JPH0979028A - Self-diagnostic device for catalyst - Google Patents

Self-diagnostic device for catalyst

Info

Publication number
JPH0979028A
JPH0979028A JP7232927A JP23292795A JPH0979028A JP H0979028 A JPH0979028 A JP H0979028A JP 7232927 A JP7232927 A JP 7232927A JP 23292795 A JP23292795 A JP 23292795A JP H0979028 A JPH0979028 A JP H0979028A
Authority
JP
Japan
Prior art keywords
catalyst
sensor
output
downstream
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7232927A
Other languages
Japanese (ja)
Other versions
JP3588662B2 (en
Inventor
Kuniaki Sawamoto
国章 沢本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23292795A priority Critical patent/JP3588662B2/en
Publication of JPH0979028A publication Critical patent/JPH0979028A/en
Application granted granted Critical
Publication of JP3588662B2 publication Critical patent/JP3588662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0835Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To diagnose the cold time HC adsorbing capacity of an HC adsorbing catalyst and a lean NOx catalyst and HC desorbing capacity from the cold time to warming up. SOLUTION: Signals from an O2 sensor A on the upper reaches and an O2 sensor B on the lower reaches are inputted to a signal comparing circuit D, and the output of a water temperature sensor C and the signal comparing circuit D is inputted to a catalyst degradation circuit E to judge degradation. An alarm circuit F lights a light emission diode at the time of judging catalyst degradation. Since a catalyst for adsorbing HC at the cold time and desorbing HC after warming up is diagnosed from the ratio of rich time of the O2 sensors A, B on the upper and lower reaches, the catalyst can be diagnosed respectively at the time of adsorption and desorption so as to improve the accuracy of diagnosis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リーンNOx触媒
やHC吸着触媒のように冷間時にHCを吸着する触媒の
リーンNOx転換・HC吸着性能の診断法を特徴とした
触媒の自己診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst self-diagnosis device characterized by a method for diagnosing lean NOx conversion and HC adsorption performance of a catalyst that adsorbs HC when cold such as a lean NOx catalyst or an HC adsorption catalyst. .

【0002】[0002]

【従来の技術】従来の触媒の自己診断装置としては、例
えば特開平6−66131号公報があり、これはHC吸
着触媒の自己診断法を示す。
2. Description of the Related Art As a conventional catalyst self-diagnosis apparatus, for example, there is JP-A-6-66131, which shows a self-diagnosis method for an HC adsorption catalyst.

【0003】また触媒材料としては、特開平3−135
437号公報と特開平6−205975号公報等に示す
ものがある。
Further, as a catalyst material, JP-A-3-135 is known.
437 and Japanese Patent Laid-Open No. 6-205975.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の触媒の自己診断装置にあっては、暖機後の触
媒上下流O2 センサの周波数比から診断を検出する方法
(吸着材の三元触媒能力から吸着材の吸着能力を診断す
る)となっていたため、吸着性能と三元触媒性能の相関
が低いと診断の精度が低下するという問題があった。
However, in such a conventional catalyst self-diagnosis apparatus, a method of detecting the diagnosis from the frequency ratio of the upstream and downstream O 2 sensor of the catalyst after warming up (three of the adsorbents) is used. Since the adsorption ability of the adsorbent is diagnosed from the original catalyst ability), there is a problem that the accuracy of the diagnosis decreases if the correlation between the adsorption performance and the three-way catalyst performance is low.

【0005】本発明は、このような従来の問題点に着目
してなされたもので、HC吸着触媒やリーンNOx触媒
の冷間時のHC吸着能力と冷間時から暖機までの間のH
C脱離能力とを診断する触媒の自己診断装置を提供する
ことを目的としている。
The present invention has been made by paying attention to such a conventional problem, and the HC adsorbing ability of the HC adsorbing catalyst or the lean NOx catalyst in the cold state and the H adsorbing capacity from the cold state to the warming up time.
It is an object of the present invention to provide a catalyst self-diagnosis device for diagnosing C desorption capacity.

