JPH097900A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH097900A
JPH097900A JP17449195A JP17449195A JPH097900A JP H097900 A JPH097900 A JP H097900A JP 17449195 A JP17449195 A JP 17449195A JP 17449195 A JP17449195 A JP 17449195A JP H097900 A JPH097900 A JP H097900A
Authority
JP
Japan
Prior art keywords
layer
electrolytic capacitor
sealing member
capacitor element
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17449195A
Other languages
Japanese (ja)
Inventor
Akira Endo
晃 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP17449195A priority Critical patent/JPH097900A/en
Publication of JPH097900A publication Critical patent/JPH097900A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: To provide an electrolytic capacitor which is enhanced in service life and reliability preventing driving electrolyte from evaporating so as to restrain electrolyte in a case from decreasing. CONSTITUTION: A sealing member 1 is of two-layered structure composed of a first layer 2 which is provided on an inner side, above 0.5mm in thickness, and formed of fluororesin non-permeable or hardly permeable to hydrogen gas and a second layer 3 which is provided on an outer side of a capacitor element and formed of elastic material such as ethylene-propylene terpolymer, butyl rubber, chloroprene rubber, nitrile rubber, or natural rubber, wherein the outer diameter of the first layer 2 provided on an inner side is set over 0.2mm larger than that of the second layer 3 provided on an outer side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解コンデンサ、特に
駆動用電解液のガスの透過を防止する封口部材を用いた
電解コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic capacitor, and more particularly to an electrolytic capacitor using a sealing member for preventing gas permeation of a driving electrolytic solution.

【0002】[0002]

【従来の技術】一般に電解コンデンサは、図8に示すよ
うに、高純度アルミニウム箔からなる一対の陽極箔と陰
極箔にそれぞれリード線端子21を接続し、前記の陽極
箔と陰極箔との間にコンデンサ紙を介在させ、これらを
巻回してコンデンサ素子22を構成していた。このコン
デンサ素子22に駆動用電解液を含浸し、前記リード線
端子21を弾性体からなる封口部材23に挿入した後、
有底筒状のアルミニウムケース24に収容し密閉してい
た。
2. Description of the Related Art Generally, in an electrolytic capacitor, as shown in FIG. 8, lead wire terminals 21 are connected to a pair of anode foil and cathode foil made of high-purity aluminum foil, respectively. Capacitor paper was interposed between the two, and these were wound to form the capacitor element 22. After the capacitor element 22 is impregnated with a driving electrolytic solution and the lead wire terminal 21 is inserted into a sealing member 23 made of an elastic body,
It was housed in a bottomed tubular aluminum case 24 and sealed.

【0003】このような構成において、前記封口部材2
3にはエチレンプロピレンターポリマーやブチルゴムな
どが用いられている。しかしながら、エチレンプロピレ
ンターポリマーからなる封口部材の場合は、駆動用電解
液の組成によっては電解液が封口部材を透過して蒸発飛
散する問題点があり、ブチルゴムの場合もエチレンプロ
ピレンターポリマーの場合よりは透過する電解液は少な
いが、やはり蒸発飛散を防止することはできなかった。
In such a structure, the sealing member 2
Ethylene propylene terpolymer, butyl rubber, etc. are used for 3. However, in the case of the sealing member made of ethylene propylene terpolymer, there is a problem that the electrolytic solution permeates through the sealing member and evaporates and scatters depending on the composition of the driving electrolytic solution. Although the electrolyte solution that permeated was small, it was still impossible to prevent the evaporation and scattering.

【0004】この電解液の透過による蒸発飛散を防止す
るために、例えば実開昭55−22107号公報に記載
のように、ゴムにポリプロピレン、ポリエステル、エポ
キシ、ポリテトラフロロエチレン等の樹脂を張り合わせ
た封口部材を使用した電解コンデンサも提案されてい
る。
In order to prevent evaporation and scattering due to the permeation of the electrolytic solution, for example, as described in Japanese Utility Model Publication No. 55-22107, rubber is laminated with a resin such as polypropylene, polyester, epoxy or polytetrafluoroethylene. An electrolytic capacitor using a sealing member has also been proposed.

