JP3988073B2 - Abnormality diagnosis device for exhaust gas sensor - Google Patents

Abnormality diagnosis device for exhaust gas sensor Download PDF

Info

Publication number
JP3988073B2
JP3988073B2 JP2002043648A JP2002043648A JP3988073B2 JP 3988073 B2 JP3988073 B2 JP 3988073B2 JP 2002043648 A JP2002043648 A JP 2002043648A JP 2002043648 A JP2002043648 A JP 2002043648A JP 3988073 B2 JP3988073 B2 JP 3988073B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
gas sensor
abnormality diagnosis
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002043648A
Other languages
Japanese (ja)
Other versions
JP2003247451A (en
Inventor
寿 門脇
森永  修二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002043648A priority Critical patent/JP3988073B2/en
Priority to US10/368,403 priority patent/US6976382B2/en
Publication of JP2003247451A publication Critical patent/JP2003247451A/en
Application granted granted Critical
Publication of JP3988073B2 publication Critical patent/JP3988073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/47

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排出ガス浄化用の触媒の下流側に設置された排出ガスセンサの出力に基づいて該排出ガスセンサの異常の有無を診断する排出ガスセンサの異常診断装置に関するものである。
【0002】
【従来の技術】
近年の車両の排出ガス浄化システムでは、排出ガス浄化用の触媒の上流側と下流側に、排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ(空燃比センサ又は酸素センサ)を設置し、これらの排出ガスセンサの出力に基づいて空燃比をフィードバック制御して触媒の排出ガス浄化効率を高めるようにしたものがある。このような排出ガス浄化システムにおいては、排出ガスセンサが劣化して空燃比制御精度が低下した状態(排出ガス浄化率が低下した状態)で運転が続けられるのを防ぐために、排出ガスセンサの劣化診断を行うようにしたものがある。この排出ガスセンサの劣化診断方法は、一般に、触媒上流側の空燃比(目標空燃比)を変化させたときの排出ガスセンサの出力の挙動が触媒上流側の空燃比の変化に応答良く追従しているか否かで排出ガスセンサの劣化の有無を判定するようにしている。
【0003】
しかし、触媒下流側に設置した排出ガスセンサの出力の挙動は、触媒の浄化能力(ストレージ効果)の影響を受けるため、触媒上流側の空燃比の変化が触媒下流側の空燃比(排出ガスセンサの出力)の変化として現れるまでに遅れ時間が生じると共に、その遅れ時間がその時点の触媒の浄化能力ひいては劣化度合によって変化する。このため、触媒下流側の排出ガスセンサの出力の挙動に基づいて該排出ガスセンサの劣化診断を行う場合、触媒下流側の排出ガスセンサの出力の挙動がその時点の触媒の浄化能力(ストレージ効果)の影響を受けて変化してしまい、触媒下流側の排出ガスセンサの劣化の有無を精度良く判定することができない。
【0004】
そこで、特開平9−170966号公報に示すように、燃料カット毎に触媒下流側の酸素センサの出力がリッチ側設定値からリーン側設定値に変化するまでの時間を応答時間として計測し、この応答時間が劣化判定値以上であるか否かで触媒下流側の酸素センサの劣化の有無を判定し(一次診断)、その結果、劣化有りと判定された場合は、燃料カットが所定時間以上連続して行われたときに、その燃料カット復帰後の経過時間が設定時間に達した時点で、それまでに計測された最小の応答時間をメモリから読み出して劣化判定値と比較し、再度、応答時間が劣化判定値以上と判定された場合に、触媒下流側の酸素センサの劣化と確定診断するようにしたものがある。
【0005】
この公報には、触媒下流側の酸素センサの劣化診断時に、燃料カットにより触媒のストレージ効果の影響を無視できる旨の記載がある。つまり、燃料カット時には、触媒に多量のリーン成分(O2 等)が流入して、触媒のリーン成分吸着量が急速に飽和状態になるため、燃料カット開始から触媒下流側の空燃比がリーンに変化するまでの応答時間が通常よりも短くなるという特性を利用して、燃料カット時に触媒下流側の酸素センサの応答時間を計測して該酸素センサの劣化診断を行うようにしたものである。
【0006】
【発明が解決しようとする課題】
上記公報には、触媒下流側の酸素センサの劣化診断時に、燃料カットにより触媒のストレージ効果の影響を無視できる旨の記載があるが、実際には、触媒のストレージ効果によって触媒下流側の酸素センサの応答時間が変化してしまう。つまり、図12に示すように、燃料カットにより触媒上流側の空燃比がリッチからリーンに切り換わったときに、触媒下流側の空燃比(酸素センサの出力)がリッチからリーンに変化する途中で、触媒のストレージ効果によって触媒下流側の空燃比が一時的にほとんど変化しない状態になるが、触媒の劣化度合が進むほど、ストレージ効果の持続時間が短くなって触媒下流側の酸素センサの応答時間が短くなるという特性がある。そのため、上記公報の診断方法でも、触媒下流側の酸素センサの劣化診断時に触媒のストレージ効果の影響を無視できず、触媒下流側の酸素センサの劣化の有無を精度良く判定することができない。
【0007】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、触媒のストレージ効果の影響を従来より少なくした条件下で、触媒下流側の排出ガスセンサの異常診断を実行することができ、触媒下流側の排出ガスセンサの異常診断精度を向上することができる排出ガスセンサの異常診断装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の排出ガスセンサの異常診断装置は、内燃機関の排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「下流側排出ガスセンサ」という)の出力に基づいて該下流側排出ガスセンサの異常の有無をセンサ異常診断手段により診断するシステムにおいて、吸入空気量が触媒の浄化能力を越える運転領域に増加しているときに前記触媒上流側の空燃比を変化させて下流側排出ガスセンサの出力に基づいて該下流側排出ガスセンサの異常診断を実行するようにしてものである。
【0009】
触媒の浄化能力を越える運転領域では、触媒のリーン成分又はリッチ成分のストレージ量(吸着量)が飽和状態になって、触媒内で浄化されずに通り抜ける排出ガスが増加するため、触媒上流側の空燃比変化が応答良く触媒下流側の空燃比変化として現れるようになる。これにより、触媒のストレージ効果の影響を従来より少なくした条件下で、下流側排出ガスセンサの出力に基づいて該下流側排出ガスセンサの異常診断を行うことができ、下流側排出ガスセンサの異常の有無を精度良く判定することができる。
【0010】
ここで、触媒の浄化能力を越える運転領域とは、触媒に流入する排出ガス中のリッチ/リーン成分の流量が触媒の浄化反応(酸化・還元・吸着)の能力を越える運転領域のことである。触媒に流入する排出ガス中のリッチ/リーン成分の流量は、排出ガス流量が多くなるほど多くなる。また、触媒に流入する排出ガス流量は、それを直接検出しなくても、エンジン制御パラメータとして検出される吸入空気量から間接的に検出することができる。
【0011】
これらの関係を考慮して、請求項1に係る発明では、排出ガス流量の代用情報となる吸入空気量が触媒の浄化能力を越える領域に増加しているときに、触媒上流側の空燃比を変化させて下流側排出ガスセンサの異常診断を実行するようにしている。つまり、排出ガス流量が触媒の浄化能力を越えている場合は、触媒のリーン成分又はリッチ成分のストレージ量(吸着量)が飽和状態になって、触媒で浄化されずに通り抜ける排出ガスが多くなっているため、触媒上流側の空燃比を変化させれば、触媒のストレージ効果の影響をほとんど受けずに、触媒上流側の空燃比変化が触媒下流側の空燃比変化として非常に応答良く現れるようになり、下流側排出ガスセンサの異常診断を精度良く行うことができる。
【0012】
この場合、下流側排出ガスセンサの異常診断を実行する吸入空気量の範囲は、予め設定した固定値としても良いが、請求項のように、下流側排出ガスセンサの異常診断を実行する吸入空気量の範囲を触媒の劣化度合に応じて設定するようにしても良い。このようにすれば、触媒の劣化度合が進むほど(触媒の浄化能力が低下するほど)、触媒で浄化可能な排出ガス流量(吸入空気量)が少なくなるのに対応して、下流側排出ガスセンサの異常診断を実行する吸入空気量の範囲をより少ない吸入空気量の範囲まで拡大することができ、下流側排出ガスセンサの異常診断を実行可能な運転領域を拡大して、異常診断の実行頻度を多くすることができる。
【0013】
また、触媒の浄化率特性は、浄化ウインドと呼ばれる所定の空燃比範囲で浄化率が高くなり、それ以外の空燃比では浄化率が極端に低下するという特性がある。そこで、請求項3のように、触媒上流側の空燃比が触媒の浄化能力を越える領域(浄化ウインドの外側領域)になっているときに、該触媒上流側の空燃比のリッチとリーンとを前記触媒の浄化能力を越えて切り換えて、下流側排出ガスセンサの異常診断を実行するようにしても良い。触媒の浄化能力を越える空燃比(浄化ウインド外の空燃比)では、触媒で浄化されずに通り抜ける排出ガス成分が多くなるため、このような状態で、触媒上流側の空燃比のリッチとリーンとを前記触媒の浄化能力を越えて切り換えれば、触媒のストレージ効果の影響をほとんど受けずに、触媒上流側の空燃比変化が触媒下流側の空燃比変化として非常に応答良く現れるようになり、下流側排出ガスセンサの異常診断を精度良く行うことができる
【0014】
【発明の実施の形態】
《実施形態(1)》
以下、本発明の実施形態(1)を図1乃至図6に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、スロットルバルブ15とスロットル開度を検出するスロットル開度センサ16とが設けられている。
【0015】