【0006】[0006]

【課題を解決するための手段】本発明は上述の課題を解
決するために、機関の排気管に装着された触媒の排気上
下流にO2 センサを装着し、ラムダコントロール条件に
おける両O2 センサの周波数比から触媒の劣化を診断す
る装置において、機関の始動から暖機に至る間に、触媒
上流のO2 センサ出力が変化しても、下流のO2 センサ
出力がリッチ出力を示す事により、触媒の性能が良い事
を診断する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention mounts an O 2 sensor upstream and downstream of a catalyst mounted on an exhaust pipe of an engine, and both O 2 sensors under a lambda control condition. In the device for diagnosing the deterioration of the catalyst from the frequency ratio of, even if the output of the O 2 sensor upstream of the catalyst changes during the period from the start of the engine to the warm-up, the output of the downstream O 2 sensor shows a rich output. , Diagnose that the performance of the catalyst is good.

【0007】また、機関の始動から暖機に至る間に、触
媒上流のO2 センサ出力が変化しても、まず下流のO2
センサ出力がリーン出力を示す。さらに時間が経過した
ら、触媒上流のO2 センサ出力が変化しても下流のO2
センサ出力がリッチ出力を示すことにより触媒の性能が
良い事を診断する。
Further, even if the output of the O 2 sensor upstream of the catalyst changes during the period from engine startup to warm-up, first of all the O 2 downstream
The sensor output shows a lean output. After lapse of further time, also O 2 sensor output upstream of the catalyst is changed downstream of the O 2
It is diagnosed that the performance of the catalyst is good because the sensor output shows a rich output.

【0008】[0008]

【作用】本発明によれば、機関の始動から暖機に至る間
に、前記触媒上流のO2 センサ出力が変化しても、下流
のO2 センサ出力がリッチ出力を示す事により、前記触
媒の性能が良い事を診断する。
According to the present invention, while leading to warm up from the start of the engine, be varied O 2 sensor output of the catalyst upstream, downstream of the O 2 sensor output by indicating the rich output, the catalyst It is diagnosed that the performance of is good.

【0009】また、本発明によれば、機関の始動から暖
機に至る間に、前記触媒上流のO2センサ出力が変化し
ても、まず下流のO2 センサ出力がリーン出力を示し、
さらに時間が経過したら、前記触媒上流のO2 センサ出
力が変化しても下流のO2 センサ出力がリッチ出力を示
すことにより触媒の性能が良い事を診断する。
Further, according to the present invention, even if the output of the O 2 sensor upstream of the catalyst changes during the period from engine startup to warm-up, the output of the downstream O 2 sensor first shows a lean output,
After a lapse of time, even if the output of the O 2 sensor upstream of the catalyst changes, the output of the O 2 sensor downstream shows a rich output, so that it is diagnosed that the performance of the catalyst is good.

【0010】[0010]

【発明の実施の形態】以下に本発明を図面に基づいて詳
細に説明する。尚、触媒材料は従来例特開平3−135
437号公報および特開平6−205975号公報に示
したものが適用可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. Incidentally, the catalyst material is the conventional example JP-A-3-135.
Those disclosed in Japanese Patent Laid-Open No. 437 and Japanese Patent Laid-Open No. 6-205975 can be applied.

【0011】図1は本発明のクレーム対応図である。FIG. 1 is a diagram corresponding to the claims of the present invention.

【0012】図1において(A)は上流側O2 センサ、
(B)は下流側O2 センサである。両者の信号は(D)
の信号比較回路に入力される。(C)は水温センサであ
り、このセンサ出力と(D)の出力とが、(E)の触媒
劣化回路とに入力されて、劣化を判定する。(F)は警
報回路であり、触媒劣化時に発光ダイオードを光らせ
る。
In FIG. 1, (A) is an upstream O 2 sensor,
(B) is a downstream O 2 sensor. Both signals are (D)
Is input to the signal comparison circuit of. (C) is a water temperature sensor, and the sensor output and the output of (D) are input to the catalyst deterioration circuit of (E) to determine deterioration. (F) is an alarm circuit that lights up the light emitting diode when the catalyst deteriorates.