【0005】しかしながら、このような電解コンデンサ
では、ゴムとポリプロピレン、ポリエステル、エポキ
シ、ポリテトラフロロエチレン等の樹脂の張り合わせに
おいてこれらの樹脂の接着性の問題から完全な接着が得
られず、封口部材をケースに挿入するときや、密閉時の
ケース胴体部の押圧によって接着面が剥離し、樹脂を接
着した効果を得ることができなかった。
However, in such an electrolytic capacitor, when the rubber and the resin such as polypropylene, polyester, epoxy, polytetrafluoroethylene, etc. are stuck together, complete adhesion cannot be obtained due to the problem of adhesiveness of these resins, and the sealing member is The adhesive surface was peeled off by the pressing of the case body portion when it was inserted into the case or when it was sealed, and the effect of adhering the resin could not be obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明では、駆動用電
解液の透過量を抑制して蒸発飛散を防止し、ケース内に
おける電解液の減少を抑制することによって、長寿命で
高信頼性の電解コンデンサを提供することを目的とした
ものである。
SUMMARY OF THE INVENTION According to the present invention, the permeation amount of the driving electrolyte solution is suppressed to prevent evaporation and scattering, and the decrease of the electrolyte solution in the case is suppressed, thereby providing a long life and high reliability. It is intended to provide an electrolytic capacitor.

【0007】[0007]

【課題を解決するための手段】本発明になる電解コンデ
ンサにおいて、請求項1記載の発明は、封口部材がコン
デンサ素子側に配された水素ガスを透過しない又はしに
くい材質からなる一層目と、電解コンデンサの外面側に
配された弾性を有する材料からなる二層目との二層構造
からなり、コンデンサ素子側に配した一層目の外径が電
解コンデンサの外面側に配された二層目の外径より0.
2mm以上大きいことを特徴とする。
In the electrolytic capacitor according to the present invention, the invention according to claim 1 is characterized in that the sealing member is made of a material which does not or does not easily permeate hydrogen gas disposed on the capacitor element side, The outer layer of the electrolytic capacitor has a two-layer structure with a second layer made of a material having elasticity, and the outer diameter of the first layer on the capacitor element side is the second layer on the outer surface of the electrolytic capacitor. From the outer diameter of 0.
It is characterized by being larger than 2 mm.

【0008】請求項2記載の発明は、請求項1における
一層目の材料がふっ素系樹脂からなることを特徴とす
る。
The invention according to claim 2 is characterized in that the material of the first layer in claim 1 is made of a fluororesin.

【0009】請求項3記載の発明は、請求項1又は請求
項2におけるふっ素系樹脂がポリテトラフルオロエチレ
ン、テトラフルオロエチレンとエチレンとの共重合体、
テトラフルオロエチレンとヘキサフルオロプロピレンと
の共重合体、テトラフルオロエチレンとパーフルオロア
ルキルビニルエーテルとの共重合体、ポリビニルフルオ
ライド、ポリビニリデンフルオライド、ポリクロロトリ
フルオロエチレン、クロロトリフルオロエチレンとエチ
レンとの共重合体であることを特徴とする。
According to a third aspect of the present invention, the fluorine-based resin according to the first or second aspect is polytetrafluoroethylene, a copolymer of tetrafluoroethylene and ethylene,
Copolymer of tetrafluoroethylene and hexafluoropropylene, copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, polyvinyl fluoride, polyvinylidene fluoride, polychlorotrifluoroethylene, chlorotrifluoroethylene and ethylene It is characterized by being a copolymer.

【0010】請求項4記載の発明は、請求項1〜請求項
3のいずれかに記載の一層目の材料の厚さが0.5mm
以上であることを特徴とする。
According to a fourth aspect of the invention, the thickness of the first layer material according to any one of the first to third aspects is 0.5 mm.
It is characterized by the above.

【0011】請求項5記載の発明は、請求項1〜請求項
4のいずれかに記載の一層目の材料の外周面がコンデン
サ素子側から0.5mm以上の面取り又は円弧が形成さ
れていることを特徴とする。
According to a fifth aspect of the present invention, the outer peripheral surface of the material of the first layer according to any one of the first to fourth aspects has a chamfer or an arc of 0.5 mm or more from the capacitor element side. Is characterized by.

【0012】請求項6に記載の発明は、請求項1〜請求
項5のいずれかに記載の二層目の材料がエチレンプロピ
レンターポリマー、ブチルゴム、クロロプレンゴム、ニ
トリルゴム、天然ゴムであることを特徴とする。
The invention according to claim 6 is that the material of the second layer according to any one of claims 1 to 5 is ethylene propylene terpolymer, butyl rubber, chloroprene rubber, nitrile rubber and natural rubber. Characterize.

【0013】[0013]

【作用】以上のような構成からなる本発明では、封口部
材のコンデンサ素子側に水素ガスを透過しない又はしに
くいふっ素系樹脂を配し、その外径が電解コンデンサの
外面側に配された弾性を有するゴム等の外径より0.2
mm以上大きいことを特徴としているが、この封口部材
にふっ素系樹脂を用い、前記のようにその外径を規制す
ることによって、ケースの密閉性を高めることができる
と共に電解液の透過を抑制でき、よって蒸発飛散を防止
することができるので、高信頼性で、長寿命の電解コン
デンサを得ることができるのである。
According to the present invention having the above-described structure, the sealing member is provided with the fluorine-containing resin which does not permeate hydrogen gas or which does not easily permeate hydrogen gas, on the side of the capacitor element, and the outer diameter of which is the elasticity of the outer surface of the electrolytic capacitor. 0.2 from the outer diameter of rubber, etc.
Although it is characterized by being larger than mm, by using a fluorine-based resin for this sealing member and regulating the outer diameter as described above, it is possible to enhance the hermeticity of the case and suppress the permeation of the electrolytic solution. Therefore, since it is possible to prevent evaporation and scattering, it is possible to obtain a highly reliable and long-life electrolytic capacitor.

【0014】[0014]

【実施例】【Example】

実施例A 以下、本発明の実施例について図面を参照しながら説明
する。試料の定格等は、定格16V−330μF、サイ
ズ直径8mm×長さ11.5mmである。本実施例に用
いた封口部材1の正面図を図1に、平面図を図2に示す
が、組み立てたときにコンデンサ素子側に位置する一層
目2はポリテトラフルオロエチレン(以下PTFE)か
らなり、その外径7.5mm×厚さ1mmで、その外周
面には0.5mmの円弧を形成している。また電解コン
デンサの外面側に位置する二層目3は、ブチルゴム(以
下IIR)からなり、外径7.2mm×厚さ2.5mm
で、さらに外径3mm×高さ1mmの円形状の2か所が
欠けた突出段部4が形成されている。
Example A Hereinafter, an example of the present invention will be described with reference to the drawings. The rating of the sample is a rating of 16V-330 μF, a size diameter of 8 mm and a length of 11.5 mm. The front view of the sealing member 1 used in this example is shown in FIG. 1 and the plan view is shown in FIG. 2. The first layer 2 located on the capacitor element side when assembled is made of polytetrafluoroethylene (hereinafter referred to as PTFE). The outer diameter is 7.5 mm and the thickness is 1 mm, and an arc of 0.5 mm is formed on the outer peripheral surface. The second layer 3 located on the outer surface side of the electrolytic capacitor is made of butyl rubber (hereinafter IIR) and has an outer diameter of 7.2 mm and a thickness of 2.5 mm.
In addition, a protruding step portion 4 having a circular shape with an outer diameter of 3 mm and a height of 1 mm is cut out at two places.

【0015】図3にこの封口部材1を使用した電解コン
デンサの正断面図を示すが、5はコンデンサ素子、6は
リード線端子、7はケースである。この実施例と従来の
電解コンデンサとの特性を比較し、その作用効果を説明
する。それぞれ引き出し端子を接続した陽極箔と陰極箔
の間にコンデンサ紙を挟んで巻回してコンデンサ素子を
形成した。このコンデンサ素子に駆動用電解液を含浸
し、実施例では図1及び図2に示した封口部材1に設け
てある挿入孔に引き出し端子に接続されたリード線端子
6を挿入し、ケース7に収容した後、ケース7の開口端
縁を巻き締めると共に胴体部を押圧して封口部材1の二
層目3を圧縮して密閉した。従来例は、封口部材の実施
例における一層目2を設けないだけで、その他はすべて
実施例と同じ構成を有するものを使用した。なお、この
従来例の二層目の厚さ、すなわちIIRの厚さは、実施
例の一層目の厚さを含んだ3.5mmとした。
FIG. 3 is a front sectional view of an electrolytic capacitor using the sealing member 1. Reference numeral 5 is a capacitor element, 6 is a lead wire terminal, and 7 is a case. The characteristics of this embodiment and the conventional electrolytic capacitor will be compared with each other to explain the operation and effect thereof. A capacitor element was formed by sandwiching a capacitor paper between an anode foil and a cathode foil to which lead terminals were connected, and winding the capacitor paper. This capacitor element is impregnated with a driving electrolytic solution, and in the embodiment, a lead wire terminal 6 connected to a lead terminal is inserted into an insertion hole provided in the sealing member 1 shown in FIGS. After housing, the opening edge of the case 7 was wound up and the body portion was pressed to compress and seal the second layer 3 of the sealing member 1. In the conventional example, only the first layer 2 in the example of the sealing member is not provided, and the other components have the same configuration as the example. The thickness of the second layer of the conventional example, that is, the thickness of IIR was set to 3.5 mm including the thickness of the first layer of the example.

【0016】このようにして作製した電解コンデンサ各
200個について125℃雰囲気中で定格電圧(16
V)を3000時間印加したときの試験時間に対する電
解液の減少量(△W)の関係を図4に、静電容量の減少
率(△C)との関係を図5に示す。この結果から明らか
なように、実施例は電解液の減少、及び静電容量の減少
率共に小さい。これは、封口部材1の一層目2として用
いたPTFEが電解液の透過を抑制すると共に、該一層
目2が二層目3よりも大きい外径を有しているためにケ
ース7の内壁に密着し、かつ、二層目3がコンデンサ素
子5側に露出することがないのでIIRからの透過が無
くなり、電解液が一層目2に遮断されて透過しないため
である。
For each of the 200 electrolytic capacitors manufactured in this way, the rated voltage (16
FIG. 4 shows the relationship between the decrease amount (ΔW) of the electrolytic solution and the decrease ratio (ΔC) of the electrostatic capacity with respect to the test time when V) is applied for 3000 hours. As is clear from this result, in the example, both the decrease of the electrolyte solution and the decrease rate of the capacitance are small. This is because the PTFE used as the first layer 2 of the sealing member 1 suppresses the permeation of the electrolytic solution, and since the first layer 2 has a larger outer diameter than the second layer 3, the inner wall of the case 7 is This is because the second layer 3 is in close contact and is not exposed to the capacitor element 5 side, so that permeation from the IIR is lost and the electrolytic solution is blocked by the first layer 2 and does not permeate.

【0017】これに対し従来例は、図4、図5から明ら
かなように試験時間が2000時間から静電容量が急激
に減少している。これは電解液が封口部材のIIRを透
過して蒸発飛散しているためであり、電解液の減少に起
因するものである。
On the other hand, in the conventional example, as is apparent from FIGS. 4 and 5, the electrostatic capacitance sharply decreases from the test time of 2000 hours. This is because the electrolytic solution passes through the IIR of the sealing member and evaporates and scatters, and is caused by the decrease in the electrolytic solution.

【0018】実施例B 次に実施例Aで述べた封口部材の一層目と二層目の外径
差について実験した結果を述べる。試料は定格35V−
560μF、サイズは直径12.5mm×長さ20mm
の電解コンデンサ各100個であり、一層目の外径と二
層目の外径との差(D1−D2)を種々変えて試作を行
った。これらの試料について125℃雰囲気中で定格電
圧(16V)を3000時間印加した後の電解液の減少
量(△W)を図6に示す。この結果、前記(D1−D
2)がマイナスの値であってもその効果は確認できる
が、この値が0以上、特に0.1mm以上の差があれば
その効果が大きい。
Example B Next, the results of experiments on the difference in outer diameter between the first layer and the second layer of the sealing member described in Example A will be described. The sample is rated 35V-
560μF, size is 12.5mm diameter x 20mm length
100 electrolytic capacitors each, and various trial production was performed by changing the difference (D1-D2) between the outer diameter of the first layer and the outer diameter of the second layer. FIG. 6 shows the reduction amount (ΔW) of the electrolytic solution after applying the rated voltage (16 V) for 3000 hours in the atmosphere of 125 ° C. for these samples. As a result, (D1-D)
The effect can be confirmed even if 2) is a negative value, but if this value has a difference of 0 or more, particularly 0.1 mm or more, the effect is large.

【0019】実施例C この実施例では、封口部材の一層目の厚さについて実験
した結果について述べる。試料は定格50V−33μ
F、サイズは直径6.3mm×長さ11mmの電解コン
デンサ各20個であり、一層目の厚さを種々変えて実験
した。なお、一層目は材料がテトラフルオロエチレンと
エチレンとの共重合体(以下ETFE)で外径は5.8
mm、二層目は材料がIIRでその外径は5.6mmで
ある。これらの試料について125℃雰囲気中で定格電
圧(50V)を3000時間印加した後の電解液の減少
量(△W)を図7に示す。図7は、各試料の最大値、最
小値、平均値を示すが、0.1mmの厚さからその効果
は認められるが、0.4mmまでは結果にばらつきが大
きい。0.5mm以上になるとばらつきも小さくなり、
かつ電解液の減少量も少なくなり良好な結果を示してい
る。
Example C In this example, the results of experiments on the thickness of the first layer of the sealing member will be described. Sample is rated 50V-33μ
F, the size is 20 electrolytic capacitors each having a diameter of 6.3 mm and a length of 11 mm, and various thicknesses of the first layer were changed for experiments. The material of the first layer is a copolymer of tetrafluoroethylene and ethylene (hereinafter referred to as ETFE), and the outer diameter is 5.8.
The second layer has a material of IIR and an outer diameter of 5.6 mm. FIG. 7 shows the reduction amount (ΔW) of the electrolytic solution after applying the rated voltage (50 V) for 3000 hours in the atmosphere of 125 ° C. for these samples. FIG. 7 shows the maximum value, the minimum value, and the average value of each sample. The effect can be recognized from the thickness of 0.1 mm, but the results vary widely up to 0.4 mm. When it is 0.5 mm or more, the variation becomes small,
In addition, the amount of decrease in the electrolytic solution is also small, showing a good result.

【0020】実施例D 本発明では、電解液の透過による蒸発飛散を防止するた
めに、封口部材の一層目とケース内壁との嵌合はきつく
行う必要があり、したがって作業上の容易さ、発生する
作業不良も課題となる。この実施例では、作業の容易さ
や、製造工程において発生する作業不良との関係につい
て実験した結果を述べる。試料は定格25V−10μ
F、サイズは直径5mm×長さ11mmの電解コンデン
サ各1000個であり、一層目の材料をPTFEとし外
径4.5mm×厚さ1mm、二層目の材料をIIRとし
外径4.3mm×2.5mmを用い、一層目の外周面に
コンデンサ素子側から表1に示すような種々の面取り、
及び円弧を形成したものを用いて電解コンデンサを作製
したときの工程不良率について述べる。不良は、封口部
材の一層目が斜めになったり、ケースの規定の位置まで
入っていない状態でケース開口端縁の巻き締めや胴体部
の押圧が成されたもの、ケースに収容できなかったなど
である。表1から明らかなように、面取り及び円弧を設
けないもの〜0.4mmまでは不良の発生が認められる
が、0.5mm以上では不良発生は皆無であった。これ
は一層目に形成した面取り又は円弧により、ケースへの
収納作業に際し、ケースにスムーズに収納することがで
きたためである。
Embodiment D In the present invention, in order to prevent evaporation and scattering due to the permeation of the electrolytic solution, it is necessary to tightly fit the first layer of the sealing member and the inner wall of the case. Poor work is also an issue. In this embodiment, the result of an experiment on the easiness of work and the relationship with work failure occurring in the manufacturing process will be described. The sample is rated 25V-10μ
F, size is 5 mm in diameter x 11 mm in length, each is 1000 electrolytic capacitors, the material of the first layer is PTFE and the outer diameter is 4.5 mm x thickness of 1 mm, and the material of the second layer is IIR and the outer diameter is 4.3 mm x Using 2.5 mm, various chamfers as shown in Table 1 from the capacitor element side on the outer peripheral surface of the first layer,
And, the process defect rate when an electrolytic capacitor is manufactured using the one in which a circular arc is formed will be described. Defective products include the case where the first layer of the sealing member is slanted, the case opening edge has been tightened or the body part has been pressed when it has not reached the specified position of the case, or it could not be accommodated in the case. Is. As is clear from Table 1, the occurrence of defects was observed in the case of no chamfering and arcing up to 0.4 mm, but no occurrence of defects in 0.5 mm or more. This is because the chamfer or the arc formed on the first layer allows the case to be smoothly stored in the case during the storing work.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、上記実施例では一層目のふっ素系樹
脂としてPTFE、ETFE、二層目の弾性体としてI
IRを用いた場合について述べたが、ふっ素系樹脂とし
てテトラフルオロエチレンとヘキサフルオロプロピレン
との共重合体、テトラフルオロエチレンとパーフルオロ
アルキルビニルエーテルとの共重合体、ポリビニルフル
オライド、ポリビニリデンフルオライド、ポリクロロト
リフルオロエチレン、クロロトリフルオロエチレンとエ
チレンとの共重合体、弾性体としてエチレンプロピレン
ターポリマー、クロロプレンゴム、ニトリルゴム、天然
ゴムを使用しても同様の効果を得ることができる。
In the above embodiment, PTFE and ETFE were used as the first layer of fluorocarbon resin, and I was used as the second layer of elastic material.
Although the case of using IR was described, a copolymer of tetrafluoroethylene and hexafluoropropylene as a fluorine-based resin, a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether, polyvinyl fluoride, polyvinylidene fluoride, The same effect can be obtained by using polychlorotrifluoroethylene, a copolymer of chlorotrifluoroethylene and ethylene, and ethylene propylene terpolymer, chloroprene rubber, nitrile rubber, or natural rubber as the elastic body.

【0023】[0023]

【発明の効果】本発明によれば、コンデンサ素子を収容
密閉したケースから蒸発飛散による駆動用電解液の減少
を抑制することによって、長寿命で高信頼性の電解コン
デンサを提供することができる。
According to the present invention, it is possible to provide a long-life and highly reliable electrolytic capacitor by suppressing a decrease in the driving electrolytic solution due to evaporation and scattering from the case in which the capacitor element is enclosed and sealed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の封口部材の一実施例を示す正面図。FIG. 1 is a front view showing an embodiment of a sealing member of the present invention.

【図2】本発明の封口部材の一実施例を示す平面図。FIG. 2 is a plan view showing an embodiment of the sealing member of the present invention.

【図3】本発明になる電解コンデンサを示す正断面図。FIG. 3 is a front sectional view showing an electrolytic capacitor according to the present invention.

【図4】125℃中で定格電圧印加したときの試験時間
と電解液の減少量を示す曲線図。
FIG. 4 is a curve diagram showing a test time and a decrease amount of an electrolytic solution when a rated voltage is applied at 125 ° C.

【図5】125℃中で定格電圧印加したときの試験時間
と静電容量の減少率を示す曲線図。
FIG. 5 is a curve diagram showing a test time and a rate of decrease in capacitance when a rated voltage is applied at 125 ° C.

【図6】125℃中で定格電圧印加したときの一層目と
二層目の外径差と電解液の減少量を示す曲線図。
FIG. 6 is a curve diagram showing the difference in outer diameter between the first layer and the second layer and the amount of decrease in the electrolytic solution when a rated voltage is applied at 125 ° C.

【図7】125℃中で定格電圧印加したときの一層目の
厚さと電解液の減少量を示す曲線図。
FIG. 7 is a curve diagram showing the thickness of the first layer and the amount of decrease in the electrolytic solution when a rated voltage is applied at 125 ° C.

【図8】従来の電解コンデンサを示す正断面図。FIG. 8 is a front sectional view showing a conventional electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1…封口部材 2…封口部材の一層目 3…封口部材の二層目 4…封口部材の突出段部 5…コンデンサ素子 6…リード線端子 7…ケース DESCRIPTION OF SYMBOLS 1 ... Sealing member 2 ... First layer of sealing member 3 ... Second layer of sealing member 4 ... Projected step portion of sealing member 5 ... Capacitor element 6 ... Lead wire terminal 7 ... Case

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 コンデンサ素子から引き出したリード線
端子を封口部材に挿入し、このコンデンサ素子及び封口
部材をケースに収容して密閉した電解コンデンサにおい
て、前記封口部材がコンデンサ素子側に配された水素ガ
スを透過しない又はしにくい材質からなる一層目と電解
コンデンサの外面側に配された弾性を有する材料からな
る二層目との二層構造からなり、コンデンサ素子側に配
した一層目の外径が電解コンデンサの外面側に配された
二層目の外径より0.2mm以上大きいことを特徴とす
る電解コンデンサ。
1. An electrolytic capacitor in which a lead wire terminal drawn out from a capacitor element is inserted into a sealing member, and the capacitor element and the sealing member are housed and sealed in a case, wherein the sealing member is arranged on the capacitor element side. The outer diameter of the first layer placed on the capacitor element side, which has a two-layer structure consisting of a first layer made of a material that does not allow gas to permeate or is hard to pass through and a second layer made of an elastic material that is placed on the outer surface side of the electrolytic capacitor. Is larger than the outer diameter of the second layer arranged on the outer surface side of the electrolytic capacitor by 0.2 mm or more.
【請求項2】 一層目の材料がふっ素系樹脂からなるこ
とを特徴とする請求項1に記載の電解コンデンサ。
2. The electrolytic capacitor according to claim 1, wherein the material of the first layer is a fluororesin.
【請求項3】 ふっ素系樹脂がポリテトラフルオロエチ
レン、テトラフルオロエチレンとエチレンとの共重合
体、テトラフルオロエチレンとヘキサフルオロプロピレ
ンとの共重合体、テトラフルオロエチレンとパーフルオ
ロアルキルビニルエーテルとの共重合体、ポリビニルフ
ルオライド、ポリビニリデンフルオライド、ポリクロロ
トリフルオロエチレン、クロロトリフルオロエチレンと
エチレンとの共重合体であることを特徴とする請求項1
又は請求項2に記載の電解コンデンサ。
3. The fluororesin is polytetrafluoroethylene, a copolymer of tetrafluoroethylene and ethylene, a copolymer of tetrafluoroethylene and hexafluoropropylene, and a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether. 2. A compound, polyvinyl fluoride, polyvinylidene fluoride, polychlorotrifluoroethylene, or a copolymer of chlorotrifluoroethylene and ethylene.
Alternatively, the electrolytic capacitor according to claim 2.
【請求項4】 一層目の材料の厚さが0.5mm以上で
あることを特徴とする請求項1〜請求項3のいずれかに
記載の電解コンデンサ。
4. The electrolytic capacitor according to claim 1, wherein the first layer material has a thickness of 0.5 mm or more.
【請求項5】 一層目の材料の外周面にコンデンサ素子
側から0.5mm以上の面取り又は円弧が形成されてい
ることを特徴とする請求項1〜請求項4のいずれかに記
載の電解コンデンサ。
5. The electrolytic capacitor according to claim 1, wherein a chamfer or an arc of 0.5 mm or more is formed from the capacitor element side on the outer peripheral surface of the first layer material. .
【請求項6】 二層目の材料がエチレンプロピレンター
ポリマー、ブチルゴム、クロロプレンゴム、ニトリルゴ
ム、天然ゴムであることを特徴とする請求項1〜請求項
5のいずれかに記載の電解コンデンサ。
6. The electrolytic capacitor according to claim 1, wherein the material of the second layer is ethylene propylene terpolymer, butyl rubber, chloroprene rubber, nitrile rubber, or natural rubber.
JP17449195A 1995-06-15 1995-06-15 Electrolytic capacitor Pending JPH097900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17449195A JPH097900A (en) 1995-06-15 1995-06-15 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17449195A JPH097900A (en) 1995-06-15 1995-06-15 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH097900A true JPH097900A (en) 1997-01-10

Family

ID=15979425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17449195A Pending JPH097900A (en) 1995-06-15 1995-06-15 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH097900A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864895A (en) * 1997-03-10 1999-02-02 Toto Ltd Handy body washer
CN107903457A (en) * 2017-12-23 2018-04-13 刘家记 A kind of high-air-tightness capacitor rubber seal plug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864895A (en) * 1997-03-10 1999-02-02 Toto Ltd Handy body washer
CN107903457A (en) * 2017-12-23 2018-04-13 刘家记 A kind of high-air-tightness capacitor rubber seal plug

Similar Documents

Publication Publication Date Title
KR101150544B1 (en) Capacitor and method for manufacturing same
US7885053B2 (en) Electric double layer capacitor and method for manufacturing same
KR100532171B1 (en) Electrolytic Capacitor and Method of Manufacturing It
JPH10275751A (en) Electric double layer capacitor and its manufacture
JPH097900A (en) Electrolytic capacitor
JPH04119614A (en) Aluminum electrolytic capacitor
JPH09129518A (en) Electrolytic capacitor
JP2000030981A (en) Aluminum electrolytic capacitor
JP2009231551A (en) Electrolytic capacitor and method of manufacturing the same
JPH0720911Y2 (en) Sealing packing for electrolytic capacitors
JP2009016587A (en) Capacitor
JPH0468517A (en) Manufacture of electric double layer capacitor
JP2578785Y2 (en) Electrolytic capacitor
JP3290256B2 (en) Electrolytic capacitor
JP2580073Y2 (en) Electrolytic capacitor
JPH0963908A (en) Electric double-layer capacitor and manufacture thereof
JPH04323816A (en) Aluminum electrolytic capacitor
JPH073129U (en) Electrolytic capacitor
JP2003173930A (en) Electrolytic capacitor
JP2537896B2 (en) Aluminum electrolytic capacitor manufacturing method
JP5179008B2 (en) Capacitor
JPS607481Y2 (en) Electrolytic capacitor
JP2532499B2 (en) Aluminum electrolytic capacitor manufacturing method
JPH0878296A (en) Electrolytic capacitor and its manufacture thereof
JP3290255B2 (en) Electrolytic capacitor