更に、スロットルバルブ15の下流側には、サージタンク17が設けられ、このサージタンク17に、吸気管圧力を検出する吸気管圧力センサ18が設けられている。また、サージタンク17には、エンジン11の各気筒に空気を導入する吸気マニホールド19が設けられ、各気筒の吸気マニホールド19の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁20が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ21が取り付けられ、各点火プラグ21の火花放電によって筒内の混合気に着火される。
【0016】
一方、エンジン11の排気管22には、排出ガス中のCO,HC,NOx等を浄化する三元触媒等の触媒23が設けられ、この触媒23の上流側と下流側に、それぞれ排出ガスの空燃比又はリーン/リッチ等を検出する排出ガスセンサ24,25(空燃比センサ、酸素センサ等)が設けられている。
【0017】
また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ26や、エンジン回転速度を検出するクランク角センサ27が取り付けられている。
【0018】
これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)28に入力される。このECU28は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種の制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁20の燃料噴射量や点火プラグ21の点火時期を制御する。
【0019】
また、ECU28は、図2に示す排出ガスセンサ異常診断メインルーチン及び図3に示す異常診断実行サブルーチンを実行することで、吸入空気量が所定の異常診断実行吸入空気量KQ(触媒23の浄化能力を越える排出ガス流量下限値に相当する吸入空気量)以上のときに、空燃比のリッチ/リーンを切り換えて触媒下流側の排出ガスセンサ(以下「下流側排出ガスセンサ」という)25の出力に基づいて下流側排出ガスセンサ25の異常診断を実行する。
【0020】
図2に示す排出ガスセンサ異常診断メインルーチンは、イグニッションスイッチ(図示せず)のオン後に所定周期で実行され、特許請求の範囲でいうセンサ異常診断手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、エアフローメータ14で検出した吸入空気量が異常診断実行吸入空気量KQ以上であるか否かを判定する。ここで、異常診断実行吸入空気量KQは、触媒23の浄化能力のばらつきを考慮して、劣化の無い触媒(新品相当の触媒)の浄化能力を越えるような吸入空気量に設定されている。
【0021】
もし、吸入空気量が異常診断実行吸入空気量KQよりも少なければ、そのまま本プログラムを終了する。
【0022】
一方、吸入空気量が異常診断実行吸入空気量KQ以上と判定された場合には、ステップ102に進み、下流側排出ガスセンサ25の異常診断実行条件が成立しているか否かを判定する。ここで、下流側排出ガスセンサ25の異常診断実行条件は、例えば、次の▲1▼〜▲4▼の条件をす全て満たすことである。
【0023】
▲1▼下流側排出ガスセンサ25が活性状態であること
▲2▼エンジンが暖機完了状態であること
▲3▼エンジン回転変動が所定範囲内であること
▲4▼エンジン負荷変動が所定範囲内であること
上記▲3▼と▲4▼の条件は、エンジン運転状態がほぼ定常状態となるための条件である。
【0024】
上記▲1▼〜▲4▼のうち1つでも満たさない条件があれば、下流側排出ガスセンサ25の異常診断実行条件が不成立となり、下流側排出ガスセンサ25の異常診断を実行することなく、本プログラムを終了する。
【0025】
一方、上記▲1▼〜▲4▼の条件を全て満たした場合には、下流側排出ガスセンサ25の異常診断実行条件が成立して、ステップ103に進み、図3に示す異常診断実行サブルーチンを実行して、下流側排出ガスセンサ25の異常診断を次のようにして実行する。
【0026】
図3の異常診断実行サブルーチンが起動されると、まず、ステップ201で、触媒上流側の空燃比(目標空燃比)を理論空燃比よりもリッチ(例えば目標空燃比=14)に制御するリッチ制御を実行し、このリッチ制御を開始してから下流側排出ガスセンサ25の出力が安定するのに十分な時間が経過した後に、触媒上流側の空燃比(目標空燃比)を理論空燃比よりもリーン(例えば目標空燃比=16)に制御するリーン制御に切り換える。
【0027】
この後、ステップ202に進み、リッチ制御からリーン制御に切り換えた時点t1 から下流側排出ガスセンサ25の出力が所定値V1 以下に変化する時点t2 までに要した時間をリーン応答時間TL(図4参照)として計測した後、ステップ203に進み、このリーン応答時間TLが所定のリーン応答判定値以下か否かを判定する。
【0028】
このリーン応答時間TLがリーン応答判定値以下であれば、ステップ204に進み、下流側排出ガスセンサ25のリーン応答性が正常(劣化無し)と判定する。一方、リーン応答時間TLがリーン応答判定値よりも長ければ、ステップ205に進み、下流側排出ガスセンサ25のリーン応答性が異常(劣化有り)と判定する。
【0029】
この後、ステップ206に進み、リーン制御を開始してから下流側排出ガスセンサ25の出力が安定するのに十分な時間が経過した後に、リーン制御からリッチ制御に切り換える。
【0030】
この後、ステップ207に進み、リーン制御からリッチ制御に切り換えた時点t3 から下流側排出ガスセンサ25の出力が所定値V1 以上に変化する時点t4 までに要した時間をリッチ応答時間TR(図4参照)として計測した後、ステップ208に進み、このリッチ応答時間TRが所定のリッチ応答判定値以下か否かを判定する。
【0031】
このリッチ応答時間TRがリッチ応答判定値以下であれば、ステップ209に進み、下流側排出ガスセンサ25のリッチ応答性が正常(劣化無し)と判定する。一方、リッチ応答時間TRがリッチ応答判定値よりも長ければ、ステップ210に進み、下流側排出ガスセンサ25のリッチ応答性が異常(劣化有り)と判定する。
【0032】
この後、ステップ211に進み、下流側排出ガスセンサ25のリーン応答性とリッチ応答性が両方とも正常か否かを判定し、両方とも正常であれば、ステップ212に進み、最終的に下流側排出ガスセンサ25が正常(劣化無し)と判定する。一方、下流側排出ガスセンサ25のリーン応答性とリッチ応答性のいずれか一方でも異常(劣化有り)と判定された場合には、ステップ213に進み、最終的に下流側排出ガスセンサ25が異常(劣化有り)と判定する。この際、リーン応答性とリッチ応答性が両方とも異常と判定された場合のみ、最終的に下流側排出ガスセンサ25が異常と判定するようにしても良い。
【0033】
尚、本実施形態(1)では、図4に示すように、リッチ制御からリーン制御に切り換えた時点t1 から下流側排出ガスセンサ25の出力が所定値V1 以下に変化する時点t2 までに要した時間をリーン応答時間TLとして計測し、リーン制御からリッチ制御に切り換えた時点t3 から下流側排出ガスセンサ25の出力が所定値V1 以上に変化する時点t4 までに要した時間をリッチ応答時間TRとして計測するようにしたが、図5に示すように、リッチ制御からリーン制御に切り換えたときに、下流側排出ガスセンサ25の出力が所定区間Va 〜Vb (下流側排出ガスセンサ25が酸素センサである場合には例えば0.7V〜0.2Vの区間)を通過するのに要した時間をリーン応答時間TLとして計測し、その後、リーン制御からリッチ制御に切り換えたときに、下流側排出ガスセンサ25の出力が所定区間Vb 〜Va (下流側排出ガスセンサ25が酸素センサである場合には例えば0.2V〜0.7Vの区間)を通過するのに要した時間をリッチ応答時間TRとして計測するようにしても良い。また、リーン応答時間TLを計測するための判定電圧V1(Va 〜Vb )と、リッチ応答時間TRを計測するための判定電圧V1(Vb 〜Va )とを異なる電圧に設定しても良い。
【0034】
図6(a)に示すように、吸入空気量がないとき(異常診断実行吸入空気量KQよりも小さいとき)には、触媒上流側の空燃比(目標空燃比)を切り換えても、触媒23のストレージ効果によって触媒下流側の空燃比がほとんど変化しない遅れ時間があると共に、その遅れ時間(ストレージ効果の持続時間)が触媒23の劣化度合によって変化するため(図12参照)、触媒23のストレージ効果の影響を受けて下流側排出ガスセンサ25の応答時間が変化してしまい、下流側排出ガスセンサ25の異常の有無を精度良く判定することができない。
【0035】
これに対して、本実施形態(1)では、図6(b)に示すように、吸入空気量が多いとき、具体的には異常診断実行吸入空気量KQ以上のときに、触媒上流側の空燃比(目標空燃比)を切り換えて下流側排出ガスセンサ25の応答時間を計測して下流側排出ガスセンサ25の異常診断を行う。吸入空気量が異常診断実行吸入空気量KQ以上のときには、触媒23のリーン成分又はリッチ成分のストレージ量(吸着量)が飽和状態になって、触媒23で浄化されずに通り抜ける排出ガスが多くなるため、このような状態で、触媒上流側の空燃比(目標空燃比)を切り換えれば、触媒23のストレージ効果の影響をほとんど受けずに、触媒上流側の空燃比変化が応答良く触媒下流側の空燃比変化として現れるようになる。これにより、触媒23のストレージ効果の影響をほぼ排除した条件下で、下流側排出ガスセンサ25の出力に基づいて該下流側排出ガスセンサ25の異常診断を行うことができ、下流側排出ガスセンサ25の異常の有無を精度良く判定することができる。
【0036】
《実施形態(2)》
上記実施形態(1)では、異常診断実行吸入空気量KQを、触媒23の浄化能力のばらつきを考慮して、劣化の無い触媒(新品相当の触媒)の浄化能力を越えるような吸入空気量に設定するようにしたが、車両の運転方法や道路状況等によっては、吸入空気量が異常診断実行吸入空気量KQ以上となる運転頻度が少なくなって、下流側排出ガスセンサ25の異常診断の実行頻度が少なくなってしまう可能性がある。
【0037】
そこで、図7及び図8に示す本発明の実施形態(2)では、触媒23の劣化度合ηcat が進むほど、触媒23の浄化能力(ストレージ効果)が低下して、触媒23で浄化可能な浄化可能な排出ガス流量(吸入空気量)が少なくなることを考慮して、触媒23の劣化度合ηcat を検出し、触媒23の劣化度合ηcat に応じて異常診断実行吸入空気量KQを設定するようにしている。
【0038】
以下、本実施形態(2)で実行する図7の排出ガスセンサ異常診断メインルーチンの処理内容を説明する。本ルーチンが起動されると、まず、ステップ301で、触媒23の劣化度合ηcat を読み込む。この触媒23の劣化度合ηcat は、図示しない触媒劣化診断プログラムで、触媒23の劣化の有無を判定するために算出された触媒23の劣化度合を用いる。
【0039】
この後、ステップ302に進み、図8に示す触媒23の劣化度合ηcat をパラメータとする異常診断実行吸入空気量KQのマップを検索して、現在の触媒23の劣化度合ηcat に応じた異常診断実行吸入空気量KQを算出する。
【0040】
この異常診断実行吸入空気量KQのマップは、触媒23の劣化度合ηcat が進むほど異常診断実行吸入空気量KQが小さくなるように設定されている。これにより、触媒23の劣化度合ηcat が進むほど(触媒23で浄化可能な排出ガス流量が少なくなるほど)、異常診断実行吸入空気量KQを小さい値に設定して、下流側排出ガスセンサ25の異常診断を実行する吸入空気量の範囲を、より少ない吸入空気量の範囲まで拡大するようになっている。
【0041】
異常診断実行吸入空気量KQの算出後、ステップ303に進み、エアフローメータ14で検出した吸入空気量が異常診断実行吸入空気量KQ以上であるか否かを判定し、次のステップ304で、下流側排出ガスセンサ25の異常診断実行条件が成立しているか否かを判定する。
【0042】
吸入空気量が異常診断実行吸入空気量KQ以上、且つ、下流側排出ガスセンサ25の異常診断実行条件が成立したと判定された場合には、ステップ305に進み、前記図3の異常診断実行サブルーチンを実行して、前記実施形態(1)と同じ方法で、下流側排出ガスセンサ25の異常診断を実行する。
【0043】
以上説明した本実施形態(2)では、触媒23の劣化度合ηcat が進むほど、触媒23の浄化能力(ストレージ効果)が低下して、触媒23で浄化可能な排出ガス流量(吸入空気量)が少なくなるという事情を考慮して、触媒23の劣化度合ηcat が進むほど異常診断実行吸入空気量KQを小さい値に設定するようにしたので、触媒23の劣化度合ηcat に応じて吸入空気量が異常診断実行吸入空気量KQ以上となる運転頻度が増加して、下流側排出ガスセンサ25の異常診断の実行頻度を多くすることができる。
【0044】
《実施形態(3)》
上記各実施形態(1),(2)では、吸入空気量が触媒23の浄化能力を越える異常診断実行吸入空気量KQ以上のときに空燃比のリッチ/リーンを切り換えて下流側排出ガスセンサ25の異常診断を実行するようにしたが、図9乃至図11に示す本発明の実施形態(3)では、触媒23の浄化率特性(浄化ウインドと呼ばれる所定の空燃比範囲で浄化率が高くなり、それ以外の空燃比で浄化率が極端に低下するという特性)を考慮して、触媒上流側の空燃比(目標空燃比)が触媒23の浄化能力を越える空燃比(浄化ウインド外の空燃比)になっているときに、触媒上流側の空燃比(目標空燃比)のリッチ/リーンを触媒23の浄化能力を越えて切り換えて下流側排出ガスセンサ25の異常診断を実行するようにしている。
【0045】
以下、本実施形態(3)で実行する図9の排出ガスセンサ異常診断メインルーチンの処理内容を説明する。本ルーチンが起動されると、まず、ステップ401で、下流側排出ガスセンサ25の異常診断実行条件が成立しているか否かを判定し、この異常診断実行条件が成立していれば、ステップ402に進み、前記図3の異常診断実行サブルーチンを実行して、下流側排出ガスセンサ25の異常診断を実行する。
【0046】
その際、本実施形態(3)では、図10に示すように、触媒上流側の空燃比が触媒23の浄化能力を越える空燃比(浄化ウインド外の空燃比)となっているときに、触媒上流側の空燃比のリッチ/リーンを切り換えるために、リッチ制御中は、触媒上流側の空燃比(目標空燃比)を触媒23の浄化ウインドよりもリッチ側(例えば目標空燃比=12)に制御し、リーン制御中は、触媒上流側の空燃比(目標空燃比)を触媒23の浄化ウインドよりもリーン側(例えば目標空燃比=17)に制御する。
【0047】
そして、リッチ制御からリーン制御に切り換えた時点t1 から下流側排出ガスセンサ25の出力が所定値V1 以下に変化する時点t2 までに要した時間をリーン応答時間TLとして計測し、このリーン応答時間TLをリーン応答判定値と比較して下流側排出ガスセンサ25のリーン応答性の異常の有無を判定する。
【0048】
その後、リーン制御からリッチ制御に切り換えた時点t3 から下流側排出ガスセンサ25の出力が所定値V1 以上に変化する時点t4 までに要した時間をリッチ応答時間TRを計測し、このリッチ応答時間TRをリッチ応答判定値と比較して下流側排出ガスセンサ25のリッチ応答性の異常の有無を判定する。
【0049】
尚、図11に示すように、リッチ制御からリーン制御に切り換えたときに、下流側排出ガスセンサ25の出力が所定区間Va 〜Vb (下流側排出ガスセンサ25が酸素センサである場合には例えば0.7V〜0.2Vの区間)を通過するのに要した時間をリーン応答時間TLとして計測し、その後、リーン制御からリッチ制御に切り換えたときに、下流側排出ガスセンサ25の出力が所定区間Vb 〜Va (下流側排出ガスセンサ25が酸素センサである場合には例えば0.2V〜0.7Vの区間)を通過するのに要した時間をリッチ応答時間TRとして計測するようにしても良い。また、リーン応答時間TLを計測するための判定電圧V1(Va 〜Vb )と、リッチ応答時間TRを計測するための判定電圧V1(Vb 〜Va )とを異なる電圧に設定しても良い。
【0050】
以上説明した本実施形態(3)では、触媒上流側の空燃比(目標空燃比)が触媒23の浄化能力を越える空燃比(浄化ウインド外の空燃比)になっているときに、触媒上流側の空燃比(目標空燃比)のリッチ/リーンを触媒23の浄化能力を越えて切り換えて下流側排出ガスセンサ25の異常診断を実行する。触媒23の浄化能力を越える空燃比(触媒23の浄化ウインド外の空燃比)では、触媒23で浄化されずに通り抜ける排出ガス成分が多くなるため、このような状態で、触媒上流側の空燃比のリッチ/リーンを切り換えれば、触媒23のストレージ効果の影響をほとんど受けずに、触媒上流側の空燃比変化が触媒下流側の空燃比変化として応答良く現れるようになり、下流側排出ガスセンサ25の異常診断を精度良く行うことができる。
【0051】
尚、本発明は、各実施形態(1)〜(3)に限定されず、吸入空気量が異常診断実行吸入空気量KQ以上で、且つ、触媒上流側の空燃比(目標空燃比)が触媒23の浄化能力を越える空燃比(浄化ウインド外の空燃比)になっているときに、触媒上流側の空燃比(目標空燃比)のリッチ/リーンを触媒23の浄化能力を越えて切り換えて下流側排出ガスセンサ25の異常診断を実行するようにしても良い。
【0052】
また、上記各実施形態(1)〜(3)では、触媒上流側の空燃比(目標空燃比)のリッチ/リーンを切り換えたときの下流側排出ガスセンサ25のリーン応答時間TL、リッチ応答時間TRを、それぞれ判定値と比較して下流側排出ガスセンサ25の応答性の劣化を診断するようにしたが、下流側排出ガスセンサ25の異常診断方法は、適宜変更しても良い。
【0053】
例えば、空燃比のリッチ/リーンを一定周期で交互に切り換えたときの下流側排出ガスセンサ25の平均リーン応答時間、平均リッチ応答時間を算出し、この平均リーン応答時間、平均リッチ応答時間をそれぞれ判定値と比較して下流側排出ガスセンサ25の応答性の劣化を診断するようにしても良い。
【0054】
また、空燃比のリッチ/リーンを一定周期で交互に切り換えたときの上流側排出ガスセンサ24の出力と下流側排出ガスセンサ25の出力の周波数比や振幅比に基づいて下流側排出ガスセンサ25の応答性の劣化を診断するようにしても良い。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるエンジン制御システム全体の概略構成図
【図2】実施形態(1)の排出ガスセンサ異常診断メインルーチンの処理の流れを示すフローチャート
【図3】異常診断実行サブルーチンの処理の流れを示すフローチャート
【図4】実施形態(1)の排出ガスセンサの異常診断方法を説明するためのタイムチャート
【図5】実施形態(1)の排出ガスセンサの他の異常診断方法を説明するためのタイムチャート
【図6】(a)は吸入空気量が異常診断実行吸入空気量KQよりも少ないときの触媒上流側の空燃比と触媒下流側の空燃比と下流側排出ガスセンサの出力の挙動を示すタイムチャート、(b)は吸入空気量が異常診断実行吸入空気量KQよりも多いときの触媒上流側の空燃比と触媒下流側の空燃比と下流側排出ガスセンサの出力の挙動を示すタイムチャート
【図7】実施形態(2)の排出ガスセンサ異常診断メインルーチンの処理の流れを示すフローチャート
【図8】触媒の劣化度合と異常診断実行吸入空気量との関係を規定するマップを概念的に示す図
【図9】実施形態(3)の排出ガスセンサ異常診断メインルーチンの処理の流れを示すフローチャート
【図10】実施形態(3)の排出ガスセンサの異常診断方法を説明するためのタイムチャート
【図11】実施形態(3)の排出ガスセンサの他の異常診断方法を説明するためのタイムチャート
【図12】触媒のストレージ効果と触媒劣化の有無が触媒下流側の空燃比の変化に与える影響を説明するタイムチャート
【符号の説明】
11…内燃機関(エンジン)、12…吸気管、15…スロットルバルブ、20…燃料噴射弁、21…点火プラグ、22…排気管、23…触媒、24,25…排出ガスセンサ、28…ECU(センサ異常診断手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an abnormality diagnosis device for an exhaust gas sensor for diagnosing the presence or absence of abnormality of the exhaust gas sensor based on the output of an exhaust gas sensor installed on the downstream side of a catalyst for exhaust gas purification.
[0002]
[Prior art]
In recent vehicle exhaust gas purification systems, exhaust gas sensors (air-fuel ratio sensors or oxygen sensors) that detect the air-fuel ratio or rich / lean of exhaust gas are installed upstream and downstream of the exhaust gas purification catalyst, There are some which improve the exhaust gas purification efficiency of the catalyst by feedback control of the air-fuel ratio based on the output of these exhaust gas sensors. In such an exhaust gas purification system, in order to prevent the operation from being continued in a state where the exhaust gas sensor is deteriorated and the air-fuel ratio control accuracy is lowered (a state where the exhaust gas purification rate is lowered), the deterioration diagnosis of the exhaust gas sensor is performed. There is something to do. In this exhaust gas sensor deterioration diagnosis method, generally, whether the behavior of the exhaust gas sensor output when the air-fuel ratio (target air-fuel ratio) on the upstream side of the catalyst is changed follows the change in the air-fuel ratio on the upstream side of the catalyst with good response. The presence or absence of deterioration of the exhaust gas sensor is determined based on the result.