【0013】〔実施の形態1〕図2は本発明の実施の形
態1を示す図である。図2において1はエンジンであ
り、吸入空気はエアフロメータ2、スロットルバルブ
3、吸気管4を経由して吸入される。5はインジェクタ
であり、燃料を供給する。6は点火プラグであり、点火
する。7は排気マニホールドであり、その下流にはフロ
ントチューブ8が連結されている。さらにフロントチュ
ーブの途中には触媒10が装着され、その下流にはマフ
ラ11が連結されている。13はエアフロメータであ
り、吸入空気流量を計測する。14はクランク角センサ
であり、エンジンのクランク角度を検出する。15は冷
却水温センサであり、冷却水温を検出する。16は上流
側O2 センサ、17は下流側O2 センサである。18は
発光ダイオードであり、故障時に点灯して警告する。1
2はコントローラであり、上記各センサの信号を演算し
て、上記各アクチュエータを駆動する。
[First Embodiment] FIG. 2 is a diagram showing a first embodiment of the present invention. In FIG. 2, reference numeral 1 is an engine, and intake air is taken in through an air flow meter 2, a throttle valve 3, and an intake pipe 4. An injector 5 supplies fuel. 6 is a spark plug that ignites. Reference numeral 7 is an exhaust manifold, and a front tube 8 is connected downstream thereof. Further, a catalyst 10 is mounted in the middle of the front tube, and a muffler 11 is connected downstream thereof. An air flow meter 13 measures the intake air flow rate. A crank angle sensor 14 detects the crank angle of the engine. A cooling water temperature sensor 15 detects the cooling water temperature. Reference numeral 16 is an upstream O 2 sensor, and 17 is a downstream O 2 sensor. Reference numeral 18 denotes a light emitting diode, which lights up to warn when a failure occurs. 1
Reference numeral 2 denotes a controller, which operates the actuators by calculating signals from the sensors.

【0014】図3は触媒が正常な場合を示す。t0 の時
刻にエンジンが始動される。始動直後からλコントロー
ルを開始するために、上流O2 センサ出力は図2に示す
ように反転をくり返す。触媒が正常であれば触媒温度が
低い期間はHCを吸着し、触媒温度が高くなるとHCを
脱離する。従って、t0 〜t1 間はHCを触媒が吸着し
ている。t1 〜t2 間はHCを脱離する。この結果t0
〜t1 は上流O2 センサ信号が反転しているのに、下流
2 センサ出力は低い。t1 〜t2 は上流O2センサ信
号が反転しているのに、下流O2 センサ出力は高い。
FIG. 3 shows the case where the catalyst is normal. The engine is started at time t 0 . In order to start the λ control immediately after the start, the output of the upstream O 2 sensor repeats inversion as shown in FIG. If the catalyst is normal, it adsorbs HC while the catalyst temperature is low, and desorbs HC when the catalyst temperature is high. Therefore, the catalyst adsorbs HC during the period from t 0 to t 1 . HC is desorbed between t 1 and t 2 . This result t 0
Up to t 1, the upstream O 2 sensor signal is inverted, but the downstream O 2 sensor output is low. Although the upstream O 2 sensor signal is inverted from t 1 to t 2 , the downstream O 2 sensor output is high.

【0015】一方、触媒が劣化している場合を、図4に
示す。図4において触媒の劣化はHC吸着能の劣化と相
関を有するために、HC濃度は触媒上流と触媒下流とで
は差はない。このためO2 センサ出力は触媒上下流とも
に同一の周波数で反転する。時刻t3 以降は三元触媒性
能が活性化して、O2 ストレージ機能が働くために、下
流O2 センサ信号の反転数は小さくなる。t3 以降は診
断を行わない。
On the other hand, FIG. 4 shows the case where the catalyst is deteriorated. In FIG. 4, since the deterioration of the catalyst correlates with the deterioration of the HC adsorption capacity, there is no difference in the HC concentration between the catalyst upstream and the catalyst downstream. Therefore, the O 2 sensor output is inverted at the same frequency both upstream and downstream of the catalyst. After time t 3, the three-way catalyst performance is activated and the O 2 storage function is activated, so that the inversion number of the downstream O 2 sensor signal becomes small. No diagnosis is performed after t 3 .

【0016】このようにt0 →t3 間で上記触媒の診断
を行う。
In this way, the diagnosis of the catalyst is carried out between t 0 and t 3 .

【0017】図5に本実施の形態のフローチャートを示
す。
FIG. 5 shows a flowchart of this embodiment.

【0018】本フローはΔTごと(例えば50ms)に
実行される。まずS1で始動終了かどうかを判定する。
ここでNOならS2に移って、TmS,n(始動からのタイ
アであり、nは添字)は0のままとする。一方、S1で
YESならS3に移って、TmS,nをΔTだけ増加させ
る。次にS4で上流のO2 センサ出力(VFO)を測定
し、さらにS5で下流のO2 センサ出力(VRO)を測定
する。次にS6でVFOを比較値(SL)と比較して、A
/Fが理論空燃比よりリッチかどうかを判定する。Yな
らリッチであるので、S7に移る。S7では上流O2
ンサのリッチ累積時間(TmF,n,nは添字)をΔTだけ
増加させる。
This flow is executed every ΔT (for example, 50 ms). First, in S1, it is determined whether or not the start is completed.
If NO here, the routine proceeds to S2, and T mS, n (tire from the start, n is a subscript) remains 0. On the other hand, if YES in S1, the process proceeds to S3, and T mS, n is increased by ΔT. Next, the upstream O 2 sensor output (V FO ) is measured in S4, and the downstream O 2 sensor output (V RO ) is further measured in S5. Next, in S6, V FO is compared with the comparison value (SL), and A
It is determined whether / F is richer than the theoretical air-fuel ratio. If Y, it means rich, so move to S7. In S7, the rich accumulation time of the upstream O 2 sensor (T mF, n , n is a subscript) is increased by ΔT.

【0019】次にS8ではS6と同様に下流O2 センサ
の出力(VRO)をSLと比較する。YならS9に移っ
て、下流O2 センサのリッチ累積時間(TmR,n)をΔT
だけ増加させる。S8でNの場合と、S9の次に、S1
0でTmS,nをT1 と比較する。このT1 は定数であり、
図3に示すように、吸着されたHCが脱離して、触媒下
流のHC濃度が触媒上流のHCが高くなるまでの時間で
ある。この値は触媒の種類や位置に応じて設定する。S
10でYなら始動からまだ時間が経過していないので、
フローは終了する。S10でNならS11に移り、T
mS,nをT1 かどうか判定する。
Next, in S8, the output (V RO ) of the downstream O 2 sensor is compared with SL, as in S6. If Y, move to S9 and set the rich cumulative time (T mR, n ) of the downstream O 2 sensor to ΔT.
Only increase. In the case of N in S8 and after S9, S1
At 0, compare T mS, n with T 1 . This T 1 is a constant,
As shown in FIG. 3, it is the time until the adsorbed HC is desorbed and the HC concentration at the downstream side of the catalyst becomes high at the HC concentration at the upstream side of the catalyst. This value is set according to the type and position of the catalyst. S
If it is 10 at Y, it means that the time has not passed since the start.
The flow ends. If N in S10, move to S11, T
It is determined whether mS, n is T 1 .

【0020】S11でYなら時間がT1 経過したので触
媒の最初の診断を行う。S12ではフローチャートに示
すように、触媒の上下流でのリッチ時間の比を所定値k
1 と比較する。触媒が正常なら図3に示すように、上流
2 センサのリッチ割合は50%位だし、下流O2 セン
サは排気中のHCを吸着するために、リッチ割合は小さ
い。従ってこの比は大きくなる。このk1 も触媒の種類
や取付位置に応じて設定する。このS12でNならS1
7に移って、触媒異常と判定する。S12でYならS1
3に移って、タイア(TmR,nとTmF,n)を0にリセット
して後半の診断に備える。
If Y in S11, the time T 1 has elapsed, so the first diagnosis of the catalyst is performed. In S12, as shown in the flowchart, the ratio of the rich times in the upstream and downstream of the catalyst is set to a predetermined value k.
Compare with 1 . If the catalyst is normal, as shown in FIG. 3, the rich ratio of the upstream O 2 sensor is about 50%, and the downstream O 2 sensor adsorbs HC in the exhaust gas, so the rich ratio is small. Therefore, this ratio becomes large. This k 1 is also set according to the type of catalyst and the mounting position. If N in S12, S1
Moving to 7, it is determined that the catalyst is abnormal. If Y in S12, S1
Moving to 3, the tires (T mR, n and T mF, n ) are reset to 0 to prepare for the latter half of the diagnosis.

【0021】S11でNなら図3に示す時間T2 での脱
離条件での診断に移る。S14ではTmS,nをT2 と比較
する。NならまだT2 だけ経過していないので、フロー
を終了する。S14でYなら時間がT2 経過したので、
触媒上流と下流とのリッチ時間の比を所定値k2 と比較
する。触媒が正常なら図3に示すように、かなり小さく
なる。S15でYならS16に移って、触媒正常と判定
する。S15でNならS17に移って、触媒異常と判定
する。
If the answer in S11 is N, the process proceeds to the diagnosis under the desorption condition at the time T 2 shown in FIG. At S14, T mS, n is compared with T 2 . If it is N, T 2 has not yet elapsed, so the flow ends. If Y in S14, time T 2 has elapsed, so
The ratio of the rich times of the catalyst upstream and downstream is compared with a predetermined value k 2 . If the catalyst is normal, it will be considerably smaller, as shown in FIG. If Y in S15, the process proceeds to S16 to determine that the catalyst is normal. If NO in S15, the process proceeds to S17, and it is determined that the catalyst is abnormal.

【0022】図4には触媒が劣化した条件における、各
信号を示す。
FIG. 4 shows each signal under the condition that the catalyst is deteriorated.

【0023】触媒のHC吸着能力がないために、触媒上
下流のO2 センサ信号はほぼ同一である。
Due to the catalyst's inability to adsorb HC, the O 2 sensor signals upstream and downstream of the catalyst are almost the same.

【0024】t3 以降は触媒のO2 ストレージ機能が働
くために、下流O2 センサの反転回数は減少する。
After t 3, since the O 2 storage function of the catalyst works, the number of reversals of the downstream O 2 sensor decreases.

【0025】以上のように、本実施の形態においては、
始動からT1 時間経過までには触媒のHC吸着能力を診
断し、T1 経過後、T2 時間には触媒のHC脱離能力を
診断することにより、高精度の診断を行う。
As described above, in the present embodiment,
A high-accuracy diagnosis is performed by diagnosing the HC adsorption capacity of the catalyst from the start to T 1 hours and by diagnosing the HC desorption capacity of the catalyst at T 2 after T 1 has elapsed.

【0026】〔実施の形態2〕図6に、本発明の実施の
形態2のフローチャートを示す。
[Second Embodiment] FIG. 6 shows a flowchart of a second embodiment of the present invention.

【0027】実施の形態2は、診断を行うタイミングを
機関の冷却水温によって決定するものである。実施の形
態1と異なるのは、S5Bで冷却水温センサの出力から
冷却水温を検出するステップである。S6〜S9は実施
の形態1と同一である。S10ではTw を所定値TW1
比較する。S10でYなら冷却水温はまだ低すぎるので
終了する。S10でNOならS11に移ってTW がTW1
に等しいかどうかを判定する。S11でYESなら前半
の診断を行うタイミングなので、S12に移る。S12
〜S13は実施の形態1と同じである。
In the second embodiment, the timing of diagnosis is determined by the cooling water temperature of the engine. The difference from the first embodiment is the step of detecting the cooling water temperature from the output of the cooling water temperature sensor in S5B. S6 to S9 are the same as those in the first embodiment. In S10, T w is compared with a predetermined value T W1 . If the answer is Y in S10, the cooling water temperature is still too low, and the process ends. If NO in S10, move to S11 and T W is T W1
Is determined to be equal to. If YES in S11, it is the timing for diagnosing the first half, so the process proceeds to S12. S12
S13 are the same as those in the first embodiment.

【0028】S11でNならS14に移る。S14では
W をTW2と比較する。S14でNなら後半の診断を行
うタイミングではないので終了する。S14でYならS
15に移る。S15〜S17は実施の形態1と同じであ
る。
If N in S11, the process proceeds to S14. In S14, T W is compared with T W2 . If it is N in S14, it is not the timing for performing the latter half of the diagnosis, so the process ends. If Y in S14, S
Go to 15. S15 to S17 are the same as those in the first embodiment.

【0029】図7に各信号の変化を示す。FIG. 7 shows changes in each signal.

【0030】[0030]

【発明の効果】以上説明してきたように、本発明におい
てHC吸着触媒やリーンNOx触媒のように冷間時にH
Cを吸着し、暖機後にHCを脱離する触媒を上下流のO
2 センサのリッチ時間の比から診断する方法としたた
め、吸着時と脱離時にそれぞれ診断出来るので、診断の
精度を向上することができる。
As described above, in the present invention, as in the HC adsorption catalyst and the lean NOx catalyst, H
A catalyst that adsorbs C and desorbs HC after warming up
Since the method of diagnosis is based on the ratio of the rich times of the two sensors, it is possible to make a diagnosis at the time of adsorption and at the time of desorption, so the accuracy of the diagnosis can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるクレーム対応図である。FIG. 1 is a diagram corresponding to a claim in the present invention.

【図2】本発明における実施の形態1を示した図であ
る。
FIG. 2 is a diagram showing Embodiment 1 of the present invention.

【図3】本発明における実施の形態1の触媒が正常な場
合を示した図である。
FIG. 3 is a diagram showing a case where the catalyst according to the first embodiment of the present invention is normal.

【図4】本発明における実施の形態1の触媒が劣化して
いる場合を示した図である。
FIG. 4 is a diagram showing a case where the catalyst according to the first embodiment of the present invention is deteriorated.

【図5】本発明における実施の形態1のフローチャート
を示した図である。
FIG. 5 is a diagram showing a flowchart according to the first embodiment of the present invention.

【図6】本発明における実施の形態2を示した図であ
る。
FIG. 6 is a diagram showing a second embodiment of the present invention.

【図7】本発明における実施の形態2の各信号の変化を
示した図である。
FIG. 7 is a diagram showing changes in each signal according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

A 上流側O2 センサ B 下流側O2 センサ C 水温センサ D 信号比較回路 E 触媒劣化回路 F 警報回路 1 エンジン 2 エアフロメータ 3 スロットルバルブ 4 吸気管 5 インジェクタ 6 点火プラグ 7 排気マニホールド 8 フロントチューブ 10 触媒 11 マフラ 12 コントローラ 13 エアフロメータ 14 クランク角センサ 15 冷却水温センサ 16 上流側O2 センサ 17 下流側O2 センサ 18 発光ダイオードA upstream O 2 sensor B downstream O 2 sensor C water temperature sensor D signal comparison circuit E catalyst deterioration circuit F alarm circuit 1 engine 2 air flow meter 3 throttle valve 4 intake pipe 5 injector 6 spark plug 7 exhaust manifold 8 front tube 10 catalyst 11 Muffler 12 Controller 13 Air Flow Meter 14 Crank Angle Sensor 15 Cooling Water Temperature Sensor 16 Upstream O 2 Sensor 17 Downstream O 2 Sensor 18 Light Emitting Diode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/14 310 F02D 41/14 310F 310K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location F02D 41/14 310 F02D 41/14 310F 310K

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 機関の排気管に装着された触媒の排気上
下流にO2 センサを装着し、ラムダコントロール条件に
おける両O2 センサの周波数比から前記触媒の劣化を診
断する触媒の自己診断装置において、 機関の始動から暖機に至る間に、前記触媒上流のO2
ンサ出力が変化しても、下流のO2 センサ出力がリッチ
出力を示す事により、前記触媒の性能が良い事を診断す
ることを特徴とする触媒の自己診断装置。
1. A catalyst self-diagnosis device in which an O 2 sensor is mounted upstream and downstream of a catalyst mounted in an exhaust pipe of an engine, and the deterioration of the catalyst is diagnosed from a frequency ratio of both O 2 sensors under a lambda control condition. In the above, even if the output of the O 2 sensor upstream of the catalyst changes from the start of the engine to the warm-up, the output of the downstream O 2 sensor shows a rich output, thereby diagnosing that the performance of the catalyst is good. A self-diagnosis device for a catalyst characterized by:
【請求項2】 機関の排気管に装着された触媒の排気上
下流にO2 センサを装着し、ラムダコントロール条件に
おける両O2 センサの周波数比から前記触媒の劣化を診
断する触媒の自己診断装置において、 機関の始動から暖機に至る間に、前記触媒上流のO2
ンサ出力が変化しても、まず下流のO2 センサ出力がリ
ーン出力を示し、さらに時間が経過したら、前記触媒上
流のO2 センサ出力が変化しても下流のO2 センサ出力
がリッチ出力を示すことにより触媒の性能が良い事を診
断する特徴を有する触媒の自己診断装置。
2. A catalyst self-diagnosis device in which an O 2 sensor is mounted upstream and downstream of a catalyst mounted on an exhaust pipe of an engine, and the deterioration of the catalyst is diagnosed from a frequency ratio of both O 2 sensors under a lambda control condition. in, while leading to warm up from the start of the engine, even if the O 2 sensor output is a change in the catalyst upstream, first downstream O 2 sensor output indicates a lean output, after a lapse of further time, the catalyst upstream O 2 self-diagnosis apparatus of a catalyst having the characteristics of diagnosing that catalyst performance is good by indicating the downstream O 2 sensor output rich output also the sensor output is changed.
【請求項3】 前記触媒としてHC吸着触媒又はリーン
NOx触媒とする事を特徴とする請求項1,2に記載の
触媒の自己診断装置。
3. The catalyst self-diagnosis device according to claim 1, wherein the catalyst is an HC adsorption catalyst or a lean NOx catalyst.
【請求項4】 前記触媒性能の診断を、機関の始動から
冷却水温が定常値となるまでの暖機過程のみに行う事を
特徴とする請求項1,2,3に記載の触媒の自己診断装
置。
4. The catalyst self-diagnosis according to claim 1, wherein the catalyst performance diagnosis is performed only during a warm-up process from engine start-up until the cooling water temperature reaches a steady value. apparatus.
【請求項5】 前記触媒の診断する性能として、HC吸
着触媒のHC吸着性能、リーンNOx触媒のリーン条件
におけるNOx転化性能とする事を特徴とする請求項
1,2,3に記載の触媒の自己診断装置。
5. The catalyst according to claim 1, wherein the performance of the catalyst to be diagnosed is HC adsorption performance of an HC adsorption catalyst and NOx conversion performance of a lean NOx catalyst under lean conditions. Self-diagnosis device.
JP23292795A 1995-09-11 1995-09-11 Catalyst self-diagnosis device Expired - Fee Related JP3588662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23292795A JP3588662B2 (en) 1995-09-11 1995-09-11 Catalyst self-diagnosis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23292795A JP3588662B2 (en) 1995-09-11 1995-09-11 Catalyst self-diagnosis device

Publications (2)

Publication Number Publication Date
JPH0979028A true JPH0979028A (en) 1997-03-25
JP3588662B2 JP3588662B2 (en) 2004-11-17

Family

ID=16947029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23292795A Expired - Fee Related JP3588662B2 (en) 1995-09-11 1995-09-11 Catalyst self-diagnosis device

Country Status (1)

Country Link
JP (1) JP3588662B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349326A (en) * 2001-05-25 2002-12-04 Mazda Motor Corp Exhaust emissions control device for engine
US6797517B1 (en) 1999-04-28 2004-09-28 Toyota Jidosha Kabushiki Kaisha Catalyst degradation detecting device and method thereof in internal combustion engine
KR100906880B1 (en) * 2008-03-31 2009-07-08 현대자동차주식회사 Monitoring method for efficiency of catalyst in lean nox trap
US7730716B2 (en) 2005-09-08 2010-06-08 Mitsubishi Jidosha Kogyo K.K. HC adsorbing material and device for judging deterioration of the HC adsorbing material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6797517B1 (en) 1999-04-28 2004-09-28 Toyota Jidosha Kabushiki Kaisha Catalyst degradation detecting device and method thereof in internal combustion engine
JP2002349326A (en) * 2001-05-25 2002-12-04 Mazda Motor Corp Exhaust emissions control device for engine
US7730716B2 (en) 2005-09-08 2010-06-08 Mitsubishi Jidosha Kogyo K.K. HC adsorbing material and device for judging deterioration of the HC adsorbing material
KR100906880B1 (en) * 2008-03-31 2009-07-08 현대자동차주식회사 Monitoring method for efficiency of catalyst in lean nox trap

Also Published As

Publication number Publication date
JP3588662B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
JP4350931B2 (en) Vehicle abnormality diagnosis apparatus and abnormality diagnosis method
US6477830B2 (en) Fault determining apparatus for exhaust passage switching valve
US20090229355A1 (en) Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis
JP3500941B2 (en) Diagnostic device for exhaust gas purification device
JPH08218854A (en) Diagnosing device for exhaust gas purifying device for internal combustion engine
US6883307B2 (en) Diagnosis apparatus for internal combustion engine
JP2897526B2 (en) Failure diagnosis method for secondary air supply device
JP2000297629A (en) Deterioration determining device for exhaust emission purification device of internal combustion engine
JP3870749B2 (en) Exhaust gas purification device for internal combustion engine
JP2000297630A (en) Deterioration determining device for exhaust emission purification device of internal combustion engine
JPH0979028A (en) Self-diagnostic device for catalyst
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JPH10159544A (en) Exhaust emission control device
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP3062710B2 (en) Catalyst deterioration detection device
JP2004068665A (en) Deteriorating condition evaluating device for hydrocarbon adsorbent
JP2004036488A (en) State determining device for hydrocarbon adsorbent
JP3409699B2 (en) Apparatus and method for diagnosing deterioration of HC adsorbent in internal combustion engine
JP4453061B2 (en) Control device for internal combustion engine
JP3413997B2 (en) Degradation diagnosis device for HC adsorbent in internal combustion engine
JP2001329894A (en) Fuel system abnormality diagnostic device for internal combustion engine
JPH10169494A (en) Diagnosing device for exhaust emission control catalyst and abnormality diagnosing device for oxygen sensor
JP3500968B2 (en) Exhaust gas purification device for internal combustion engine
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JPH1162562A (en) Catalyst deterioration diagnosis device for engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees