JPH0976056A - Ladle for molten steel and its repairing method - Google Patents

Ladle for molten steel and its repairing method

Info

Publication number
JPH0976056A
JPH0976056A JP7257216A JP25721695A JPH0976056A JP H0976056 A JPH0976056 A JP H0976056A JP 7257216 A JP7257216 A JP 7257216A JP 25721695 A JP25721695 A JP 25721695A JP H0976056 A JPH0976056 A JP H0976056A
Authority
JP
Japan
Prior art keywords
alumina
magnesia
molten steel
refractory
steel ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7257216A
Other languages
Japanese (ja)
Other versions
JP3464323B2 (en
Inventor
Masahiko Amano
正彦 天野
Hisashi Nakamura
壽志 中村
Toshihiro Isobe
利弘 礒部
Kimihiko Takeuchi
公彦 竹内
Yoshinobu Saikai
嘉宣 西海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17303284&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0976056(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP25721695A priority Critical patent/JP3464323B2/en
Publication of JPH0976056A publication Critical patent/JPH0976056A/en
Application granted granted Critical
Publication of JP3464323B2 publication Critical patent/JP3464323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the service life of the whole of lining of a ladle by improving the durability of a molten metal contact part, and preventing generation of cracks and flotation of a liner as a whole liner. SOLUTION: In a molten steel ladle having an inner lining structure of a linear 3, a molten metal contact part 4 consists of, by weight, 100% the blended material having the composition consisting of 65-93% alumina, 2-20% magnesia, and 5-15% alumina cement, and monolithic shaped refractory which is executed by pouring alumina-magnesia containing outer percentage of 0.05-3% volatile silica, and other part consists of molithic refractory which is executed by pouring the alumina-spinel. In the method for repairing the molten steel ladle, the liner 3 is repaired by the monolithic refractory executed by pouring alumina- magnesia.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉄鋼産業に使用さ
れる溶鋼取鍋の敷部の内張り構造およびその補修方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lining structure of a floor of a molten steel ladle used in the steel industry and a method for repairing the lining structure.

【0002】[0002]

【従来の技術】溶鋼取鍋などの内張りに使用する流し込
み施工不定形耐火物(以下、流し込み材)として、例え
ば特開昭64−87577号公報のアルミナ−スピネル
質、特開平5−97526号公報のアルミナ−マグネシ
ア質、特開平3−23275号公報のアルミナ−スピネ
ル−マグネシア質などの材質が提案されている。これら
の流し込み材は、マグネシアまたはスピネルによる耐食
性とアルミナがもつ容積安定性との相乗効果によって、
優れた耐用性を示す。
2. Description of the Related Art As castable amorphous refractory (hereinafter referred to as casting material) used for linings of molten steel ladle, for example, alumina-spinel material disclosed in JP-A-64-87577 and JP-A-5-97526. , Alumina, spinel-magnesia of JP-A-3-23275, and the like. These casting materials have a synergistic effect of corrosion resistance due to magnesia or spinel and volume stability of alumina.
Shows excellent durability.

【0003】[0003]

【発明が解決しようとする課題】溶鋼取鍋の敷部の内張
りは周囲が拘束されているため、一般にアルミナ−スピ
ネル質などの熱膨張の小さい構造安定性に優れた流し込
み材が使用されている。しかし、敷部において溶鋼の直
撃を受ける湯当り部では、亀裂発生→地金侵入→剥離の
損傷サイクルによって、従来の内張り材質では十分な耐
用性が得られていない。
Since the lining of the floor of the molten steel ladle is constrained at its periphery, a casting material such as alumina-spinel material having a small thermal expansion and excellent structural stability is generally used. . However, due to the damage cycle of crack generation → intrusion of base metal → peel, the conventional lining material does not have sufficient durability in the contact area of the floor where the molten steel is directly hit.

【0004】また、湯当り部の補修において、例えば内
張り材と同材質のアルミナ−スピネル質流し込み材を補
修材に使用すると、内張り材との接着が悪く、剥離によ
って十分な補修効果が得られない。このため、湯当り部
の補修はパーマネント内張りを除く敷部全体の内張りを
解体除去して行わなければならず、材料費および補修工
数の面で不合理である。
Further, in repairing the hot water contact portion, for example, when an alumina-spinel casting material of the same material as the lining material is used as the repair material, the adhesion with the lining material is poor and sufficient repair effect cannot be obtained due to peeling. . For this reason, repair of the hot water contact part must be performed by dismantling and removing the entire lining of the laying part excluding the permanent lining, which is unreasonable in terms of material cost and repair man-hours.

【0005】溶鋼取鍋の内張り材として、耐食性および
耐スラグ浸透性に優れた材質として、前記したアルミナ
−スピネル質流し込み材と共に、アルミナ−マグネシア
質流し込み材が提案されている。しかし、このアルミナ
−マグネシア質は高温下でアルミナとマグネシアが反応
し、Al23・MgO系スピネル(以下、スピネル)の
生成に伴う熱膨張が著しい。このため、アルミナ−マグ
ネシア質は側壁部の内張りとしては良好であっても、周
囲が拘束されている敷部では熱膨張が迫り応力として作
用し、敷面と平行の層状亀裂の発生あるいは敷浮上など
を招き、十分な耐用性が得られない。
As a lining material for a molten steel ladle, an alumina-magnesia casting material has been proposed as a material excellent in corrosion resistance and slag penetration resistance together with the above-mentioned alumina-spinel casting material. However, in this alumina-magnesia substance, alumina and magnesia react with each other at a high temperature, and the thermal expansion accompanying the formation of Al 2 O 3 .MgO-based spinel (hereinafter, spinel) is remarkable. For this reason, although alumina-magnesia is a good lining for the side wall, thermal expansion acts as an imposing stress in the laid area where the periphery is constrained, causing the formation of layered cracks parallel to the laid surface or floating of the laid surface. As a result, sufficient durability cannot be obtained.

【0006】溶鋼取鍋の使用条件は近年、溶鋼温度の上
昇、滞湯時間の延長、ガス吹き込み撹拌など、苛酷化の
一途をたどっている。内張り材質はそれに合わせて高耐
用のものが開発されているが、敷部の先行損耗は避けら
れず、側壁の内張りが本来の寿命を全うしないまま、溶
鋼取鍋の内張り全体の補修を余儀なくされている。本発
明は、溶鋼取鍋の内張りにおける上記従来の問題を解決
することを目的としている。
[0006] In recent years, the conditions for using molten steel ladle have become severer, such as rising molten steel temperature, prolonging the staying time of molten steel, and stirring with gas blowing. Highly durable lining materials have been developed accordingly, but prior wear of the laying is unavoidable, and the entire lining of the molten steel ladle is inevitably repaired without the side wall lining fulfilling its original life. ing. The present invention aims to solve the above-mentioned conventional problems in the lining of a molten steel ladle.

【0007】[0007]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、アルミナ65〜93wt%、マグネシア2〜20
wt%、アルミナセメント5〜15wt%よりなる配合
物100wt%と、揮発シリカ外掛け0.05〜3wt
%を含むアルミナ−マグネシア質流し込み施工不定形耐
火物で湯当り部を構成し、その周囲をアルミナ−スピネ
ル質流し込み施工不定形耐火物とした敷部の内張り構造
を有する溶鋼取鍋である。
The features of the present invention include: 65 to 93 wt% alumina and 2 to 20 magnesia.
100% by weight of compound consisting of 5% by weight of alumina cement and 5% by weight of alumina cement, and 0.05-3% by weight of volatile silica.
% Of alumina-magnesia castable amorphous refractory to form a hot water contact portion, and the surrounding area is an alumina-spinel castable amorphous refractory having a lining structure of a laying part.

【0008】また、前記溶鋼取鍋の使用後、敷部の内張
りをアルミナ65〜93wt%、マグネシア2〜20w
t%、アルミナセメント5〜15wt%よりなる配合物
100wt%と、揮発シリカ外掛け0.05〜3wt%
を含むアルミナ−マグネシア質流し込み施工不定形耐火
物をもって補修する溶鋼取鍋の補修方法である。
After the use of the molten steel ladle, the lining of the floor is made of alumina 65 to 93 wt% and magnesia 2 to 20 w.
100% by weight of a compound consisting of 5% to 15% by weight of alumina cement and 0.05 to 3% by weight of volatile silica.
It is a method of repairing a molten steel ladle in which an amorphous-shaped refractory for repairing a cast alumina-magnesia material is included.

【0009】[0009]

【発明の実施の形態】図1は、本発明による取鍋の内張
りの断面構造を模式的に示したものである。1鉄皮、2
は側壁部の内張り、3は敷部の内張りである。側壁部の
内張り、敷部の内張りとも、一般にはその背面にパーマ
ネント内張りが設けられるが、図では省略している。本
発明では、敷部3の内張りにおいて、湯当たり部4をア
ルミナ−マグネシア質流し込み材とし、その周囲5をア
ルミナ−スピネル質流し込み施工不定形耐火物とした。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows a sectional structure of a lining of a ladle according to the present invention. 1 iron skin, 2
Is a side wall lining, and 3 is a floor lining. Both the sidewall lining and the floor lining are generally provided with a permanent lining on the back surface thereof, but they are omitted in the figure. In the present invention, in the lining of the floor part 3, the hot water contact part 4 is made of an alumina-magnesia pouring material, and the periphery 5 is made of an alumina-spinel pouring construction irregular refractory material.

【0010】アルミナ−マグネシア質流し込み材は、マ
グネシア自身の耐食性と、使用中の高温でアルミナ−マ
グネシアの反応によるスピネル結合によって、湯当り部
における溶鋼の直撃に対しても優れた耐用性を示す。ア
ルミナ−マグネシア質流し込み材は、スピネルの生成に
伴って著しい熱膨張を生じるが、本発明ではその周囲に
位置するアルミナ−スピネル質流し込み材によって熱膨
張応力を緩和し、亀裂発生や敷浮上などの問題が防止さ
れる。
The alumina-magnesia pouring material exhibits excellent durability against direct hitting of molten steel in the hot water contact area due to the corrosion resistance of magnesia itself and the spinel bond due to the reaction of alumina-magnesia at a high temperature during use. Alumina-magnesia casting material causes significant thermal expansion with the formation of spinel, but in the present invention, the alumina-spinel casting material located around it relaxes the thermal expansion stress and causes cracking and levitation. Problems are prevented.

【0011】しかも、この湯当り部のアルミナ−マグネ
シア質流し込み材の膨張は、その周囲に位置するアルミ
ナ−スピネル質流し込み材との間の目地を閉塞し、目地
の先行溶損を防止する効果をもつ。
Moreover, the expansion of the alumina-magnesia casting material in the hot water contact portion closes the joint between the alumina-magnesia casting material and the surrounding material, and has the effect of preventing the preceding melting damage of the joint. Hold.

【0012】また、本発明で使用するアルミナ−マグネ
シア質流し込み材は、揮発シリカを添加したことで、そ
のシリカ成分によって高温下で適度な荷重軟化特性を発
揮し、受鋼の際の熱衝撃を緩和して、剥離損傷を防止す
る。
The alumina-magnesia pouring material used in the present invention, by adding volatile silica, exhibits appropriate load softening characteristics at high temperature due to its silica component, so that thermal shock at the time of receiving steel can be obtained. Mitigates to prevent peeling damage.

【0013】一方、湯当り部の周囲に内張したアルミナ
−スピネル質流し込み材は、構造安定性に優れており、
熱膨張が小さいことから、湯当り部全体の熱膨張応力を
緩和する役割をもつ。さらに、湯当り部のアルミナ−マ
グネシア質流し込み材と焼結されやすいことで、敷部の
構造がより強固なものとなる。
On the other hand, the alumina-spinel casting material lined around the hot water contact portion has excellent structural stability.
Since the thermal expansion is small, it has a role of relaxing the thermal expansion stress of the entire molten metal contact part. Furthermore, the structure of the floor part becomes stronger because it is easily sintered with the alumina-magnesia casting material in the hot water contact part.