[0003]
However, the output behavior of the exhaust gas sensor installed on the downstream side of the catalyst is affected by the purification capacity (storage effect) of the catalyst, so the change in the air-fuel ratio on the upstream side of the catalyst is the air-fuel ratio on the downstream side of the catalyst (the output of the exhaust gas sensor). ), A delay time occurs before the change appears, and the delay time changes depending on the purification capacity of the catalyst at that time and the degree of deterioration. Therefore, when the deterioration diagnosis of the exhaust gas sensor is performed based on the output behavior of the exhaust gas sensor on the downstream side of the catalyst, the behavior of the output of the exhaust gas sensor on the downstream side of the catalyst is influenced by the purification capacity (storage effect) of the catalyst at that time. Therefore, it is impossible to accurately determine whether the exhaust gas sensor on the downstream side of the catalyst has deteriorated.
[0004]
Therefore, as shown in JP-A-9-170966, the time until the output of the oxygen sensor on the downstream side of the catalyst changes from the rich side set value to the lean side set value is measured as a response time for each fuel cut. Whether or not the oxygen sensor on the downstream side of the catalyst has deteriorated is determined based on whether the response time is equal to or greater than the deterioration determination value (primary diagnosis). If the result indicates that there is deterioration, the fuel cut continues for a predetermined time or longer. When the elapsed time after returning from the fuel cut reaches the set time, the minimum response time measured so far is read from the memory, compared with the deterioration judgment value, and the response is again In some cases, when the time is determined to be equal to or greater than the deterioration determination value, a definite diagnosis is made that the oxygen sensor on the downstream side of the catalyst is deteriorated.
[0005]
This publication states that the influence of the storage effect of the catalyst can be ignored by the fuel cut when diagnosing the deterioration of the oxygen sensor on the downstream side of the catalyst. In other words, a large amount of lean component (O2Etc.) and the lean component adsorption amount of the catalyst quickly becomes saturated, so the response time from the start of fuel cut until the air-fuel ratio downstream of the catalyst changes to lean becomes shorter than usual. Utilizing this, the response time of the oxygen sensor on the downstream side of the catalyst is measured at the time of fuel cut, and the deterioration of the oxygen sensor is diagnosed.
[0006]
[Problems to be solved by the invention]
In the above publication, there is a description that the influence of the storage effect of the catalyst can be ignored by the fuel cut when diagnosing the deterioration of the oxygen sensor on the downstream side of the catalyst. Will change the response time. That is, as shown in FIG. 12, when the air-fuel ratio on the upstream side of the catalyst is switched from rich to lean due to fuel cut, the air-fuel ratio (output of the oxygen sensor) on the downstream side of the catalyst is changing from rich to lean. The air-fuel ratio on the downstream side of the catalyst temporarily changes little due to the storage effect of the catalyst, but as the degree of deterioration of the catalyst progresses, the duration of the storage effect becomes shorter and the response time of the oxygen sensor on the downstream side of the catalyst Has a characteristic of shortening. Therefore, even with the diagnosis method of the above publication, the influence of the storage effect of the catalyst cannot be ignored at the time of the deterioration diagnosis of the oxygen sensor on the downstream side of the catalyst, and the presence or absence of deterioration of the oxygen sensor on the downstream side of the catalyst cannot be accurately determined.
[0007]
The present invention has been made in view of such circumstances, and therefore the object of the present invention is to perform an abnormality diagnosis of the exhaust gas sensor on the downstream side of the catalyst under the condition that the influence of the storage effect of the catalyst is less than the conventional one. An object of the present invention is to provide an abnormality diagnosis device for an exhaust gas sensor that can improve the accuracy of abnormality diagnosis of an exhaust gas sensor on the downstream side of the catalyst.
[0008]
[Means for Solving the Problems]
  In order to achieve the above object, an abnormality diagnosis device for an exhaust gas sensor according to claim 1 of the present invention is an exhaust gas sensor (hereinafter referred to as a “downstream exhaust gas sensor”) installed downstream of a catalyst for exhaust gas purification of an internal combustion engine. In the system for diagnosing the presence or absence of abnormality of the downstream exhaust gas sensor based on the output of the sensor abnormality diagnostic means,The amount of intake air isOperating range exceeding the purification capacity of the catalystWhen the air-fuel ratio upstream of the catalyst is changedAn abnormality diagnosis of the downstream side exhaust gas sensor is executed based on the output of the downstream side exhaust gas sensor.
[0009]
In the operating range that exceeds the purification capacity of the catalyst, the storage amount (adsorption amount) of the lean component or rich component of the catalyst becomes saturated and the exhaust gas that passes through the catalyst without being purified increases. The air-fuel ratio change appears with good response as the air-fuel ratio change on the downstream side of the catalyst. This makes it possible to perform abnormality diagnosis of the downstream exhaust gas sensor based on the output of the downstream exhaust gas sensor under the condition that the influence of the storage effect of the catalyst is less than before, and to check whether there is an abnormality in the downstream exhaust gas sensor. It can be determined with high accuracy.
[0010]
Here, the operation region exceeding the purification capacity of the catalyst is an operation region where the flow rate of the rich / lean component in the exhaust gas flowing into the catalyst exceeds the capacity of the catalyst purification reaction (oxidation / reduction / adsorption). . The flow rate of the rich / lean component in the exhaust gas flowing into the catalyst increases as the exhaust gas flow rate increases. Further, the flow rate of exhaust gas flowing into the catalyst can be indirectly detected from the intake air amount detected as the engine control parameter without directly detecting it.
[0011]
  Taking these relationships into account, the claimsIn the invention according to 1,When the intake air amount, which is substitute information for the exhaust gas flow rate, has increased to a region exceeding the purification capacity of the catalyst, the abnormality of the downstream exhaust gas sensor is executed by changing the air-fuel ratio on the upstream side of the catalyst. TheHave. In other words, when the exhaust gas flow rate exceeds the purification capacity of the catalyst, the storage amount (adsorption amount) of the lean component or rich component of the catalyst becomes saturated, and more exhaust gas passes through without being purified by the catalyst. Therefore, if the air-fuel ratio on the upstream side of the catalyst is changed, the change in the air-fuel ratio on the upstream side of the catalyst will appear very well as the change in the air-fuel ratio on the downstream side of the catalyst, without being substantially affected by the storage effect of the catalyst. Thus, abnormality diagnosis of the downstream exhaust gas sensor can be performed with high accuracy.
[0012]
  In this case, the range of the intake air amount for executing the abnormality diagnosis of the downstream side exhaust gas sensor may be a fixed value set in advance.2As described above, the range of the intake air amount for executing the abnormality diagnosis of the downstream side exhaust gas sensor may be set according to the degree of deterioration of the catalyst. In this way, as the degree of deterioration of the catalyst progresses (as the purification capacity of the catalyst decreases), the exhaust gas flow rate (intake air amount) that can be purified by the catalyst decreases. The range of intake air volume for performing the abnormality diagnosis can be expanded to a range of smaller intake air volume, the operating range in which the abnormality diagnosis of the downstream exhaust gas sensor can be performed, and the frequency of abnormality diagnosis can be increased. Can do a lot.
[0013]
  Further, the purification rate characteristic of the catalyst has a characteristic that the purification rate becomes high in a predetermined air-fuel ratio range called a purification window, and the purification rate extremely decreases at other air-fuel ratios. Therefore, as in claim 3, when the air-fuel ratio on the upstream side of the catalyst is in a region exceeding the purification capacity of the catalyst (outer region of the purification window),Switching the richness and leanness of the air / fuel ratio upstream of the catalyst beyond the purification capacity of the catalyst,An abnormality diagnosis of the downstream side exhaust gas sensor may be executed. When the air-fuel ratio exceeds the purification capacity of the catalyst (the air-fuel ratio outside the purification window), the exhaust gas component that passes through without being purified by the catalyst increases. In this state, the air-fuel ratio upstream of the catalystSwitching between rich and lean beyond the purification capacity of the catalystTherefore, the air-fuel ratio change on the upstream side of the catalyst will appear very responsively as the change in the air-fuel ratio on the downstream side of the catalyst without being affected by the storage effect of the catalyst. Can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
<< Embodiment (1) >>
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 15 and a throttle opening sensor 16 for detecting the throttle opening are provided on the downstream side of the air flow meter 14.
[0015]
Further, a surge tank 17 is provided on the downstream side of the throttle valve 15, and an intake pipe pressure sensor 18 for detecting the intake pipe pressure is provided in the surge tank 17. The surge tank 17 is provided with an intake manifold 19 for introducing air into each cylinder of the engine 11, and a fuel injection valve 20 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 19 of each cylinder. Yes. A spark plug 21 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 21.
[0016]
On the other hand, the exhaust pipe 22 of the engine 11 is provided with a catalyst 23 such as a three-way catalyst for purifying CO, HC, NOx and the like in the exhaust gas, and the exhaust gas on the upstream side and the downstream side of the catalyst 23 respectively. Exhaust gas sensors 24 and 25 (air-fuel ratio sensor, oxygen sensor, etc.) for detecting the air-fuel ratio or lean / rich are provided.
[0017]
A cooling water temperature sensor 26 that detects the cooling water temperature and a crank angle sensor 27 that detects the engine rotation speed are attached to the cylinder block of the engine 11.
[0018]
Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 28. The ECU 28 is mainly composed of a microcomputer, and executes various control programs stored in a built-in ROM (storage medium), so that the fuel injection amount and ignition of the fuel injection valve 20 are determined according to the engine operating state. The ignition timing of the plug 21 is controlled.
[0019]
Further, the ECU 28 executes the exhaust gas sensor abnormality diagnosis main routine shown in FIG. 2 and the abnormality diagnosis execution subroutine shown in FIG. 3 so that the intake air amount becomes a predetermined abnormality diagnosis execution intake air amount KQ (the purification capacity of the catalyst 23). When the amount of intake air corresponding to the lower limit of the exhaust gas flow rate exceeds the upper limit), the air / fuel ratio is switched between rich / lean and downstream based on the output of the exhaust gas sensor 25 on the downstream side of the catalyst (hereinafter referred to as the “downstream exhaust gas sensor”). An abnormality diagnosis of the side exhaust gas sensor 25 is executed.
[0020]
The exhaust gas sensor abnormality diagnosis main routine shown in FIG. 2 is executed at a predetermined cycle after the ignition switch (not shown) is turned on, and serves as sensor abnormality diagnosis means in the claims. When this routine is started, first, at step 101, it is determined whether or not the intake air amount detected by the air flow meter 14 is equal to or greater than the abnormality diagnosis execution intake air amount KQ. Here, the abnormality diagnosis execution intake air amount KQ is set to an intake air amount that exceeds the purification capability of a catalyst without deterioration (a catalyst equivalent to a new product) in consideration of variations in the purification capability of the catalyst 23.
[0021]
If the intake air amount is less than the abnormality diagnosis execution intake air amount KQ, the program is terminated as it is.
[0022]
On the other hand, if it is determined that the intake air amount is equal to or greater than the abnormality diagnosis execution intake air amount KQ, the process proceeds to step 102 to determine whether an abnormality diagnosis execution condition for the downstream side exhaust gas sensor 25 is satisfied. Here, the abnormality diagnosis execution condition of the downstream side exhaust gas sensor 25 is to satisfy all of the following conditions (1) to (4), for example.
[0023]
(1) The downstream side exhaust gas sensor 25 is in an active state.
(2) The engine is warming up
(3) Engine rotation fluctuation is within the specified range
(4) Engine load fluctuation is within the specified range
The above conditions (3) and (4) are conditions for the engine operating state to become a substantially steady state.
[0024]
If any one of the conditions (1) to (4) is not satisfied, the abnormality diagnosis execution condition for the downstream exhaust gas sensor 25 is not satisfied, and this program is executed without executing the abnormality diagnosis for the downstream exhaust gas sensor 25. Exit.
[0025]
On the other hand, if all of the above conditions (1) to (4) are satisfied, the abnormality diagnosis execution condition for the downstream side exhaust gas sensor 25 is established, and the routine proceeds to step 103 where the abnormality diagnosis execution subroutine shown in FIG. 3 is executed. Then, the abnormality diagnosis of the downstream side exhaust gas sensor 25 is executed as follows.
[0026]
When the abnormality diagnosis execution subroutine of FIG. 3 is started, first, at step 201, rich control for controlling the air-fuel ratio (target air-fuel ratio) upstream of the catalyst to be richer than the stoichiometric air-fuel ratio (for example, target air-fuel ratio = 14). After the rich control is started and after a sufficient time has passed for the output of the downstream side exhaust gas sensor 25 to stabilize, the air-fuel ratio (target air-fuel ratio) on the upstream side of the catalyst is made leaner than the stoichiometric air-fuel ratio. The control is switched to lean control for controlling to (for example, target air-fuel ratio = 16).
[0027]
Thereafter, the routine proceeds to step 202, where the time required from the time t1 when the rich control is switched to the lean control to the time t2 when the output of the downstream exhaust gas sensor 25 changes below the predetermined value V1 is the lean response time TL (see FIG. 4). ), The process proceeds to step 203 where it is determined whether or not the lean response time TL is equal to or less than a predetermined lean response determination value.
[0028]
If the lean response time TL is less than or equal to the lean response determination value, the routine proceeds to step 204 where it is determined that the lean response of the downstream side exhaust gas sensor 25 is normal (no deterioration). On the other hand, if the lean response time TL is longer than the lean response determination value, the routine proceeds to step 205, where it is determined that the lean response of the downstream side exhaust gas sensor 25 is abnormal (with deterioration).
[0029]
Thereafter, the process proceeds to step 206, and after a sufficient time has passed for the output of the downstream side exhaust gas sensor 25 to stabilize after the lean control is started, the lean control is switched to the rich control.
[0030]
Thereafter, the routine proceeds to step 207, where the time required from the time t3 when the lean control is switched to the rich control to the time t4 when the output of the downstream exhaust gas sensor 25 changes to the predetermined value V1 or more is set as the rich response time TR (see FIG. 4). ), The process proceeds to step 208, where it is determined whether or not the rich response time TR is equal to or less than a predetermined rich response determination value.
[0031]
If the rich response time TR is less than or equal to the rich response determination value, the process proceeds to step 209, where it is determined that the rich responsiveness of the downstream side exhaust gas sensor 25 is normal (no deterioration). On the other hand, if the rich response time TR is longer than the rich response determination value, the process proceeds to step 210, and it is determined that the rich response of the downstream side exhaust gas sensor 25 is abnormal (with deterioration).
[0032]
Thereafter, the process proceeds to step 211, where it is determined whether both the lean responsiveness and the rich responsiveness of the downstream side exhaust gas sensor 25 are normal. If both are normal, the process proceeds to step 212, and finally the downstream side exhaust is finally performed. It is determined that the gas sensor 25 is normal (no deterioration). On the other hand, if it is determined that either the lean responsiveness or the rich responsiveness of the downstream side exhaust gas sensor 25 is abnormal (deteriorated), the process proceeds to step 213 and finally the downstream side exhaust gas sensor 25 is abnormal (deteriorated). Yes). At this time, the downstream exhaust gas sensor 25 may be finally determined to be abnormal only when both the lean responsiveness and the rich responsiveness are determined to be abnormal.
[0033]
In this embodiment (1), as shown in FIG. 4, the time required from the time t1 when the rich control is switched to the lean control to the time t2 when the output of the downstream side exhaust gas sensor 25 changes below the predetermined value V1. Is measured as the lean response time TL, and the time required from the time t3 when the lean control is switched to the rich control to the time t4 when the output of the downstream side exhaust gas sensor 25 changes to the predetermined value V1 or more is measured as the rich response time TR. However, as shown in FIG. 5, when the rich control is switched to the lean control, the output of the downstream side exhaust gas sensor 25 is a predetermined interval Va to Vb (when the downstream side exhaust gas sensor 25 is an oxygen sensor). For example, the time required to pass through 0.7 V to 0.2 V) is measured as the lean response time TL, and then the lean control is switched to the rich control. When switched, it is necessary for the output of the downstream exhaust gas sensor 25 to pass through a predetermined section Vb to Va (for example, a section of 0.2 V to 0.7 V when the downstream exhaust gas sensor 25 is an oxygen sensor). The measured time may be measured as the rich response time TR. Further, the determination voltage V1 (Va to Vb) for measuring the lean response time TL and the determination voltage V1 (Vb to Va) for measuring the rich response time TR may be set to different voltages.
[0034]
  As shown in FIG. 6 (a), the intake air amount isSmallWhen there is no air flow (when the intake air amount KQ is smaller than the abnormality diagnosis execution amount), the air-fuel ratio on the downstream side of the catalyst hardly changes due to the storage effect of the catalyst 23 even if the air-fuel ratio on the upstream side (target air-fuel ratio) is switched. Since there is a delay time and the delay time (the duration of the storage effect) changes depending on the deterioration degree of the catalyst 23 (see FIG. 12), the response time of the downstream side exhaust gas sensor 25 is affected by the storage effect of the catalyst 23. Changes, and the presence or absence of abnormality of the downstream side exhaust gas sensor 25 cannot be accurately determined.
[0035]
In contrast, in the present embodiment (1), as shown in FIG. 6B, when the intake air amount is large, specifically, when the abnormality diagnosis execution intake air amount KQ or more, the upstream side of the catalyst. The response time of the downstream exhaust gas sensor 25 is measured by switching the air-fuel ratio (target air-fuel ratio), and abnormality diagnosis of the downstream exhaust gas sensor 25 is performed. When the intake air amount is equal to or greater than the abnormality diagnosis execution intake air amount KQ, the storage amount (adsorption amount) of the lean component or rich component of the catalyst 23 becomes saturated, and the exhaust gas that passes through without being purified by the catalyst 23 increases. Therefore, if the air-fuel ratio (target air-fuel ratio) on the upstream side of the catalyst is switched in such a state, the change in the air-fuel ratio on the upstream side of the catalyst is hardly affected by the storage effect of the catalyst 23 and the downstream side of the catalyst with good response. It appears as a change in the air-fuel ratio. As a result, the abnormality of the downstream side exhaust gas sensor 25 can be diagnosed based on the output of the downstream side exhaust gas sensor 25 under the condition in which the influence of the storage effect of the catalyst 23 is substantially eliminated, and the abnormality of the downstream side exhaust gas sensor 25 is detected. The presence or absence of can be accurately determined.
[0036]
<< Embodiment (2) >>
In the above embodiment (1), the abnormality diagnosis execution intake air amount KQ is set to an intake air amount that exceeds the purification capability of a catalyst without deterioration (a new equivalent catalyst) in consideration of the variation in the purification capability of the catalyst 23. Although it is set, depending on the driving method of the vehicle, road conditions, etc., the frequency of operation where the intake air amount becomes equal to or greater than the abnormality diagnosis execution intake air amount KQ decreases, and the abnormality diagnosis execution frequency of the downstream exhaust gas sensor 25 is reduced. May be reduced.
[0037]
Therefore, in the embodiment (2) of the present invention shown in FIG. 7 and FIG. 8, the purification ability (storage effect) of the catalyst 23 decreases as the deterioration degree ηcat of the catalyst 23 progresses, and purification that can be purified by the catalyst 23. Considering that the possible exhaust gas flow rate (intake air amount) decreases, the deterioration degree ηcat of the catalyst 23 is detected, and the abnormality diagnosis execution intake air amount KQ is set according to the deterioration degree ηcat of the catalyst 23. ing.
[0038]
Hereinafter, the processing content of the exhaust gas sensor abnormality diagnosis main routine of FIG. 7 executed in the present embodiment (2) will be described. When this routine is started, first, in step 301, the deterioration degree ηcat of the catalyst 23 is read. As the deterioration degree ηcat of the catalyst 23, the deterioration degree of the catalyst 23 calculated for determining the presence or absence of deterioration of the catalyst 23 by a catalyst deterioration diagnosis program (not shown) is used.
[0039]
Thereafter, the routine proceeds to step 302, where a map of the abnormality diagnosis execution intake air amount KQ using the deterioration degree ηcat of the catalyst 23 shown in FIG. 8 as a parameter is searched, and the abnormality diagnosis execution corresponding to the current deterioration degree ηcat of the catalyst 23 is performed. An intake air amount KQ is calculated.
[0040]
The map of the abnormality diagnosis execution intake air amount KQ is set so that the abnormality diagnosis execution intake air amount KQ decreases as the deterioration degree ηcat of the catalyst 23 increases. Thus, the abnormality diagnosis execution intake air amount KQ is set to a smaller value as the deterioration degree ηcat of the catalyst 23 progresses (the exhaust gas flow rate that can be purified by the catalyst 23 decreases), and the abnormality diagnosis of the downstream exhaust gas sensor 25 is performed. The range of the intake air amount for executing is expanded to a range of a smaller intake air amount.
[0041]
After calculating the abnormality diagnosis execution intake air amount KQ, the routine proceeds to step 303, where it is determined whether or not the intake air amount detected by the air flow meter 14 is equal to or greater than the abnormality diagnosis execution intake air amount KQ. It is determined whether an abnormality diagnosis execution condition for the side exhaust gas sensor 25 is satisfied.
[0042]
If it is determined that the intake air amount is equal to or greater than the abnormality diagnosis execution intake air amount KQ and the abnormality diagnosis execution condition for the downstream exhaust gas sensor 25 is satisfied, the process proceeds to step 305 and the abnormality diagnosis execution subroutine of FIG. Then, the abnormality diagnosis of the downstream side exhaust gas sensor 25 is executed by the same method as in the embodiment (1).
[0043]
In the present embodiment (2) described above, as the deterioration degree ηcat of the catalyst 23 progresses, the purification ability (storage effect) of the catalyst 23 decreases, and the exhaust gas flow rate (intake air amount) that can be purified by the catalyst 23 increases. In consideration of the fact that the amount of deterioration is reduced, the abnormality diagnosis execution intake air amount KQ is set to a smaller value as the deterioration degree ηcat of the catalyst 23 progresses. Therefore, the intake air amount becomes abnormal in accordance with the deterioration degree ηcat of the catalyst 23. The frequency of operation that becomes the diagnosis execution intake air amount KQ or more increases, and the execution frequency of the abnormality diagnosis of the downstream exhaust gas sensor 25 can be increased.
[0044]
<< Embodiment (3) >>
In each of the above embodiments (1) and (2), when the intake air amount is equal to or greater than the abnormality diagnosis execution intake air amount KQ exceeding the purification ability of the catalyst 23, the air-fuel ratio rich / lean is switched and the downstream side exhaust gas sensor 25 Although the abnormality diagnosis is executed, in the embodiment (3) of the present invention shown in FIGS. 9 to 11, the purification rate characteristic of the catalyst 23 (the purification rate becomes high in a predetermined air-fuel ratio range called a purification window, In consideration of the characteristic that the purification rate is extremely lowered at other air-fuel ratios), the air-fuel ratio (target air-fuel ratio) on the upstream side of the catalyst exceeds the purification ability of the catalyst 23 (air-fuel ratio outside the purification window). In this case, the rich / lean of the air / fuel ratio (target air / fuel ratio) on the upstream side of the catalyst is switched beyond the purification ability of the catalyst 23 to execute the abnormality diagnosis of the downstream side exhaust gas sensor 25.
[0045]
The processing contents of the exhaust gas sensor abnormality diagnosis main routine of FIG. 9 executed in the present embodiment (3) will be described below. When this routine is started, first, in step 401, it is determined whether or not the abnormality diagnosis execution condition for the downstream side exhaust gas sensor 25 is satisfied. If this abnormality diagnosis execution condition is satisfied, the process proceeds to step 402. Then, the abnormality diagnosis execution subroutine of FIG. 3 is executed, and abnormality diagnosis of the downstream side exhaust gas sensor 25 is executed.
[0046]
At this time, in the present embodiment (3), as shown in FIG. 10, when the air-fuel ratio on the upstream side of the catalyst is an air-fuel ratio exceeding the purification ability of the catalyst 23 (air-fuel ratio outside the purification window), In order to switch the rich / lean of the air / fuel ratio on the upstream side, the air / fuel ratio (target air / fuel ratio) on the upstream side of the catalyst is controlled to be richer than the purification window of the catalyst 23 (for example, target air / fuel ratio = 12) during rich control. During lean control, the air-fuel ratio upstream of the catalyst (target air-fuel ratio) is controlled to be leaner than the purification window of the catalyst 23 (for example, target air-fuel ratio = 17).
[0047]
The time required from the time t1 when the rich control is switched to the lean control to the time t2 when the output of the downstream side exhaust gas sensor 25 changes below the predetermined value V1 is measured as the lean response time TL. Compared with the lean response determination value, it is determined whether there is an abnormality in the lean response of the downstream side exhaust gas sensor 25.
[0048]
Thereafter, the rich response time TR is measured from the time t3 when the lean control is switched to the rich control to the time t4 when the output of the downstream side exhaust gas sensor 25 changes to a predetermined value V1 or more, and the rich response time TR is calculated. Compared with the rich response determination value, it is determined whether there is an abnormality in the rich response of the downstream side exhaust gas sensor 25.
[0049]
As shown in FIG. 11, when the rich control is switched to the lean control, the output of the downstream side exhaust gas sensor 25 becomes a predetermined interval Va to Vb (for example, 0. 0 when the downstream side exhaust gas sensor 25 is an oxygen sensor). 7 V to 0.2 V) is measured as a lean response time TL, and then when the lean control is switched to the rich control, the output of the downstream side exhaust gas sensor 25 is set to the predetermined interval Vb to The time required to pass Va (when the downstream exhaust gas sensor 25 is an oxygen sensor, for example, a section of 0.2 V to 0.7 V) may be measured as the rich response time TR. Further, the determination voltage V1 (Va to Vb) for measuring the lean response time TL and the determination voltage V1 (Vb to Va) for measuring the rich response time TR may be set to different voltages.
[0050]
In the embodiment (3) described above, when the air-fuel ratio (target air-fuel ratio) on the upstream side of the catalyst is an air-fuel ratio (air-fuel ratio outside the purification window) exceeding the purification capability of the catalyst 23, the upstream side of the catalyst An abnormality diagnosis of the downstream side exhaust gas sensor 25 is executed by switching the rich / lean of the air / fuel ratio (target air / fuel ratio) beyond the purification ability of the catalyst 23. When the air-fuel ratio exceeds the purification capacity of the catalyst 23 (the air-fuel ratio outside the purification window of the catalyst 23), the exhaust gas component that passes through without being purified by the catalyst 23 increases. Therefore, in this state, the air-fuel ratio on the upstream side of the catalyst By switching between rich and lean, the air-fuel ratio change on the upstream side of the catalyst appears with good response as the air-fuel ratio change on the downstream side of the catalyst with almost no influence of the storage effect of the catalyst 23, and the downstream side exhaust gas sensor 25. The abnormality diagnosis can be performed with high accuracy.
[0051]
The present invention is not limited to the embodiments (1) to (3), and the intake air amount is equal to or greater than the abnormality diagnosis execution intake air amount KQ, and the air-fuel ratio (target air-fuel ratio) on the upstream side of the catalyst is the catalyst. When the air-fuel ratio exceeds the purification capacity of 23 (the air-fuel ratio outside the purification window), the rich / lean state of the air-fuel ratio (target air-fuel ratio) on the upstream side of the catalyst is switched beyond the purification capacity of the catalyst 23 and downstream An abnormality diagnosis of the side exhaust gas sensor 25 may be executed.
[0052]
In the above embodiments (1) to (3), the lean response time TL and the rich response time TR of the downstream exhaust gas sensor 25 when the rich / lean of the air / fuel ratio (target air / fuel ratio) on the upstream side of the catalyst is switched. However, the deterioration of the responsiveness of the downstream exhaust gas sensor 25 is diagnosed by comparing with each of the determination values. However, the abnormality diagnosis method for the downstream exhaust gas sensor 25 may be changed as appropriate.
[0053]
For example, the average lean response time and the average rich response time of the downstream side exhaust gas sensor 25 when the air-fuel ratio rich / lean are alternately switched at a constant cycle are calculated, and the average lean response time and the average rich response time are respectively determined. You may make it diagnose the deterioration of the responsiveness of the downstream side exhaust gas sensor 25 compared with a value.
[0054]
Further, the responsiveness of the downstream exhaust gas sensor 25 based on the frequency ratio or amplitude ratio of the output of the upstream exhaust gas sensor 24 and the output of the downstream exhaust gas sensor 25 when the air-fuel ratio rich / lean is alternately switched at a constant cycle. You may make it diagnose degradation of.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire engine control system according to an embodiment (1) of the present invention.
FIG. 2 is a flowchart showing a flow of processing of an exhaust gas sensor abnormality diagnosis main routine of the embodiment (1).
FIG. 3 is a flowchart showing a flow of processing of an abnormality diagnosis execution subroutine.
FIG. 4 is a time chart for explaining the exhaust gas sensor abnormality diagnosis method of the embodiment (1).
FIG. 5 is a time chart for explaining another abnormality diagnosis method for the exhaust gas sensor according to the embodiment (1).
FIG. 6A is a time chart showing the behavior of the air-fuel ratio on the upstream side of the catalyst, the air-fuel ratio on the downstream side of the catalyst, and the output of the downstream exhaust gas sensor when the intake air amount is smaller than the abnormality diagnosis execution intake air amount KQ. (B) is a time chart showing the behavior of the air-fuel ratio upstream of the catalyst, the air-fuel ratio downstream of the catalyst, and the output of the downstream exhaust gas sensor when the intake air amount is larger than the abnormality diagnosis execution intake air amount KQ.
FIG. 7 is a flowchart showing a flow of processing of an exhaust gas sensor abnormality diagnosis main routine of the embodiment (2).
FIG. 8 is a diagram conceptually showing a map that defines the relationship between the degree of catalyst deterioration and the amount of intake air for performing abnormality diagnosis.
FIG. 9 is a flowchart showing a flow of processing of an exhaust gas sensor abnormality diagnosis main routine of the embodiment (3).
FIG. 10 is a time chart for explaining the exhaust gas sensor abnormality diagnosis method of the embodiment (3).
FIG. 11 is a time chart for explaining another abnormality diagnosis method for the exhaust gas sensor according to the embodiment (3).
FIG. 12 is a time chart for explaining the effect of the storage effect of the catalyst and the presence or absence of catalyst deterioration on the change of the air-fuel ratio on the downstream side of the catalyst.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Internal combustion engine (engine), 12 ... Intake pipe, 15 ... Throttle valve, 20 ... Fuel injection valve, 21 ... Spark plug, 22 ... Exhaust pipe, 23 ... Catalyst, 24, 25 ... Exhaust gas sensor, 28 ... ECU (sensor) Abnormal diagnosis means).

Claims (3)

内燃機関の排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「下流側排出ガスセンサ」という)の出力に基づいて該下流側排出ガスセンサの異常の有無を診断するセンサ異常診断手段を備えた排出ガスセンサの異常診断装置において、
前記センサ異常診断手段は、吸入空気量が前記触媒の浄化能力を越える運転領域に増加しているときに前記触媒上流側の空燃比を変化させて前記下流側排出ガスセンサの出力に基づいて該下流側排出ガスセンサの異常診断を実行することを特徴とする排出ガスセンサの異常診断装置。
Sensor abnormality diagnosing means for diagnosing the presence or absence of abnormality of the downstream exhaust gas sensor based on the output of an exhaust gas sensor (hereinafter referred to as "downstream exhaust gas sensor") installed downstream of the catalyst for purifying exhaust gas of the internal combustion engine In the exhaust gas sensor abnormality diagnosis device provided,
The sensor abnormality diagnosing means changes the air-fuel ratio on the upstream side of the catalyst when the intake air amount increases to an operation region exceeding the purification capacity of the catalyst, and determines the downstream side based on the output of the downstream side exhaust gas sensor. An exhaust gas sensor abnormality diagnosis device that performs abnormality diagnosis of a side exhaust gas sensor.
前記センサ異常診断手段は、前記下流側排出ガスセンサの異常診断を実行する前記吸入空気量の範囲を前記触媒の劣化度合に応じて設定することを特徴とする請求項1に記載の排出ガスセンサの異常診断装置。  2. The exhaust gas sensor abnormality according to claim 1, wherein the sensor abnormality diagnosis unit sets a range of the intake air amount for executing abnormality diagnosis of the downstream exhaust gas sensor in accordance with a degree of deterioration of the catalyst. Diagnostic device. 内燃機関の排出ガス浄化用の触媒の下流側に設置された排出ガスセンサ(以下「下流側排出ガスセンサ」という)の出力に基づいて該下流側排出ガスセンサの異常の有無を診断するセンサ異常診断手段を備えた排出ガスセンサの異常診断装置において、
前記センサ異常診断手段は、前記触媒上流側の空燃比が前記触媒の浄化能力を越える領域になっているときに、該触媒上流側の空燃比のリッチとリーンとを前記触媒の浄化能力を越えて切り換えて、前記下流側排出ガスセンサの出力に基づいて該下流側排出ガスセンサの異常診断を実行することを特徴とする排出ガスセンサの異常診断装置。
Sensor abnormality diagnosing means for diagnosing the presence or absence of abnormality of the downstream exhaust gas sensor based on the output of an exhaust gas sensor (hereinafter referred to as "downstream exhaust gas sensor") installed downstream of the catalyst for purifying exhaust gas of the internal combustion engine In the exhaust gas sensor abnormality diagnosis device provided,
When the air-fuel ratio on the upstream side of the catalyst is in a region exceeding the purification capacity of the catalyst, the sensor abnormality diagnosis means exceeds the richness and leanness of the air-fuel ratio on the upstream side of the catalyst and exceeds the purification capacity of the catalyst. switching Te, the abnormality diagnosis apparatus for emissions gas sensor you and executes an abnormality diagnosis of the downstream side exhaust gas sensor based on the output of the downstream exhaust gas sensor.
JP2002043648A 2002-02-20 2002-02-20 Abnormality diagnosis device for exhaust gas sensor Expired - Fee Related JP3988073B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002043648A JP3988073B2 (en) 2002-02-20 2002-02-20 Abnormality diagnosis device for exhaust gas sensor
US10/368,403 US6976382B2 (en) 2002-02-20 2003-02-20 Abnormality diagnosing apparatus of exhaust gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002043648A JP3988073B2 (en) 2002-02-20 2002-02-20 Abnormality diagnosis device for exhaust gas sensor

Publications (2)

Publication Number Publication Date
JP2003247451A JP2003247451A (en) 2003-09-05
JP3988073B2 true JP3988073B2 (en) 2007-10-10

Family

ID=28659009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043648A Expired - Fee Related JP3988073B2 (en) 2002-02-20 2002-02-20 Abnormality diagnosis device for exhaust gas sensor

Country Status (1)

Country Link
JP (1) JP3988073B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626889B2 (en) * 2005-12-21 2011-02-09 スズキ株式会社 Downstream exhaust sensor failure diagnosis device
JP4561702B2 (en) * 2006-07-06 2010-10-13 トヨタ自動車株式会社 Exhaust sensor abnormality diagnosis device
JP5195483B2 (en) * 2009-02-09 2013-05-08 日産自動車株式会社 Exhaust sensor diagnostic device
WO2011111156A1 (en) 2010-03-09 2011-09-15 トヨタ自動車 株式会社 Catalyst degradation detection device
JP5407971B2 (en) * 2010-03-23 2014-02-05 トヨタ自動車株式会社 Abnormality diagnosis device
JP6734019B2 (en) * 2015-05-08 2020-08-05 トヨタ自動車株式会社 Abnormality diagnosis device for downstream air-fuel ratio sensor
JP7204426B2 (en) * 2018-11-02 2023-01-16 日立Astemo株式会社 Fuel injection control device for internal combustion engine
JP7124771B2 (en) * 2019-03-08 2022-08-24 いすゞ自動車株式会社 Lambda sensor response diagnostic method and exhaust purification system

Also Published As

Publication number Publication date
JP2003247451A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
KR0127495B1 (en) Failure determination method for o2 sensor
US6976382B2 (en) Abnormality diagnosing apparatus of exhaust gas sensor
US5727383A (en) Catalyst deterioration detecting apparatus and exhaust emission control device failure detecting apparatus
JP4350931B2 (en) Vehicle abnormality diagnosis apparatus and abnormality diagnosis method
JP4497132B2 (en) Catalyst degradation detector
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
JP2007262945A (en) Abnormality diagnosis device for exhaust gas sensor
JP4320778B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JP2009221992A (en) Malfunction diagnosing apparatus for exhaust gas sensor
US6470674B1 (en) Deterioration detecting apparatus and method for engine exhaust gas purifying device
JP3759567B2 (en) Catalyst degradation state detection device
JP3855877B2 (en) Deterioration detection device for air-fuel ratio detection device
JP3267188B2 (en) Catalyst deterioration determination device for internal combustion engine
JP3988073B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP4470661B2 (en) Exhaust gas sensor abnormality diagnosis device
JP3855720B2 (en) Abnormality diagnosis device for catalyst early warm-up control system of internal combustion engine
JP4453061B2 (en) Control device for internal combustion engine
JP4101133B2 (en) Self-diagnosis device for air-fuel ratio control device of internal combustion engine
JP4882958B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP3975436B2 (en) Abnormality diagnosis device for exhaust gas sensor
JP3225787B2 (en) O2 sensor control device for internal combustion engine
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JPH0933478A (en) Apparatus for diagnosing response of oxygen sensor in internal combustion engine
JP2003254049A (en) Abnormality diagnosis device for exhaust gas sensor
JP3139328B2 (en) Catalyst deterioration determination device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees