Publication Number Publication Date
JPH09195914A true JPH09195914A (en) 1997-07-29

Family

ID=11729059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8009753A Pending JPH09195914A (en) 1996-01-24 1996-01-24 Fluid driving device

Country Status (1)

Country Link
JP (1) JPH09195914A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038311A (en) * 2001-02-13 2003-05-16 오남자 The power equipment used a fluid.
JP2009115098A (en) * 2001-10-04 2009-05-28 Rotech Holdings Ltd Power generator and turbine unit
CN106391342A (en) * 2016-11-29 2017-02-15 洛阳隆华传热节能股份有限公司 Rotary spray nozzle
JP2021179174A (en) * 2020-05-11 2021-11-18 株式会社クボタ Rotary equipment and pump device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030038311A (en) * 2001-02-13 2003-05-16 오남자 The power equipment used a fluid.
JP2009115098A (en) * 2001-10-04 2009-05-28 Rotech Holdings Ltd Power generator and turbine unit
CN106391342A (en) * 2016-11-29 2017-02-15 洛阳隆华传热节能股份有限公司 Rotary spray nozzle
CN106391342B (en) * 2016-11-29 2022-01-28 隆华科技集团(洛阳)股份有限公司 Rotary spray head
JP2021179174A (en) * 2020-05-11 2021-11-18 株式会社クボタ Rotary equipment and pump device

Similar Documents

Publication Publication Date Title
US7341424B2 (en) Turbines and methods of generating power
US6779964B2 (en) Viscous drag impeller components incorporated into pumps, turbines and transmissions
EP1242719B1 (en) Viscous drag impeller components incorporated into pumps, turbines and transmissions
US4067665A (en) Turbine booster pump system
JPH09195914A (en) Fluid driving device
JP6538550B2 (en) Fluid coupling having shaft seal device for preventing leakage of lubricating oil
CN111878452A (en) Impeller assembly for multistage submersible pump
JP2007211677A (en) Steam turbine and solar heat rankine system using the same
JPH0942139A (en) Fluid driving device
JP3723985B2 (en) Fluid driven pump
JP2007198333A (en) Steam turbine and solar heat rankine system using it
CN108533506A (en) Portable hydraulic motor direct drive submersible axial flow pump
JPH0979173A (en) Fluid driving device
KR100562833B1 (en) Both direction circular Pump
WO2015145204A1 (en) Hydromechanical heat generator
CN219840800U (en) Low-energy-consumption zero-pressure circulating pump
JPH08135591A (en) Fluid drive pump
JPH0925868A (en) Impeller and fluid driving device using same
CN218563995U (en) Impeller, centrifugal pump and household appliance
JPH07317693A (en) Fluid drive pump
CN109339867A (en) Reaction nozzle-type impeller, rotor, steam turbine, steamer equipment and prime mover
JPH0763187A (en) Fluid driving pump
CN212360291U (en) Impeller assembly for multistage submersible pump
JP2940600B2 (en) Self-propelled pump
CN210718119U (en) Gas water heater

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121