【0014】敷部の内張り構造において、アルミナ−マ
グネシア質流し込み材とアルミナ−スピネル質流し込み
材との組合で得られる以上の効果は、敷部の補修におい
ても発揮される。すなわち、図2の模式図に示したとお
り、上記の敷部の構造を有する溶鋼取鍋において、この
溶鋼取鍋の使用後、湯当たり部4が主体となる損傷部6
にアルミナ−マグネシア質流し込み材の補修材7を充填
し、敷部3を補修すると、補修材組織の亀裂発生が少な
く、しかも補修材7が敷部3の内張り材との接着性に富
む結果、優れた補修効果が得られる。なお、図には示し
ていないが従来の内張り構造と同様、定形耐火物または
不定形耐火物よりなるパーマネントライニングを背面に
設けてもよいことはもちろんである。
In the lining structure of the laid portion, the above effects obtained by the combination of the alumina-magnesia casting material and the alumina-spinel casting material are also exhibited in the repair of the laid portion. That is, as shown in the schematic view of FIG. 2, in the molten steel ladle having the above-mentioned structure of the floor portion, after the molten steel ladle is used, the damaged portion 6 mainly composed of the hot water contact portion 4
When the repair material 7 of the alumina-magnesia casting material is filled in and the laying portion 3 is repaired, cracks in the repair material structure are less likely to occur, and the repair material 7 has excellent adhesiveness to the lining material of the laying portion 3, Excellent repair effect can be obtained. Although not shown in the drawings, it is needless to say that a permanent lining made of a regular refractory material or an irregular refractory material may be provided on the back surface as in the conventional lining structure.

【0015】本発明において、湯当り部の内張りあるい
は補修材として使用するアルミナ−マグネシア質流し込
み材の詳細を説明する。アルミナは耐食性と容積安定性
の効果をもつ。焼結品、電融品のいずれでも使用でき、
Al23純度は90wt%以上が好ましい。TiO2
8wt%以下含有したものでも使用できる。ばん土けつ
岩、シリマナイト、ムライトなどの低純度品を使用して
もよいが、微粉部には高純度品を使用するのが好まし
い。
In the present invention, the details of the alumina-magnesia pouring material used as the lining of the hot water contact portion or as the repair material will be described. Alumina has the effect of corrosion resistance and volume stability. Both sintered products and electro-melt products can be used,
The Al 2 O 3 purity is preferably 90 wt% or more. Those containing 8 wt% or less of TiO 2 can also be used. Although low-purity products such as shale shale, sillimanite, and mullite may be used, it is preferable to use high-purity products in the fine powder portion.

【0016】アルミナ割合は65wt%未満、93wt
%を超える場合のいずれも耐食性に劣る。その粒径は例
えば10mm未満、好ましくは5mm以下である。粗
粒、中粒、微粒に調整する。微粒には仮焼品を使用して
もよい。
Alumina content is less than 65 wt%, 93 wt
If the content exceeds%, the corrosion resistance is poor. The particle size is, for example, less than 10 mm, preferably 5 mm or less. Adjust to coarse, medium and fine. A calcined product may be used for the fine particles.

【0017】マグネシアは焼結品、電融品のいずれでも
よく、MgO純度は95%以上が好ましい。マグネシア
はそれ自身でも耐スラグ性に優れ、しかもアルミナとの
反応によるスピネル生成で受鋼時の溶鋼直撃に対しても
優れた耐食性を付与する。
Magnesia may be either a sintered product or an electromelted product, and the MgO purity is preferably 95% or more. Magnesia itself has excellent slag resistance, and also imparts excellent corrosion resistance against direct hitting of molten steel when receiving steel due to spinel formation due to reaction with alumina.

【0018】マグネシアの割合は、2wt%未満ではス
ピネル生成が不十分のために耐食性に劣る。20wt%
を超えるとスピネル生成量が過多となって、スピネル生
成に伴う体積膨張で耐スポーリング性に劣る。粒径は、
アルミナとの反応性を高めるため、微粉で使用すること
が好ましい。例えば1mm以下、好ましくは100μm
以下の微粉として使用する。
If the proportion of magnesia is less than 2 wt%, the corrosion resistance is poor due to insufficient spinel formation. 20 wt%
If it exceeds, the amount of spinel produced becomes excessive, and the volume expansion associated with spinel production causes poor spalling resistance. The particle size is
It is preferably used in fine powder form in order to increase the reactivity with alumina. For example, 1 mm or less, preferably 100 μm
Used as the following fine powder.

【0019】アルミナセメントは結合剤としての役割を
もつ。その割合および具体的種類などは従来材質と特に
変わりない。5wt%未満では施工体強度に劣り且つ長
期構造安定性に欠ける。15wt%を超えると耐食性を
低下させる。
Alumina cement serves as a binder. The ratio and specific type are the same as those of conventional materials. If it is less than 5 wt%, the strength of the construction product is poor and the long-term structural stability is poor. If it exceeds 15 wt%, the corrosion resistance is reduced.

【0020】揮発シリカは、ガラス化による軟化粘性に
より、溶鋼直撃で湯当り部が受ける荷重衝撃と熱衝撃を
緩和し、剥離損傷防止に効果をもつ。 この揮発シリカ
は、シリコンまたは珪素合金製造の際の副産物として得
られ、比表面積が15〜30m2/g 程度の超微粒子で
ある。シリカフラワーまたはマイクロシリカなどの商品
名で知られている。その割合は、前記の配合物100w
t%に対し、外掛け0.05wt%未満では効果がな
く、3wt%を超えると耐食性を低下させる。
Due to the softening viscosity caused by vitrification, the volatile silica has the effect of mitigating the load impact and thermal impact that the molten metal hits directly on the molten steel and prevents peeling damage. This volatile silica is obtained as a by-product during the production of silicon or a silicon alloy, and is ultrafine particles having a specific surface area of about 15 to 30 m 2 / g. It is known by trade names such as silica flour or micro silica. The ratio is 100w of the above-mentioned compound.
If it is less than 0.05% by weight with respect to t%, there is no effect, and if it exceeds 3% by weight, corrosion resistance is reduced.

【0021】このアルミナ−マグネシア質流し込み材
は、さらに耐火性超粗大粒子および/または金属ファイ
バーを添加してもよい。耐火性超粗大粒子は、亀裂の伸
展を寸断し、亀裂の拡大を防止する効果をもつ。また、
金属ファイバーは、耐火物組織に亀裂が生じても、その
亀裂の拡大あるいは亀裂が原因による剥離を防止する。
The alumina-magnesia casting material may further contain refractory ultra-coarse particles and / or metal fibers. The refractory ultra-coarse particles have the effect of breaking the crack extension and preventing the crack expansion. Also,
Even if a crack occurs in the refractory structure, the metal fiber prevents the crack from spreading or peeling due to the crack.

【0022】耐火性超粗大粒子の材質は特に限定される
ものではなく、例えばアルミナ質、スピネル質の焼結
品、電融品あるいはこれらを主材とした炉材使用後品と
する。その粒径は10〜30mmとする。配合割合は、
外掛け30wt%未満、好ましくは5〜25wt%であ
る。25wt%を超えると、その粒度構成のバランスの
悪さから施工体の強度が低下し、耐食性の低下を招く。
The material of the refractory ultra-coarse particles is not particularly limited, and may be, for example, an alumina-based or spinel-based sintered product, an electro-melted product, or a post-use product obtained by using a furnace material containing these as main materials. The particle size is 10 to 30 mm. The mixing ratio is
It is less than 30% by weight, preferably 5 to 25% by weight. If it exceeds 25 wt%, the strength of the construction body is lowered due to the imbalance of the particle size composition, and the corrosion resistance is lowered.

【0023】金属ファイバーの具体的な種類は耐熱性お
よび耐酸化性の面でステンレス鋼が最も好ましいが、こ
れに限らず例えば鉄、炭素鋼、Ni−Cr鋼、Cr−M
o鋼、Cr鋼、Cr−V鋼、Al、Al合金、Cu、C
u合金などでもよい。形状はストレート形、曲線、山
形、波形などのいずれでもよい。寸法は直径0.1〜2
mm、長さは直径の5〜50倍程度が好ましい。
Although stainless steel is the most preferable specific type of metal fiber in terms of heat resistance and oxidation resistance, the present invention is not limited to this, and examples thereof include iron, carbon steel, Ni-Cr steel, and Cr-M.
o Steel, Cr steel, Cr-V steel, Al, Al alloy, Cu, C
A u alloy or the like may be used. The shape may be straight, curved, chevron-shaped, or wavy. Dimensions are diameter 0.1-2
The mm and the length are preferably about 5 to 50 times the diameter.

【0024】金属ファイバーの割合は、アルミナ、マグ
ネシアおよびアルミナセメントよりなる配合物100w
t%に対する外掛けで5wt%以下、さらに好ましくは
0.5〜3wt%である。5wt%を超えると、施工時
の流動性の悪さから添加水分過多となり、施工体の強度
が低下して耐食性の低下を招く。
The proportion of metal fibers is 100 w of a mixture of alumina, magnesia and alumina cement.
It is 5% by weight or less, more preferably 0.5 to 3% by weight, as an external multiplication with respect to t%. When it exceeds 5 wt%, the added water becomes excessive due to poor fluidity during construction, resulting in a decrease in strength of the construction product and a decrease in corrosion resistance.

【0025】つぎに、敷部において、アルミナ−マグネ
シア質流し込み材よりなる湯当り部以外の部分に内張り
するアルミナ−スピネル質流し込み材の詳細を説明す
る。この材質は、従来の溶鋼取鍋において側壁あるいは
敷部の材質として使用されているアルミナ−スピネル質
流し込み材と特に変わりない。
Next, the details of the alumina-spinel casting material which is lined in the floor portion other than the hot water contact portion made of the alumina-magnesia casting material will be described. This material is not particularly different from the alumina-spinel casting material used as the material of the side wall or floor in the conventional ladle ladle.

【0026】アルミナは、前記のアルミナ−マグネシア
質流し込み材の場合と同様、耐食性と容積安定性の効果
をもち、主骨材としての役割をもつ。焼結品,電融品の
いずれでも使用でき、Al23純度は90%以上が好ま
しい。TiO2 を8wt%以下含有したものでも使用で
きる。ばん土けつ岩、シリマナイト、ムライトなどの低
純度品を使用してもよいが、微粉部には高純度品を使用
するのが好ましい。粒径は例えば10mm未満、好まし
くは5mm以下である。粗粒、中粒、微粒に調整する。
微粒には仮焼品を使用してもよい。その割合は、45〜
90wt%が好ましい。
Alumina has the effects of corrosion resistance and volume stability as in the case of the above-mentioned alumina-magnesia casting material, and also serves as the main aggregate. Either a sintered product or an electromelted product can be used, and the Al 2 O 3 purity is preferably 90% or more. Those containing 8 wt% or less of TiO 2 can also be used. Although low-purity products such as shale shale, sillimanite, and mullite may be used, it is preferable to use high-purity products in the fine powder portion. The particle size is, for example, less than 10 mm, preferably 5 mm or less. Adjust to coarse, medium and fine.
A calcined product may be used for the fine particles. The ratio is 45-
90 wt% is preferable.

【0027】スピネルは耐スラグ浸透性の役割をもつ。
5〜45wt%が好ましく、5wt%未満では耐スラグ
浸透性の効果に劣り、45wt%を超えると耐食性およ
び耐スポーリング性に劣る。粒径は、耐火物組織内での
分散性を高めるために、例えば粒径1mm以下の微粉で
使用するが好ましい。焼結品、電融品を問わない。Al
23:MgO比は、理論値に限らず使用できる。例え
ば、重量比でAl23:MgOが1:1〜10:1のも
のが使用できる。
Spinel has a role of slag penetration resistance.
5 to 45 wt% is preferable, and if less than 5 wt%, the effect of slag penetration resistance is poor, and if it exceeds 45 wt%, corrosion resistance and spalling resistance are poor. The particle size is preferably, for example, a fine powder having a particle size of 1 mm or less in order to improve dispersibility in the refractory structure. It does not matter whether it is a sintered product or an electromelted product. Al
The 2 O 3 : MgO ratio can be used without being limited to the theoretical value. For example, a weight ratio of Al 2 O 3 : MgO of 1: 1 to 10: 1 can be used.

【0028】結合剤はアルミナセメント、マグネシアセ
メントなどが使用できるが、施工性の面からアルミナセ
メントが好ましい。その割合は、5〜15wt%が好ま
しい。湯当り部あるいは補修材として使用するアルミナ
−マグネシア質流し込み材と同様に、耐火性超粗大粒子
あるいは金属ファイバーなど添加してもよい。耐火性超
粗大粒子とステンレスファイバーの添加量は、アルミナ
−マグネシア質流し込み材の場合と特に変わりない。
Alumina cement, magnesia cement and the like can be used as the binder, but alumina cement is preferred from the viewpoint of workability. The ratio is preferably 5 to 15 wt%. Similar to the alumina-magnesia casting material used as a hot water contact part or a repair material, refractory ultra-coarse particles or metal fibers may be added. The amounts of refractory ultra-coarse particles and stainless fiber added are not particularly different from those of the alumina-magnesia casting material.

【0029】湯当り部あるいは補修材として使用するア
ルミナ−マグネシア質流し込み材と他の部分に使用する
アルミナ−スピネル質流し込み材の施工方法は、一般的
な流し込み材と同様にして行う。すなわち、施工時の作
業性、可使時間などを調整するために、通常は解こう
剤、硬化調整剤などをそれぞれ0.01〜0.5wt%
程度添加する。解こう剤の具体例としては、例えばトリ
ポリリン酸ソーダ、ヘキサメタリン酸ソーダ、ウルトラ
ポリリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ホウ
酸ソーダ、炭酸ソーダなどの無機塩、クエン酸ソーダ、
酒石酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソー
ダなどがある。硬化調整剤としては、例えばホウ酸、ホ
ウ酸アンモニウム、ウルトラポリリン酸ソーダ、炭酸リ
チウムなどである。
The alumina-magnesia casting material used for the hot water contact portion or the repair material and the alumina-spinel casting material used for the other parts are applied in the same manner as a general casting material. That is, in order to adjust workability and pot life at the time of construction, a peptizer and a curing modifier are usually added in an amount of 0.01 to 0.5 wt% each.
Add about. Specific examples of the deflocculating agent include, for example, sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, sodium acid hexametaphosphate, sodium borate, inorganic salts such as sodium carbonate, sodium citrate,
Examples include sodium tartrate, sodium polyacrylate, and sodium sulfonate. Examples of the curing modifier are boric acid, ammonium borate, ultrapolyphosphate sodium carbonate, lithium carbonate and the like.

【0030】さらに必要によっては、本発明の効果を阻
害しない範囲において、アルミニウム粉、アルミニウム
合金粉、ガラス粉、炭素粉、ピッチ粉、ジルコン、ジル
コニア、有機ファイバー、セラミックファイバー、発泡
剤などを添加してもよい。以上の配合組成物に、外掛け
で4〜8wt%程度の施工水を添加・混合し、流込み施
工される。一般に耐火物中に棒状バイブレータを挿入す
る。例えば、湯当り部を予め任意の形状に流し込み施工
したプレキャスト品として使用してもよい。
If necessary, aluminum powder, aluminum alloy powder, glass powder, carbon powder, pitch powder, zircon, zirconia, organic fiber, ceramic fiber, foaming agent, etc. may be added as long as the effect of the present invention is not impaired. May be. About 4 to 8 wt% of construction water is externally added to and mixed with the above-mentioned composition, and the composition is poured into the composition. Generally, a rod-shaped vibrator is inserted into a refractory. For example, the hot water contact part may be used as a precast product in which the hot water contact part has been poured into an arbitrary shape in advance.

【0031】敷部全体に対し、アルミナ−マグネシア質
流し込み材よりなる湯当り部が占める面積は、5〜45
%が好ましい。5%未満では湯当り部を余裕を持って確
保できず、45%を超えると湯当り部に亀裂が生じて耐
用性に劣る。また、敷部の補修方法は、敷部の損傷程度
を見計らって、先行損傷する湯当り部を中心にアルミナ
−マグネシア質流し込み材をもって補修する。
The area occupied by the hot water contact portion made of the alumina-magnesia casting material occupies 5 to 45 of the entire floor area.
% Is preferred. If it is less than 5%, the hot water contact part cannot be secured with sufficient margin, and if it exceeds 45%, cracks occur in the hot water contact part and the durability is deteriorated. In addition, as a method of repairing the floor, the degree of damage to the floor is measured and repaired with an alumina-magnesia casting material centering on the hot water contact portion that is damaged in advance.

【0032】[0032]

【実施例】以下に、本発明実施例とその比較例を示す。EXAMPLES Examples of the present invention and comparative examples will be shown below.

【0033】表1は各例で使用したアルミナ−マグネシ
ア質流し込み材およびアルミナ−スピネル質流し込み材
と、それらの試験結果を示す。これらの流し込み材は、
いずれも外掛けで施工水5wt%、分散剤(ヘキサメタ
リン酸ソーダ)0.1wt%および硬化調整剤(ホウ酸
アンモニウム)0.1wt%を添加し、混練後、施工し
たものである。
Table 1 shows the alumina-magnesia casting material and the alumina-spinel casting material used in each example, and the test results thereof. These castings are
In all cases, 5% by weight of construction water, 0.1% by weight of a dispersant (sodium hexametaphosphate) and 0.1% by weight of a curing modifier (ammonium borate) were added to the outside, kneading, and then performed.

【0034】表1における試験方法は、つぎのとおりで
ある。 曲げ強さ;110℃乾燥後、1500℃加熱後のそれぞ
れについて測定した。 耐スポーリング性:1400℃の片面加熱で行った。3
0分加熱−5分間水冷をくり返し、剥落に到るまでの回
数を測定した。 耐食性;重量比で鋼片:転炉スラグ(FeO含有量;2
0wt%)=70:30を侵食剤とし、1650℃×5
時間の回転侵食試験を行い、溶損寸法を測定した。 耐スラグ浸透性;前記の条件で回転侵食試験を行った
後、スラグ浸透寸法を測定した。 クリープ性;110℃乾燥後試片を一定荷重(2kg/
cm2 )及び規定された温度を与えた時の時間における
変形割合を測定した。
The test methods in Table 1 are as follows. Bending strength; measured after drying at 110 ° C. and after heating at 1500 ° C. Resistance to spalling: Heating was performed on one side at 1400 ° C. 3
Heating for 0 minutes and water cooling for 5 minutes were repeated, and the number of times until peeling was measured. Corrosion resistance; Steel piece by weight ratio: Converter slag (FeO content: 2
0wt%) = 70:30 as erosion agent, 1650 ° C x 5
A time rotary erosion test was performed to measure the erosion size. Slag penetration resistance: After performing a rotary erosion test under the above conditions, the slag penetration size was measured. Creeping property: After drying at 110 ° C, the test piece is subjected to a constant load (2 kg /
cm 2 ) and the deformation rate at the time when the specified temperature was applied were measured.

【0035】表2は、表1で示した各材質を組み合わせ
て敷部を構成した本発明実施例とその比較例である。表
2は、表1で示した各材質を組み合わせて敷部を構成し
た本発明実施例とその比較例、およびこれらの試験結果
を示す。各例は、いずれも300t溶鋼取鍋の敷部に施
工したものである。湯当り部は予め施工したプレキャス
トブロックをセットし、その周囲に流し込み施工するこ
とで敷部を内張りした。表2には示していないが、側壁
は表1に示したB2のアルミナ−スピネル質流し込み材
で統一した。湯当り部のサイズを図1に対応して示す
と、L=3000mm敷部対し、l=1000mmで平
面形状が正方形の湯当り部を設けた。
Table 2 shows examples of the present invention in which the materials shown in Table 1 are combined to form a floor and comparative examples thereof. Table 2 shows examples of the present invention in which the materials shown in Table 1 are combined to form a floor portion, comparative examples thereof, and test results thereof. Each of the examples was constructed on the floor of a 300-ton ladle. The hot water contact part was set with a precast block that had been constructed in advance, and the floor part was lined by pouring it around it. Although not shown in Table 2, the side walls are made of the same B2 alumina-spinel casting material as shown in Table 1. When the size of the hot water contact portion is shown in correspondence with FIG. 1, a hot water contact portion having a square shape in a plane shape was provided with L = 3000 mm and 1 = 1000 mm.

【0036】試験方法は、以下のとおりである。湯当り
部の亀裂、湯当り部の剥離および目地開きの発生状況
は、いずれも50チャージ後に目視にて観察した。損傷
速度は、湯当り部は50チャージ後、その他の部分は2
00チャージ後に損傷寸法を測定して求めたものであ
る。敷部の耐用性の評価は、敷部全体の耐用性を総合的
に評価したものである。
The test method is as follows. The occurrence of cracks in the hot water contact part, peeling of the hot water contact part, and joint opening were visually observed after 50 charges. The damage rate is 50 after charging the hot water and 2 for other areas.
It is obtained by measuring the damage dimension after the 00 charge. The evaluation of the durability of the floor is a comprehensive evaluation of the durability of the entire floor.

【0037】本発明実施例は、いずれも従来敷部構造に
相当する比較例1にくらべて耐用性が格段に向上してい
る。実施例3〜5はアルミナ質超粗大粒子および/また
はステンレスファイバーを添加したものであり、他の実
施例にくらべて剥離損傷がさらに少なく、損傷速度も小
さい。
In all of the examples of the present invention, the durability is significantly improved as compared with the comparative example 1 corresponding to the conventional floor structure. In Examples 3 to 5, ultra-coarse particles of alumina and / or stainless fiber were added, and the peeling damage was smaller and the damage rate was smaller than those in the other Examples.

【0038】これに対し、比較例2は湯当り部をアルミ
ナ−スピネル質、その他の部分をアルミナ−マグネシア
質にしたものである。湯当り部にくらべてその他の部分
の方が面積が広い。このため、熱膨張性が大きいアルミ
ナ−マグネシア質をその他の部分に設けた同比較例は敷
部全体としての熱膨張応力が高くなり、その他の部分、
湯当り部ともに亀裂の発生が著しく、しかも敷浮上の傾
向がみられた。
On the other hand, in Comparative Example 2, the hot water contact part was made of alumina-spinel and the other parts were made of alumina-magnesia. The area of the other part is larger than that of the hot water contact part. Therefore, the thermal expansion stress of the entire floor is high in the comparative example in which the alumina-magnesia having a large thermal expansion property is provided in the other portion.
Cracks were markedly generated in the hot water contact area, and there was a tendency to float.

【0039】比較例3は、湯当り部、その他の部分とも
にアルミナ−マグネシア質にしたものである。敷部全体
としての熱膨張応力がきわめて高く、亀裂および亀裂が
著しく、しかも敷浮上がみられた。
In Comparative Example 3, the hot water contact portion and other portions were made of alumina-magnesia. The thermal expansion stress of the whole floor was extremely high, cracks and cracks were remarkable, and the floor was floated.

【0040】比較例4は、湯当り部に使用したアルミナ
−マグネシア質が揮発性シリカの添加量が少ないため
に、剥離および亀裂が大きい。比較例5は、湯当り部に
使用したアルミナ−マグネシア質において揮発性シリカ
の添加量が多過ぎるために、溶損が大きく、しかも目地
開きが認められた。
In Comparative Example 4, since the alumina-magnesia material used in the hot water contact portion contained a small amount of volatile silica, peeling and cracking were large. In Comparative Example 5, the amount of volatile silica added was too large in the alumina-magnesia material used in the hot water contact area, so that the melt loss was large and the joint opening was observed.

【0041】表3は、敷部の補修方法に関する実施例お
よびその比較例である。各例は、いずれも300t溶鋼
取鍋の敷部を表2の実施例5で示した構造とし、50チ
ャージ使用した後、湯当り部を中心とした損耗凹部を補
修した。そして、その補修材には表1で示した流し込み
材を使用した。
Table 3 shows examples of the method of repairing the floor and comparative examples thereof. In each of the examples, the floor portion of a 300-ton ladle ladle has the structure shown in Example 5 of Table 2, and after 50 charges were used, the wear recess centering on the hot water contact portion was repaired. The casting material shown in Table 1 was used as the repair material.

【0042】試験方法は、以下のとおりである。補修材
の接着性、亀裂発生状況、剥離発生状況は、いずれも5
0チャージ後に目視にて観察した。損傷速度は、50チ
ャージ後に損傷寸法を測定して求めたものである。補修
効果は、補修材を総合的に評価したものである。
The test method is as follows. The adhesiveness of the repair material, the crack occurrence status, and the peeling occurrence status are all 5
It was visually observed after 0 charge. The damage rate is obtained by measuring the damage size after 50 charges. The repair effect is a comprehensive evaluation of the repair material.

【0043】本発明実施例は、いずれも補修材が接着性
にすぐれ、亀裂、剥離の発生もなく、優れた補修効果が
得られた。実施例7,8はアルミナ質超粗大粒子および
/またはステンレスファイバーを添加したものであり、
実施例6にくらべて剥離損傷がさらに少なく、損傷速度
も小さい。
In all of the examples of the present invention, the repair material had excellent adhesiveness, and neither crack nor peeling occurred, and an excellent repair effect was obtained. Examples 7 and 8 were prepared by adding alumina coarse particles and / or stainless fiber,
Compared to Example 6, peeling damage is further less and the damage rate is smaller.

【0044】これに対し比較例6は、補修材にアルミナ
−スピネル質を使用したもので、接着性に劣り、亀裂お
よび剥離が大きく、耐用性に劣る。比較例7は、補修材
に使用したアルミナ−マグネシア質が揮発性シリカの添
加量が少ないために、接着性、亀裂および剥離が大き
い。比較例8は、補修材に使用したアルミナ−マグネシ
ア質において揮発性シリカの添加量が多過ぎるために、
溶損が大きい。
On the other hand, Comparative Example 6 uses an alumina-spinel material as the repair material, and has poor adhesiveness, large cracks and peeling, and poor durability. In Comparative Example 7, since the alumina-magnesia material used for the repair material has a small amount of volatile silica added, the adhesiveness, cracking, and peeling are large. In Comparative Example 8, the amount of volatile silica added was too large in the alumina-magnesia used for the repair material,
Large melting loss.

【0045】[0045]

【表1A】 [Table 1A]

【0046】[0046]

【表1B】 [Table 1B]

【0047】[0047]

【表2A】 [Table 2A]

【0048】[0048]

【表2B】 [Table 2B]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【発明の効果】溶鋼取鍋において、敷部は側壁部に比べ
て寿命が短いことは否めない。本発明の溶鋼取鍋は湯当
り部の耐用性に優れ、しかも敷部全体として熱膨張応力
の緩和による亀裂発生や敷浮上などを防止する。その結
果、取鍋内張りの全体の寿命を向上させることができ
る。また、補修方法の発明では、補修材自身の耐食性の
みならず、敷部の内張り材質との組合せにおいて、接着
性、耐亀裂性および耐剥離性に優れ、顕著な補修効果が
得られる。施工の省力化から溶鋼取鍋のオール不定形耐
火物化は、今後ますます普及すると考えられる。この不
定形耐火物化の技術の一貫として、本発明の技術的価値
はきわめて高い。
In the molten steel ladle, it cannot be denied that the floor portion has a shorter life than the side wall portion. INDUSTRIAL APPLICABILITY The molten steel ladle according to the present invention has excellent durability in the hot water contact portion, and further prevents cracking or floating of the floor due to relaxation of thermal expansion stress in the entire floor. As a result, the overall life of the ladle lining can be improved. Further, in the invention of the repair method, not only the corrosion resistance of the repair material itself but also the combination with the lining material of the laying portion is excellent in adhesiveness, crack resistance and peeling resistance, and a remarkable repair effect is obtained. From the viewpoint of labor saving in construction, it is expected that the use of all-amorphous refractory ladle will become more and more popular in the future. The technical value of the present invention is extremely high as a part of the technique for making the amorphous refractory.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の取鍋の内張り断面構造である。FIG. 1 is a cross-sectional structure of a lining of a ladle according to the present invention.

【図2】本発明の取鍋の内張り補修方法を説明するため
の断面構造である。
FIG. 2 is a cross-sectional structure for explaining a ladle lining repair method of the present invention.

【符号の説明】[Explanation of symbols]

1 鉄皮 2 側壁部 3 敷部 4 湯当り部 5 その他の敷部 6 損傷部 7 補修材 1 Iron skin 2 Side wall part 3 Floor part 4 Hot water contact part 5 Other floor parts 6 Damaged part 7 Repair material

フロントページの続き (72)発明者 礒部 利弘 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミック株式会社内 (72)発明者 竹内 公彦 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミック株式会社内 (72)発明者 西海 嘉宣 兵庫県高砂市荒井町新浜1−3−1 ハリ マセラミック株式会社内Front page continued (72) Inventor Toshihiro Isobe 1-3-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture Harima Ceramic Co., Ltd. (72) Inventor Kimihiko Takeuchi 1-3-1 Niihama, Arai-cho, Takasago, Hyogo Harima Ceramic Co., Ltd. In-house (72) Inventor Yoshinobu Saikai 1-3-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture Harima Ceramics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ65〜93wt%、マグネシア
2〜20wt%、アルミナセメント5〜15wt%より
なる配合物100wt%と、揮発シリカ外掛け0.05
〜3wt%を含むアルミナ−マグネシア質流し込み施工
不定形耐火物で湯当り部を構成し、他の部分をアルミナ
−スピネル質流し込み施工不定形耐火物とした敷部の内
張り構造を有する溶鋼取鍋。
1. A blend of 100 wt% of alumina 65 to 93 wt%, magnesia 2 to 20 wt%, and alumina cement 5 to 15 wt% and volatile silica outer coating 0.05.
A molten steel ladle having a lining structure of a laying portion, which comprises an alumina-magnesia cast-in-place castable amorphous refractory containing 3 to 3 wt% and the other part is made of alumina-spinel cast-in-place castable amorphous refractory.
【請求項2】 アルミナ−マグネシア質流し込み施工不
定形耐火物が、配合物100wt%に対し、さらに粒径
10〜30mmの耐火性超粗大粒子を外掛け30wt%
以下および/または金属ファイバーを外掛けで5wt%
以下含む請求項1記載の溶鋼取鍋。
2. Alumina-magnesia cast-in-place castable refractory is 100 wt% of the compound, and further 30 wt% of refractory ultra-coarse particles having a particle size of 10 to 30 mm are externally applied.
5% by weight or less and / or metal fiber applied outside
The molten steel ladle according to claim 1, which comprises:
【請求項3】 湯当り部が敷部全体の面積に対して5〜
45%占める請求項1または2記載の溶鋼取鍋。
3. The hot water contact part is 5 to the total area of the floor part.
The molten steel ladle according to claim 1 or 2, which occupies 45%.
【請求項4】 請求項1、2または3記載の溶鋼取鍋の
使用後、敷部の内張りをアルミナ65〜93wt%、マ
グネシア2〜20wt%、アルミナセメント5〜15w
t%よりなる配合物100wt%と、揮発シリカ外掛け
0.05〜3wt%を含むアルミナ−マグネシア質流し
込み施工不定形耐火物をもって補修する溶鋼取鍋の補修
方法。
4. After using the molten steel ladle according to claim 1, 2 or 3, the lining of the floor is made of alumina 65 to 93 wt%, magnesia 2 to 20 wt%, and alumina cement 5 to 15 w.
A method for repairing a molten steel ladle in which 100 wt% of a compound consisting of t% and 0.05 to 3 wt% of volatile silica are used to repair an alumina-magnesia cast inconstant refractory.
【請求項5】 アルミナ−マグネシア質流し込み施工不
定形耐火物が、配合物100wt%に対し、さらに粒径
10〜30mmの耐火性超粗大粒子を外掛け30wt%
以下および/またはステンレスファイバーを外掛けで5
wt%以下含む請求項4記載の溶鋼取鍋の補修方法。
5. Alumina-magnesia cast-in-place castable refractory is 100 wt% of the composition, and further 30 wt% of refractory ultra-coarse particles having a particle size of 10 to 30 mm are externally applied.
5 and below and / or stainless fiber
The method for repairing a molten steel ladle according to claim 4, containing less than or equal to wt%.
JP25721695A 1995-09-11 1995-09-11 Molten steel ladle and its repair method Expired - Fee Related JP3464323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25721695A JP3464323B2 (en) 1995-09-11 1995-09-11 Molten steel ladle and its repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25721695A JP3464323B2 (en) 1995-09-11 1995-09-11 Molten steel ladle and its repair method

Publications (2)

Publication Number Publication Date
JPH0976056A true JPH0976056A (en) 1997-03-25
JP3464323B2 JP3464323B2 (en) 2003-11-10

Family

ID=17303284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25721695A Expired - Fee Related JP3464323B2 (en) 1995-09-11 1995-09-11 Molten steel ladle and its repair method

Country Status (1)

Country Link
JP (1) JP3464323B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010019750A (en) * 1999-08-30 2001-03-15 신현준 Method for Repairing Unshaped Refractories for Ladle
KR100473111B1 (en) * 1997-05-30 2005-07-05 하리마 세라믹 가부시키가이샤 Amorphous refractory materials for casting and molten steel containers
JP2010064081A (en) * 2008-09-08 2010-03-25 Nippon Steel Corp Refractory for injection tuyere and method for producing refractory for injection tuyere
JP2012246164A (en) * 2011-05-26 2012-12-13 Shinagawa Refractories Co Ltd Alumina-magnesia cast material and method for manufacturing the same
JP2016052962A (en) * 2014-09-03 2016-04-14 新日鐵住金株式会社 Construction method of castable to abutting part of molten steel ladle and lining structure of liner part of molten steel ladle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473111B1 (en) * 1997-05-30 2005-07-05 하리마 세라믹 가부시키가이샤 Amorphous refractory materials for casting and molten steel containers
KR20010019750A (en) * 1999-08-30 2001-03-15 신현준 Method for Repairing Unshaped Refractories for Ladle
JP2010064081A (en) * 2008-09-08 2010-03-25 Nippon Steel Corp Refractory for injection tuyere and method for producing refractory for injection tuyere
JP2012246164A (en) * 2011-05-26 2012-12-13 Shinagawa Refractories Co Ltd Alumina-magnesia cast material and method for manufacturing the same
JP2016052962A (en) * 2014-09-03 2016-04-14 新日鐵住金株式会社 Construction method of castable to abutting part of molten steel ladle and lining structure of liner part of molten steel ladle

Also Published As

Publication number Publication date
JP3464323B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
JP6179534B2 (en) Unshaped refractories for blast furnace glazing
JP3464323B2 (en) Molten steel ladle and its repair method
US5506181A (en) Refractory for use in casting operations
US20090114365A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JP2874831B2 (en) Refractory for pouring
JP2004131310A (en) Castable refractory for lining tundish
JP2604310B2 (en) Pouring refractories
JP3823132B2 (en) Amorphous refractory composition for lance pipes
JP4441056B2 (en) Refractory block, manufacturing method thereof and molten metal container
JP2704249B2 (en) Basic amorphous refractories for induction furnaces
JP3276055B2 (en) Precast block for electric furnace ceiling
JP3647525B2 (en) Lined structure of hot metal ladle
JPH0725668A (en) Refractory for casting work
JP3303039B2 (en) Precast block for electric furnace ceiling
JPH0671422A (en) Method for lining bottom part in ladle
JP2000302539A (en) Filling material for masonry joint of brick
JPH0465370A (en) Casting material for molten pig iron pretreating vessel
JPH09278544A (en) Amorphous refractory material for lining in cupola-furnace
JP3756500B2 (en) Castable for tundish lining
JP3841185B2 (en) Induction furnace
JPH11100280A (en) Monolitihic refractory for tundish lining
JP2672605B2 (en) Amorphous refractory of refractory structure for hot metal pretreatment
JP4070033B2 (en) Unshaped refractory for casting construction and molten steel container lined with this
JP2004149352A (en) Ramming material for induction furnace
JPS61215267A (en) Monolithic refractories for molten metal vessel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030812

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees