JPH0973895A - Electrode plate for lead-acid battery and its manufacture - Google Patents

Electrode plate for lead-acid battery and its manufacture

Info

Publication number
JPH0973895A
JPH0973895A JP8145377A JP14537796A JPH0973895A JP H0973895 A JPH0973895 A JP H0973895A JP 8145377 A JP8145377 A JP 8145377A JP 14537796 A JP14537796 A JP 14537796A JP H0973895 A JPH0973895 A JP H0973895A
Authority
JP
Japan
Prior art keywords
lead
active material
powder
electrode plate
litharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8145377A
Other languages
Japanese (ja)
Other versions
JP3493900B2 (en
Inventor
Takeshi Hatanaka
剛 畑中
Katsuhiro Takahashi
勝弘 高橋
Yoshiaki Nitta
芳明 新田
Kazuhiro Okamura
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14537796A priority Critical patent/JP3493900B2/en
Publication of JPH0973895A publication Critical patent/JPH0973895A/en
Application granted granted Critical
Publication of JP3493900B2 publication Critical patent/JP3493900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for using a pore forming agent and a complex pore forming process by using a binding agent made from synthetic resin which is excellent in binding force although having a poor film-forming ability, is resistant to sulfuric acid, and has appropriate oxidation resistance. SOLUTION: The Tig. is a process drawing for manufacturing positive and negative plates for use in a lead-acid batter. A polyvinylidene fluoride is dissolved in N-methylpyrolidone serving as a solvent (1). This solution and raw powders of an active material, such as lead powders, are kneaded together with the addition of lead sulfate (2). A paste formed thereby is applied to both sides of a core separately for positive and negative electrodes (3). The N-MP serving as the solvent is evaporated and dried (4), and is dipped in a 21wt.% sulfuric acid aqueous solution for five minutes (5). Next, it is aged in an atmosphere with 80 to 100% humidity at a 70 deg.C for one hour (6), and is dried in an atmosphere with 50% or less humidity at 80 deg.C or higher for two hours to obtain an unformed plate (7). The positive and negative plates are laid one on the other using separators and stored in a battery jar made from resin, and are charged for battery jar formation (8), thus completing the plates.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鉛蓄電池用極板、
特に高率放電特性が優れた長寿命の極板およびその製造
方法に関する。
TECHNICAL FIELD The present invention relates to a lead-acid battery electrode plate,
In particular, the present invention relates to a long-life electrode plate having excellent high-rate discharge characteristics and a manufacturing method thereof.

【0002】[0002]

【従来の技術】現在、鉛蓄電池において、ペースト式極
板が生産性に富む工業的製造方法として最も普及してい
る。ペースト式極板は、鉛または鉛合金からなる鋳造ま
たはエキスパンドメタルやパンチドメタルによる格子の
空隙内に鉛粉に希硫酸を加えて混練したペーストを充填
後熟成,乾燥して未化成極板を作製する。ペースト充填
工程後に希硫酸中に浸漬する浸酸処理により極板表面に
硫酸鉛を生成させて強固にし、直ちに乾燥する場合もあ
る。次いで希硫酸電解液中で充電して化成することによ
り、正極および負極を活物質化して極板を完成する。
2. Description of the Related Art At present, in lead-acid batteries, a paste type electrode plate is most popular as an industrial manufacturing method having high productivity. The paste-type electrode plate is a cast or expanded metal or punched metal grid made of lead or lead alloy, filled with a paste prepared by adding dilute sulfuric acid to lead powder and kneading the paste, and then aging and drying the unformed electrode plate. Create. In some cases, lead sulfate is generated on the surface of the electrode plate by a dipping treatment in dilute sulfuric acid to solidify it after the paste filling step, and then it is immediately dried. Then, the positive electrode and the negative electrode are made active materials by charging in a dilute sulfuric acid electrolytic solution to form a compound, thereby completing the electrode plate.

【0003】鉛蓄電池用の活物質の主成分はリサージと
も称される一酸化鉛(PbO)で、金属鉛(Pb)を1
5〜35重量%含んでいる。鉛粉と希硫酸とを混練した
ペーストは生成する硫酸鉛が、過剰に存在するPbOに
より塩基性硫酸鉛となり、適度の硬さと剪断強度を保
つ。熟成中格子内のペーストは金属鉛の酸化と塩基性硫
酸鉛の結晶成長と共に部分的に水分が蒸発して粉体粒子
相互間が結着するセメンテーション現象が起こって硬化
する。
The main component of the active material for lead-acid batteries is lead monoxide (PbO), which is also called litharge, and contains 1% of metallic lead (Pb).
It contains 5 to 35% by weight. In the paste obtained by kneading lead powder and dilute sulfuric acid, the produced lead sulfate becomes basic lead sulfate due to PbO present in excess, and maintains appropriate hardness and shear strength. During the aging, the paste in the lattice hardens due to the oxidation of metallic lead and the crystal growth of basic lead sulfate to cause a partial evaporation of water and a cementation phenomenon in which the powder particles are bound to each other.

【0004】ペースト式正極板においては、充放電サイ
クルにより活物質が膨脹,収縮をくり返して膨潤するの
で、活物質が格子から剥離脱落してサイクル寿命が劣化
する問題がある。このような問題を改善するために、正
極用ペースト中にポリ塩化ビニルやポリエステル等の耐
酸性合成繊維を切断した短繊維を添加したり、例えば米
国特許第4,252,872号で提案されているよう
に、活物質粉に希硫酸と共にポリ4フッ化エチレン(P
TFE)のディスパージョン溶液を注加し、混練するこ
とにより、PTFEを繊維化して活物質粒子に絡ませて
網目状にネットワーク化し、脱落を防止するペーストを
用いたりする例があった。
In the paste type positive electrode plate, since the active material repeatedly expands and contracts and swells during the charge and discharge cycle, there is a problem that the active material is peeled off from the lattice and the cycle life is deteriorated. In order to improve such a problem, short fibers obtained by cutting acid-resistant synthetic fibers such as polyvinyl chloride and polyester are added to the positive electrode paste, or proposed in US Pat. No. 4,252,872. As you can see, polytetrafluoroethylene (P
There was an example in which a dispersion solution of TFE) was added and kneaded to form PTFE into fibers, which were entangled with the active material particles to form a mesh-like network, and a paste that prevents the particles from falling out was used.

【0005】一方、ペースト式負極板においては、充放
電サイクルによる活物質粒子が粗大化して収縮し、容量
が低下する傾向がある。このような劣化を抑制する目的
で、負極用ペースト中に、活物質の収縮防止用の膨脹剤
として硫酸バリウム(BaSO4)を添加する。その
他、低温での高率放電特性を向上させるためにリグニン
や炭素粉等が添加される。
On the other hand, in the paste type negative electrode plate, the active material particles are coarsened and contracted due to charge / discharge cycles, and the capacity tends to decrease. For the purpose of suppressing such deterioration, barium sulfate (BaSO 4 ) is added to the negative electrode paste as a swelling agent for preventing the active material from shrinking. In addition, lignin, carbon powder, etc. are added to improve high-rate discharge characteristics at low temperatures.

【0006】ペースト式極板は、集電体兼活物質保持体
として、三次元的立体構造の格子を用いることを前提に
すれば、生産性とコストパフォーマンスが優れ、極めて
有効な工業的極板製造方法といえる。
[0006] The paste type electrode plate is a very effective industrial electrode plate which is excellent in productivity and cost performance on the assumption that a lattice having a three-dimensional structure is used as a current collector and active material holder. It can be said to be a manufacturing method.

【0007】近年、各種電動工具用、エンジン始動用、
電気自動車用等の高出力電源として非穿孔の鉛箔の両面
に、活物質層を薄く、均一に塗着した各1枚の薄型正負
極板をセパレータを介して渦巻状に捲回した極板群から
なる円筒型密閉型鉛蓄電池が、例えば米国特許第5,0
45,086号、第5,047,300号、第5,19
8,313号等で提案されている。
In recent years, for various electric tools, engine starting,
As a high output power source for electric vehicles, etc., an electrode plate in which one thin positive and negative electrode plates each having a thin and uniform coating of the active material layer on both sides of a non-perforated lead foil are spirally wound via a separator. Cylindrical sealed lead-acid batteries consisting of a group are disclosed, for example, in US Pat.
45,086, 5,047,300, 5,19
No.8,313 is proposed.

【0008】非穿孔または低開口率で穿孔した薄い導電
性シートを集電体兼活物質保持体として芯材に用いる場
合、ペースト式極板に通常用いられる鉛粉と希硫酸を主
成分とするペーストは芯材両面に薄い活物質層を形成さ
せるのには適していない。それはペーストの搖変性によ
る硬度変化が起り、流動性が乏しく、平滑な表面の芯材
では滑ってしまい塗着され難いからである。特にPTF
Eを添加混練して網目状にネットワーク化したペースト
の場合、ペースト自体がゴム状を呈するので、平らなシ
ート状芯材表面に塗着させることは不可能であった。
When a thin conductive sheet that is not perforated or perforated with a low aperture ratio is used as the core material as the collector and active material holder, the main component is lead powder and dilute sulfuric acid that are usually used for paste type electrode plates. The paste is not suitable for forming a thin active material layer on both surfaces of the core material. The reason is that the hardness changes due to the denaturation of the paste, the fluidity is poor, and the core material with a smooth surface slips and is difficult to be applied. Especially PTF
In the case of a paste in which E was added and kneaded to form a network, the paste itself had a rubber-like shape, and therefore it was impossible to apply the paste to the flat sheet-shaped core material surface.

【0009】そこで、前述したような薄い導電性シート
を芯材とする薄型極板を作製するには、箔状芯材の両面
に、鉛粉,リサージ(PbO),鉛丹(Pb34)等の
活物質の原料粉末に合成樹脂を有機溶媒で溶解した溶液
を注加して混練した塗料状ペーストを塗着、乾燥して活
物質層を形成させる。乾燥工程で、溶媒が蒸散すること
により析出固化した合成樹脂が結着剤として活物質粒子
相互間および芯材と活物質粒子間を結着一体化する方法
である。塗料状ペーストの塗着厚を調整するには、ペー
ストの粘度を低くするか芯材の移動速度を早くすれば薄
くなる傾向がある。その他ロール間の間隙を調整するロ
ールコーター法やドクターナイフ法やスプレー法等多く
の塗着法が適用される。従来、結着剤用合成樹脂として
は耐酸性が優れ、かつ比較的安価なので、ポリ塩化ビニ
ル(PVC)やポリスチレン(PS)等が多用された。
Therefore, in order to manufacture a thin electrode plate having a thin conductive sheet as a core material as described above, lead powder, litharge (PbO), and lead tin (Pb 3 O 4 ) are formed on both surfaces of the foil core material. ) Or the like is added to a raw material powder of an active material, a solution in which a synthetic resin is dissolved in an organic solvent is added, and a kneaded paste paste is applied and dried to form an active material layer. In the drying step, the synthetic resin precipitated and solidified by evaporation of the solvent serves as a binder to bind and integrate the active material particles and the core material and the active material particles. In order to adjust the coating thickness of the paint paste, the viscosity of the paste may be lowered or the moving speed of the core material may be increased to make the paste thinner. In addition, many coating methods such as a roll coater method, a doctor knife method and a spray method for adjusting a gap between rolls are applied. Conventionally, as a synthetic resin for a binder, polyvinyl chloride (PVC), polystyrene (PS), and the like have been widely used because they have excellent acid resistance and are relatively inexpensive.

【0010】[0010]

【発明が解決しようとする課題】しかし、これらの樹脂
は被膜形成能が高いので、塗着,乾燥後の活物質原料粉
末表面は薄い合成樹脂被膜で被覆される。このような状
態の極板を電解液中に浸漬しても、活物質の原料粉末は
濡れ難く、活物質の利用率が著しく低下するという問題
があった。そこで、塗料状ペースト中の結着剤用合成樹
脂の含有率を低くすれば、結着力が低下して極板強度が
劣化するので、活物質が脱落し易くなるという問題が生
ずる。そこで塗料状ペーストを作製するに当り、活物質
の原料粉末以外にカルボキシメチルセルロース(CM
C)やポリエチレンオキサイド(PEO)等の水溶性物
質を添加する。そして、ペーストを塗着,乾燥した後
に、水中に浸漬し、これら水溶性物質を溶出,除去して
活物質層内に孔隙を形成させる必要があった。
However, since these resins have high film forming ability, the surface of the active material raw material powder after coating and drying is covered with a thin synthetic resin film. Even when the electrode plate in such a state is immersed in the electrolytic solution, the raw material powder of the active material is difficult to wet, and there is a problem that the utilization rate of the active material is significantly reduced. Therefore, if the content of the synthetic resin for a binder in the paint paste is lowered, the binding force is lowered and the strength of the electrode plate is deteriorated, so that there is a problem that the active material is likely to fall off. Therefore, when preparing a paint paste, in addition to the raw material powder of the active material, carboxymethyl cellulose (CM
A water-soluble substance such as C) or polyethylene oxide (PEO) is added. Then, after the paste was applied and dried, it was necessary to immerse in water and elute and remove these water-soluble substances to form pores in the active material layer.

【0011】[0011]

【課題を解決するための手段】前述したように、従来、
導電性シートからなる芯材の両面に塗料状ペーストを塗
着,乾燥して活物質層を形成させた高率放電特性が優れ
た薄型極板を作製するに当って、ペースト中に孔隙形成
剤を添加し、繁雑な孔隙形成工程を施すという課題があ
った。
As described above, as described above,
In forming a thin electrode plate having excellent high rate discharge characteristics in which a paste-like paste is applied on both sides of a core material made of a conductive sheet and dried to form an active material layer, a pore forming agent is included in the paste. However, there has been a problem in that a complicated pore forming process is performed by adding.

【0012】このような課題を解決するために、本発明
は、被膜形成能は低いが、結着力が優れ、耐硫酸性で、
耐酸化性の適切な合成樹脂からなる結着剤を用いること
により、孔隙形成剤の使用および繁雑な孔隙形成工程を
不要にしたものである。さらには、活物質の原料粉末を
適切に選択することにより、工程を簡略化するととも
に、長寿命で、高率放電特性が優れた鉛蓄電池用極板を
提供するものである。
In order to solve such a problem, the present invention has a low film forming ability, but has excellent binding force, sulfuric acid resistance, and
By using a binder made of a suitable synthetic resin having oxidation resistance, the use of a pore forming agent and a complicated pore forming step are unnecessary. Further, by appropriately selecting the raw material powder of the active material, the process is simplified, and the electrode plate for a lead storage battery having a long life and excellent high rate discharge characteristics is provided.

【0013】[0013]

【発明の実施の形態】本発明の請求項1ないし請求項4
に記載の発明は鉛蓄電池用極板に関し、それらのうち請
求項1および2は活物質中の結着剤に関するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Claims 1 to 4 of the present invention
The invention described in 1) relates to an electrode plate for a lead storage battery, and claims 1 and 2 thereof relate to a binder in an active material.

【0014】請求項1に記載の発明は、導電性シートか
らなる芯材の両面にポリフッ化ビニリデンを結着剤に用
いて活物質を形成させたものであり、請求項2に記載の
発明は活物質中のポリフッ化ビニリデンの含有率を1〜
10重量%の範囲に規制したものである。このように活
物質中の結着剤のポリフッ化ビニリデンを採用し適切な
含有率に規制することにより、活物質粒子表面を被膜で
被覆することなく、強く結着するので、従来のように、
孔隙形成剤の使用および孔隙形成工程を必要としなくな
る。
The invention according to claim 1 is one in which polyvinylidene fluoride is used as a binder to form an active material on both surfaces of a core material made of a conductive sheet, and the invention according to claim 2 is The content of polyvinylidene fluoride in the active material is 1 to
It is regulated within the range of 10% by weight. In this way, by adopting polyvinylidene fluoride as a binder in the active material and regulating the content to an appropriate content, the active material particle surfaces are strongly bound without being coated with a film, and thus, as in the past,
Eliminates the use of pore formers and pore forming steps.

【0015】本発明の請求項3および4に記載の発明は
芯材に関するもので、請求項3に記載の発明は、芯材に
純鉛またはPb−Sn系、Pb−Ca−Sn系等の鉛合
金からなる箔状シートや鉛メッキまたは黒鉛を主体とす
る炭素粉末を導電剤とする導電性塗膜層により被覆され
たポリエステルフィルムからなる群から選ばれた少なく
とも1種を用いたもので、高率放電に適した薄型極板用
芯材の材質選択の範囲を拡大させたものである。請求項
4に記載の発明は、純鉛または鉛合金からなる箔状シー
トの片面または両面に、畝状または瘤状の***を設けた
芯材を用いたもので、極板の厚さを高める場合、芯材と
活物質層間を結着一体化するのに有効である。
The invention according to claims 3 and 4 of the present invention relates to a core material, and the invention according to claim 3 uses pure lead or Pb-Sn-based, Pb-Ca-Sn-based, etc. as the core material. Using at least one selected from the group consisting of a polyester film coated with a conductive coating layer containing a carbon powder mainly containing lead alloy or lead plating or graphite as a conductive agent, The range of material selection for the core material for thin electrode plates suitable for high rate discharge is expanded. The invention according to claim 4 uses a core material in which a ridge-shaped or bump-shaped ridge is provided on one side or both sides of a foil sheet made of pure lead or a lead alloy, and the thickness of the electrode plate is increased. In this case, it is effective in binding and integrating the core material and the active material layer.

【0016】請求項5から請求項10に記載の発明は、
鉛蓄電池用極板の製造方法に関するものである。請求項
5に記載の発明は、芯材の両面に、鉛粉、リサージ、鉛
丹、二酸化鉛等の鉛酸化物および鉛の硫酸塩からなる群
から選ばれた少なくとも1種の活物質の原料粉末に、結
着剤のポリフッ化ビニリデンを予め溶媒のN−メチルピ
ロリドンで溶解した溶液を注加し、混練したペーストを
塗着した後、乾燥して活物質層を形成したもので、請求
項1に記載の発明を実現するための製造方法である。
The inventions according to claims 5 to 10 are:
The present invention relates to a method for manufacturing an electrode plate for a lead storage battery. The invention according to claim 5 is a raw material of at least one active material selected from the group consisting of lead powder, lead oxide such as litharge, red lead, and lead dioxide, and a sulfate of lead on both sides of the core material. A solution in which polyvinylidene fluoride as a binder is previously dissolved in N-methylpyrrolidone as a solvent is added to the powder, and the kneaded paste is applied and then dried to form an active material layer. 1 is a manufacturing method for realizing the invention described in 1.

【0017】請求項6および7に記載の発明は、活物質
層を形成した後の加工工程に関するもので、請求項6に
記載の発明は、芯材の両面に、鉛粉、リサージ、鉛丹、
二酸化鉛等の鉛酸化物および鉛の硫酸塩からなる群から
選ばれた少なくとも1種の活物質の原料粉末と、結着剤
のポリフッ化ビニリデンとを主体とするペーストを塗
着、乾燥して活物質層を形成させ、次いで、希硫酸中に
浸漬してから高温高湿の大気中で熟成、乾燥した後希硫
酸電解液中で化成した製造方法であって、高率放電特性
が優れた極板を従来と同様な設備、工程で作製が可能で
ある。
The invention described in claims 6 and 7 relates to a processing step after forming the active material layer, and the invention described in claim 6 has lead powder, litharge, and lead tin on both sides of the core material. ,
A paste composed mainly of a raw material powder of at least one active material selected from the group consisting of lead oxides such as lead dioxide and a sulfate of lead, and polyvinylidene fluoride as a binder is applied and dried. A method of forming an active material layer, then immersing it in dilute sulfuric acid, aging it in a high-temperature and high-humidity atmosphere, drying it, and then forming it in a dilute sulfuric acid electrolyte solution, which has excellent high-rate discharge characteristics. The electrode plate can be manufactured with the same equipment and process as conventional ones.

【0018】請求項7に記載の発明は、請求項6に記載
した発明と同様に活物質層を形成させ、直ちに希硫酸電
解液中で化成した製造方法であって、工程を簡略化して
製造コストを低減可能にしたものである。
The invention described in claim 7 is a manufacturing method in which an active material layer is formed similarly to the invention described in claim 6 and the chemical conversion is immediately performed in a dilute sulfuric acid electrolytic solution, and the manufacturing process is simplified. The cost can be reduced.

【0019】請求項8に記載の発明は、鉛粉、リサー
ジ、鉛丹、二酸化鉛等の鉛酸化物および鉛の硫酸塩から
なる活物質の原料粉末中のリサージ含有率が少なくとも
50重量%、好ましくは60〜80重量%の範囲に規制
した正極板の製造方法であって、高率放電においても高
容量で長寿命の正極板が得られる。
The invention according to claim 8 is such that the content of litharge in the raw material powder of the active material consisting of lead oxides, lead oxides such as litharge, red lead and lead dioxide, and lead sulfate is at least 50% by weight, The positive electrode plate is preferably produced in a range of 60 to 80% by weight, and a positive electrode plate having a high capacity and a long life can be obtained even at a high rate discharge.

【0020】請求項9に記載の発明は、鉛粉、リサー
ジ、鉛の硫酸塩からなる群から選ばれた少なくとも1種
の粉末に、鉛丹または二酸化鉛を含む鉛酸化物粉末を添
加、混合した活物質の原料粉末を用いた正極板の製造方
法であって、化成時間を短縮して生産性を向上し得るも
のである。
According to a ninth aspect of the invention, at least one kind of powder selected from the group consisting of lead powder, litharge, and a sulfate of lead is mixed with lead oxide powder containing red lead or lead dioxide. A method for producing a positive electrode plate using the above-mentioned raw material powder of an active material, which can shorten the formation time and improve the productivity.

【0021】請求項10に記載の発明は、活物質の原料
粉末として、鉛粉、リサージ、鉛の硫酸塩からなる群か
ら選ばれた少なくとも1種を用いた負極板の製造方法で
あって、正極板と同様に高率放電が優れ、長寿命の負極
板を提供し得るものである。
A tenth aspect of the present invention is a method for producing a negative electrode plate, wherein at least one selected from the group consisting of lead powder, litharge, and lead sulfate is used as a raw material powder of the active material. Similar to the positive electrode plate, it is possible to provide a negative electrode plate having excellent high rate discharge and long life.

【0022】[0022]

【実施例】以下、本発明の具体例について、図面を参照
しながら詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0023】本発明による各実施例における鉛蓄電池用
極板は、図1に示されるフローチャートにしたがって
正、負極板が作製された。まず、図1における各工程の
詳細を次に示す。
For the lead-acid battery electrode plates in each of the examples according to the present invention, positive and negative electrode plates were produced according to the flow chart shown in FIG. First, details of each step in FIG. 1 are shown below.

【0024】1.溶解 まず、本発明において結着剤として選んだポリフッ化ビ
ニリデン(以下PVDFと略記)を唯一の溶媒であるN
−メチルピロリドン(以下N−MPと略記)で溶解す
る。PVDFは短時間では溶解しないので、事前に所定
濃度の溶液を調整する。PVDFのN−MPに対する溶
解度はほぼ15重量%程度である。結着剤濃度は、次の
工程で得られる塗料状ペーストの粘度と活物質層中の結
着剤含有率に応じて適宜変えられる。
1. Dissolution First, polyvinylidene fluoride (hereinafter abbreviated as PVDF) selected as the binder in the present invention is N as the only solvent.
-Methylpyrrolidone (hereinafter abbreviated as N-MP) is dissolved. PVDF does not dissolve in a short time, so a solution having a predetermined concentration is prepared in advance. The solubility of PVDF in N-MP is about 15% by weight. The binder concentration can be appropriately changed according to the viscosity of the coating paste obtained in the next step and the binder content in the active material layer.

【0025】2.混練 活物質の原料粉末としては、ペースト式極板のペースト
で最も一般的に用いられる鉛粉が主に使用される。完成
極板の多孔度を高める必要性があれば、リーサージ(P
bO)または鉛の硫酸塩を鉛粉に添加、混入させる。
2. As the raw material powder of the kneading active material, the lead powder most commonly used in the paste of the paste type electrode plate is mainly used. If there is a need to increase the porosity of the finished electrode plate, let surge (P
bO) or lead sulfate is added to and mixed with the lead powder.

【0026】なお、本発明における鉛の硫酸塩とは、硫
酸鉛だけでなく、1塩基性および3塩基性硫酸塩からな
る塩基性硫酸鉛を含むものとする。
The lead sulfate in the present invention includes not only lead sulfate but also basic lead sulfate composed of monobasic and tribasic sulfates.

【0027】本発明の各実施例において、正極板用ペー
ストには、長さ2〜3mmに切断したPVC短繊維2.
0重量%をすべて添加した。また、負極用ペーストに
は、2.0重量%の硫酸バリウム,1.0重量%のカー
ボンブラック,0.5重量%のリグニンをすべて添加し
た。
In each of the examples of the present invention, the positive electrode plate paste was prepared by cutting PVC short fibers 2.
All 0% by weight was added. In addition, 2.0 wt% barium sulfate, 1.0 wt% carbon black, and 0.5 wt% lignin were all added to the negative electrode paste.

【0028】正極用および負極用の活物質の原料粉末と
添加剤とを予め混合したのち、PDVFのN−MP溶液
を注加して充分混練し、正極および負極用塗料状ペース
トをそれぞれ調整した。
After the raw material powders of the active material for the positive electrode and the negative electrode were mixed in advance with the additive, the N-MP solution of PDVF was added and sufficiently kneaded to prepare the paste paste for the positive electrode and the negative electrode, respectively. .

【0029】3.塗着 ロール間の間隙を調整してロールコーターにより、芯材
の両面に正極用および負極用のペーストを別々に塗着し
た。正,負極板とも芯材1cm2当り両面で活物質の理
論容量60mAhの塗着量を基準とした。
3. The paste between the positive electrode and the negative electrode was separately applied to both surfaces of the core material by adjusting the gap between the applying rolls and using a roll coater. For both the positive and negative electrode plates, the coating amount of the theoretical capacity of 60 mAh of the active material on both sides per 1 cm 2 of the core material was used as a reference.

【0030】4.乾燥I 70〜80℃に加熱して、溶媒のN−MPを蒸散させて
乾燥した。溶解されていたPVDFは析出固化し、活物
質の原料粉末相互間および芯材と原料粉末間を結着して
いる。
4. Drying I It heated at 70-80 degreeC, the N-MP of a solvent was evaporated, and it dried. The dissolved PVDF is precipitated and solidified, and binds between the raw material powders of the active material and between the core material and the raw material powders.

【0031】5.浸酸 21重量%硫酸水溶液中に5分間浸漬した。5. Immersion of acid In a 21% by weight sulfuric acid aqueous solution, it was immersed for 5 minutes.

【0032】6.熟成 温度70℃で相対湿度80〜100%の高温,高湿の大
気中に約1hおいて熟成させた。
6. Aging was carried out at a temperature of 70 ° C. and a relative humidity of 80 to 100% in a high-temperature and high-humidity atmosphere for about 1 hour for aging.

【0033】7.乾燥II 相対湿度50%以下で80℃以上の大気中で約2h乾燥
し、未化成極板を得た。
[7] Drying II It was dried for about 2 hours in the air at a relative humidity of 50% or less and at a temperature of 80 ° C. or more to obtain an unformed electrode plate.

【0034】8.化成 正極板および負極板とも同じ25cm2で、理論容量が
各1.5Ahである。2枚の正極板と3枚の負極板をガ
ラスマットセパレータを介して交互に重ね合せて組立て
た極板群をポリプロピレン(PP)樹脂製電槽に収納
し、比重約1.20の希硫酸を注入し、0.2C(0.
6A)で、7.5h(容量として4.5Ah)充電して
電槽化成を行った。
8. Chemical formation Both the positive electrode plate and the negative electrode plate have the same 25 cm 2 , and the theoretical capacities are 1.5 Ah each. An assembly of two positive plates and three negative plates assembled alternately by interposing a glass mat separator is put in a polypropylene (PP) resin battery case and diluted sulfuric acid with a specific gravity of about 1.20 is stored. Injected and 0.2C (0.
In 6A), the battery was charged for 7.5 hours (4.5 Ah as capacity) to perform battery case formation.

【0035】(実施例1)正極および負極の活物質の原
料粉末にリサージ含有率が75重量%の鉛粉を用いた。
Example 1 Lead powder having a litharge content of 75% by weight was used as a raw material powder for the positive electrode and negative electrode active materials.

【0036】本実施例においては、充放電サイクルによ
り活物質が脱落し、容量が低下してサイクル寿命がつき
る正極板について、活物質層中の結着剤のPVDF含有
率を広範囲に変えて、その効果を検討した。芯材には
正,負極板とも、純鉛からなる非穿孔の0.20mm厚
の箔状シートを用いた。
In the present embodiment, the positive electrode plate in which the active material falls off due to charge / discharge cycles, the capacity decreases, and the cycle life is extended, the PVDF content of the binder in the active material layer is changed over a wide range. The effect was examined. For both the positive and negative electrode plates, non-perforated 0.20 mm-thick foil sheets made of pure lead were used as the core material.

【0037】図1のフローチャートの最終工程の化成終
了後、電槽中の電解液を比重1.28の希硫酸で置換
し、遊離の電解液が無いように液量を規制した。正,負
極端子および安全弁が付いたポリプロピレン樹脂製の蓋
の端子に、正,負極板のリード板を溶接したのち、蓋と
電槽とを加熱溶着して密封しセルを完成した。
After the formation of the final step in the flowchart of FIG. 1 was completed, the electrolytic solution in the battery case was replaced with dilute sulfuric acid having a specific gravity of 1.28, and the amount of the solution was regulated so that there was no free electrolytic solution. After welding the lead plate of the positive and negative electrodes to the terminals of the polypropylene resin lid with the positive and negative terminals and the safety valve, the lid and the battery case were heat-welded and sealed to complete the cell.

【0038】完成した各5セルについて、20℃におい
て、1C(3A)で15分間放電し、3A定電流でセル
当たりの設定電圧2.50Vの定電流定電圧充電を45
分間繰り返してサイクル寿命試験を行った。容量変化は
充放電サイクル50回毎に3Aで1.8Vまで放電して
求めた。初期容量の50%に達するまでの充放電サイク
ルの回数の平均値でサイクル寿命を示した。
Each of the completed 5 cells was discharged at 20 ° C. at 1 C (3 A) for 15 minutes and charged with a constant current of 3 A at a constant voltage of constant voltage of 2.50 V for 45 minutes.
The cycle life test was repeated by repeating for a minute. The capacity change was obtained by discharging to 1.8 V at 3 A every 50 charge / discharge cycles. The cycle life was indicated by the average value of the number of charge / discharge cycles until reaching 50% of the initial capacity.

【0039】これらの結果を図2にまとめて示す。図2
は本発明による正極板の活物質層中の結着剤のPVDF
含有率に対する初期容量の相対値とサイクル寿命との関
係の1例である。初期容量はPVDF含有率が0.1重
量%の場合を1.0としてその他は相対値で示した。初
期容量とサイクル寿命との両者を勘案すれば、活物質層
中の結着剤のPVDF含有率は1〜10重量%の範囲が
適切であることが理解できる。
The results are summarized in FIG. FIG.
Is PVDF as a binder in the active material layer of the positive electrode plate according to the present invention.
It is an example of the relationship between the relative value of the initial capacity with respect to the content rate and the cycle life. The initial capacity is 1.0 when the PVDF content is 0.1% by weight, and the other values are shown as relative values. Considering both the initial capacity and the cycle life, it can be understood that the PVDF content of the binder in the active material layer is appropriately in the range of 1 to 10% by weight.

【0040】なお、活物質層中の結着剤のPVDFの状
態は8の化成工程を終了した正極板を水洗,乾燥した
後、マンニット50g,水酸化ナトリウム30gおよび
硫酸ヒドラジン0.65gを溶解して1.0lとした水
溶液中に浸漬し、鉛酸化物を溶解,除去して残ったPV
DFを光学顕微鏡で観察すればわかる。活物質粒子相互
間および活物質粒子と芯材との間に、結着剤のPVDF
が独立した微細な粒子となって存在し、これらの間を結
着一体化しているものと理解される。結着剤のPVDF
含有率が著しく高くない限り、PVDFが活物質粒子表
面は被覆されていない。PVDF含有率が1〜10重量
%の場合、活物質粒子相互間および活物質粒子と芯材と
の間の電子伝導性や溶液の拡散等の化学的反応を阻害さ
れる状態ではなかったが、1重量%未満では結着剤不足
でサイクル寿命が短くなった。
The PVDF state of the binder in the active material layer was determined by washing the positive electrode plate after the formation step 8 with water and drying it, and then dissolving 50 g of mannitol, 30 g of sodium hydroxide and 0.65 g of hydrazine sulfate. PV that remained after dipping and removing lead oxide
It can be understood by observing the DF with an optical microscope. A PVDF binder is used between the active material particles and between the active material particles and the core material.
Are present as independent fine particles, and it is understood that these are bound and integrated with each other. Binder PVDF
The surface of the active material particles is not covered with PVDF unless the content is extremely high. When the PVDF content was 1 to 10% by weight, the chemical reaction such as the electronic conductivity between the active material particles and between the active material particles and the core material and the diffusion of the solution were not hindered, If it is less than 1% by weight, the binder is insufficient and the cycle life is shortened.

【0041】以上正極板について詳述したが、負極板も
同様に活物質層中のPVDF含有率は1〜10重量%が
適切な範囲と判断された。
Although the positive electrode plate has been described in detail above, the PVDF content in the active material layer of the negative electrode plate was also judged to be in the appropriate range of 1 to 10% by weight.

【0042】(実施例2)前述したように実施例1にお
いては活物質の原料粉末にリサージ含有率75重量%の
鉛粉を用いたが、本実施例2においては活物質の原料粉
末中のリサージ含有率による正極板のサイクル寿命に及
ぼす影響について検討した。。
(Example 2) As described above, in Example 1, lead powder having a litharge content of 75% by weight was used as the raw material powder of the active material. The effect of the litharge content on the cycle life of the positive electrode plate was examined. .

【0043】低リサージ含有率の鉛粉とリサージとを混
合し、所望のリサージ含有率の活物質の原料粉末を調整
した。結着剤溶液には10重量%PVDFのN−MP溶
液を用いてペーストを調整し、実施例1と同様に正,負
極板を作製し、セルを試作した後同じ試験条件でサイク
ル寿命を求めた。それらの結果を図3に示す。図3は本
発明による正極板の活物質の原料粉末中のリサージ含有
率とサイクル寿命との関係を示す。図2から少なくとも
50重量%のリサージ含有率にすればサイクル寿命が長
くなることが理解される。しかしながら著しく高いリサ
ージ含有率にした場合、正極板の活物質密度が低くなる
ので、容量が低くなる。したがって、サイクル寿命と正
極容量とを勘案すれば、正極板の活物質の原料粉末中の
リサージ含有率は60〜80重量%の範囲が好ましい。
Lead powder having a low litharge content was mixed with litharge to prepare a raw material powder of an active material having a desired litharge content. For the binder solution, a 10 wt% PVDF N-MP solution was used to prepare a paste, positive and negative electrode plates were prepared in the same manner as in Example 1, and the cycle life was determined under the same test conditions after making a prototype cell. It was The results are shown in FIG. FIG. 3 shows the relationship between the litharge content in the raw material powder of the active material of the positive electrode plate according to the present invention and the cycle life. From FIG. 2 it can be seen that a litharge content of at least 50% by weight increases the cycle life. However, when the litharge content is extremely high, the active material density of the positive electrode plate becomes low, and the capacity becomes low. Therefore, considering the cycle life and the positive electrode capacity, the litharge content rate in the raw material powder of the active material of the positive electrode plate is preferably in the range of 60 to 80% by weight.

【0044】(実施例3)本実施例3においては、芯材
の材質および穿孔の有無によるサイクル寿命に及ぼす影
響について検討した。
Example 3 In Example 3, the influence of the material of the core material and the presence or absence of perforations on the cycle life was examined.

【0045】活物質の原料粉末は実施例1と同様にリサ
ージ含有率が75重量%の鉛粉を用い、極板の活物質層
中の結着剤のPVDF含有率が3重量%になるように1
0重量%PVDFのN−MP溶液の注加量を調整して塗
料状ペーストを調整し、次に示す5種類の芯材の両面に
塗着,乾燥し、活物質層を形成した。
As the raw material powder of the active material, lead powder having a litharge content of 75% by weight was used as in Example 1, and the PVDF content of the binder in the active material layer of the electrode plate was 3% by weight. To 1
A coating paste was prepared by adjusting the amount of 0 wt% PVDF N-MP solution added, and the active material layer was formed by applying the coating material on both surfaces of the following 5 kinds of core materials and drying.

【0046】A.0.20mm厚の純鉛からなる箔状シ
ート。 B.孔径1mmの貫通孔を開口率約20%になるように
穿孔したAのシート。
A. A foil sheet made of pure lead with a thickness of 0.20 mm. B. A sheet in which a through hole having a hole diameter of 1 mm is perforated to have an opening ratio of about 20%.

【0047】C.0.20mm厚の0.5重量%錫含有
鉛合金箔状シート。 D.化学メッキ法で鉛メッキしたポリエステルフィルム
(0.10mm厚)。
C. A 0.20 mm thick lead alloy foil sheet containing 0.5 wt% tin. D. Polyester film (0.10 mm thick) lead-plated by chemical plating.

【0048】E.黒鉛粉末にアセチレンブラックを添加
して導電剤とした導電性塗料を両面に塗布乾燥したポリ
エステルフィルム(0.10mm厚)。
E. A polyester film (0.10 mm thick) obtained by applying acetylene black to graphite powder and applying a conductive coating agent as a conductive agent on both sides and drying.

【0049】これらと比較するために、従来例Eとし
て、Aの芯材の両面に、同じ活物質の原料粉末のリサー
ジ含有率75%の鉛粉に孔隙形成剤として5重量%CM
Cを添加し、10重量%PSのメチルエチルケトン溶液
を注加,混練した塗料状ペーストを塗着,乾燥した後、
約60℃の温湯中に浸漬し、CMCを溶出させる。次い
で乾燥後プレスし、図1のフローチャートの5の浸酸工
程以降を同じ条件にして、正,負極板を作製した。な
お、活物質層中の結着剤のPS含有率は3重量%とし
た。
In order to compare with these, as a conventional example E, lead powder having a litharge content of 75% of the raw material powder of the same active material was used on both sides of the core material of A as 5% by weight CM as a pore forming agent.
C was added, a 10 wt% PS methyl ethyl ketone solution was added, and the kneaded paint paste was applied and dried.
Immerse in hot water of about 60 ° C. to elute CMC. Next, after drying and pressing, positive and negative electrode plates were produced under the same conditions after the soaking step 5 in the flowchart of FIG. The PS content of the binder in the active material layer was 3% by weight.

【0050】これら6種類の極板からなるセルを試作
し、実施例1および2と同じ条件で試験し、サイクル寿
命を求めた。それらの結果を図4に示す。図4から本発
明による鉛蓄電池用極板のA〜Eは芯材の種類にかかわ
らず従来例のEより劣るものは全くなかった。すなわ
ち、結着剤にPVDFを用い、活物質層中の含有率を適
切に規制することにより、従来のように孔隙形成剤を添
加したり、繁雑な孔隙形成工程により生産性が低下する
のを防止できることが理解される。また芯材AとBとの
間でサイクル寿命は変らなかった。
A cell consisting of these six kinds of electrode plates was manufactured as a prototype and tested under the same conditions as in Examples 1 and 2 to determine the cycle life. The results are shown in FIG. From FIG. 4, AE of the lead-acid battery electrode plate according to the present invention was not inferior to E of the conventional example regardless of the type of the core material. That is, by using PVDF as a binder and appropriately controlling the content rate in the active material layer, it is possible to prevent the addition of a pore-forming agent as in the conventional case or a decrease in productivity due to a complicated pore-forming step. It is understood that it can be prevented. Further, the cycle life did not change between the core materials A and B.

【0051】従来、鉛蓄電池用薄型極板の活物質保持体
兼集電体としての芯材としては、純鉛または0.50重
量%までの錫含有率のPb−Sn系鉛合金からなる非穿
孔の箔状シートを用いることが推奨されているが、本発
明においてはこれら芯材に限定されるものでないことが
明らかである。本実施例3では示さなかったが、Pb−
Ca−Sn系,Pb−Ba−Sn系,Pb−Sr−Sn
系等の箔状に圧延可能な組成の鉛合金のシートが密閉型
鉛蓄電池用芯材として適用できる。また、鉛メッキまた
は黒鉛を主体とする炭素粉末を導電剤とする導電性塗膜
層により被覆されたポリエチレンテレフタレートで代表
される有機高分子フィルムも芯材として有効である。さ
らに、芯材としては、正,負極板が充放電により反応に
関与する電解質の硫酸の拡散を容易にできることを考慮
すれば、穿孔されたシートの方が望ましいはずである。
そして、穿孔された芯材の場合、その両面に形成された
活物質層が芯材の貫通孔部において連通しているので、
芯材と強く一体化するので、極板強度が向上し、極板の
取り扱いがしやすいという利点もある。しかしながら芯
材に穿孔される孔径を大きくし過ぎると、貫通孔の中心
部の活物質の導電ネットワークが十分でなく、充放電反
応が低下する傾向がある。したがって、芯材の孔径は
2.0mmを越えないように留意すべきである。また、
穿孔芯材の開口率については、引張り強度をはじめ機械
的強度の観点から、開口率を高くするにつれて芯材厚さ
を大きくする必要がある。薄型極板を指向するには、芯
材の開口率は50%を越えないように配慮すべきであ
る。
Conventionally, as a core material for an active material holder and a collector of a thin polar plate for a lead storage battery, pure lead or a Pb-Sn lead alloy having a tin content of up to 0.50% by weight is used. Although it is recommended to use perforated foil sheets, it is clear that the invention is not limited to these cores. Although not shown in Example 3, Pb-
Ca-Sn system, Pb-Ba-Sn system, Pb-Sr-Sn
A sheet of a lead alloy having a composition capable of being rolled into a foil shape, such as a system, can be applied as a core material for a sealed lead acid battery. Further, an organic polymer film typified by polyethylene terephthalate coated with a conductive coating film layer containing a carbon powder mainly composed of lead plating or graphite as a conductive agent is also effective as a core material. Further, as the core material, a perforated sheet is preferable in view of the fact that the positive and negative electrode plates can easily diffuse sulfuric acid of the electrolyte involved in the reaction by charging and discharging.
And, in the case of a perforated core material, since the active material layers formed on both surfaces of the core material communicate with each other in the through-hole portion of the core material,
Since it is strongly integrated with the core material, the strength of the electrode plate is improved and the electrode plate is easy to handle. However, if the diameter of the holes drilled in the core material is too large, the conductive network of the active material at the center of the through hole is insufficient, and the charge / discharge reaction tends to decrease. Therefore, it should be noted that the hole diameter of the core material does not exceed 2.0 mm. Also,
Regarding the aperture ratio of the perforated core material, it is necessary to increase the core material thickness as the aperture ratio is increased from the viewpoint of mechanical strength including tensile strength. In order to aim at a thin electrode plate, consideration should be given so that the aperture ratio of the core material does not exceed 50%.

【0052】しかしながら、極板の総厚が0.50mm
を越えない程度の鉛蓄電池用薄型極板においては、芯材
に非穿孔の導電性シートを用いても、活物質層の厚さが
小さいので、導電性に支障は生ぜず、充放電反応も問題
はおこらない。
However, the total thickness of the electrode plate is 0.50 mm.
In thin lead plates for lead-acid batteries that do not exceed the limit, even if a non-perforated conductive sheet is used for the core material, the thickness of the active material layer is small, so there is no hindrance to conductivity, and charge / discharge reactions do not occur. No problem occurs.

【0053】前述したように穿孔芯材については、パン
チドメタルについて説明したがエキスパンドメタルの場
合も同様な配慮を講ずれば支障なく使用できる。
As described above, as the perforated core material, the punched metal has been described, but the expanded metal can be used without any problem if the same consideration is taken.

【0054】非穿孔芯材の場合は、芯材の片面に正極活
物質層,反対面に負極活物質層を形成させてバイポーラ
電極とすれば高電圧の組電池を構成するのに有効であ
る。
In the case of a non-perforated core material, a positive electrode active material layer is formed on one surface of the core material and a negative electrode active material layer is formed on the opposite surface to form a bipolar electrode, which is effective in constructing a high voltage assembled battery. .

【0055】以上、薄型極板を主体に説明したが、純鉛
または鉛合金からなる箔状シートの片面または両面に畝
状または瘤状の***を形成した芯材を用いれば、これら
の***の高さに応じて、0.50mmを越える厚さの極
板も本発明による結着剤にPVDFを用いる塗料状ペー
ストにより作製可能である。畝状***は例えば鉛または
鉛合金シートを、表面にローレット加工を施した1対の
ローラ間を通過させて加圧することによって形成でき
る。また、瘤状***は、例えばエンボス加工で表面に凹
凸を施したローラーで加工すればよい。ペーストを塗着
し、芯材の***の頂部で面一にこき取れば、極板の厚さ
が規制できる。このように0.50mmを越える厚さの
極板に畝状または瘤状の***を形成させた芯材を用いる
場合、相対的に活物質層も厚くなるので、穿孔した芯材
とする方が充放電反応の面から有効である。
Although the thin electrode plate has been mainly described above, if a core material in which a ridge-shaped or bump-shaped ridge is formed on one or both sides of a foil sheet made of pure lead or a lead alloy, these ridges are used. Depending on the height, electrode plates with a thickness of more than 0.50 mm can also be produced with a paint-like paste using PVDF as the binder according to the invention. The ridges can be formed, for example, by passing a sheet of lead or a lead alloy sheet between a pair of rollers having a knurled surface and pressing the sheet. Further, the bumps may be processed by a roller having an uneven surface by embossing, for example. The thickness of the electrode plate can be regulated by applying the paste and scraping it flush with the top of the ridge of the core material. When a core material having a ridge-shaped or bump-shaped protrusion formed on an electrode plate having a thickness of more than 0.50 mm is used, the active material layer also becomes relatively thick. It is effective in terms of charge / discharge reaction.

【0056】芯材の両面に結着剤としてPVDFを用い
て活物質層を形成させた鉛蓄電池用極板の製造方法につ
いて図1のフローチャートにしたがって説明したが、5
の浸酸工程は希硫酸中に浸漬せずに、希硫酸をスプレー
法で吹き付けても同等の効果を奏し得る。浸酸工程5の
次の熟成工程6において、その雰囲気を二酸化炭素ガス
に変えれば熟成効果の向上が期待される。
A method for manufacturing a lead-acid battery electrode plate in which an active material layer is formed by using PVDF as a binder on both surfaces of a core material has been described with reference to the flowchart of FIG.
The same effect can be obtained by spraying dilute sulfuric acid by a spray method without dipping it in dilute sulfuric acid in the soaking process. When the atmosphere is changed to carbon dioxide gas in the aging step 6 subsequent to the pickling step 5, the aging effect is expected to be improved.

【0057】しかしながら、薄型極板の場合、熟成工程
6を省略するか、乾燥工程4を終了した極板を未化成極
板として、直ちに化成工程8に移っても同等の性能の極
板が得られる。
However, in the case of a thin electrode plate, even if the aging step 6 is omitted or the electrode plate that has completed the drying step 4 is used as an unformed electrode plate, the electrode plate having the same performance can be obtained by immediately moving to the forming step 8. To be

【0058】また、正極板において、活物質の原料粉末
として鉛粉,リサージ,鉛の硫酸塩からなる群から選ば
れた少なくとも1種の粉末に鉛丹または二酸化鉛を添加
すれば正極の化成時間が短縮できる効果がある。この場
合、高純度の鉛丹または二酸化鉛を使用すれば材料費が
高くなり、工業的には不利であるが、通常の鉛粉を原料
にして部分的に酸化して得られる粗鉛丹を用いれば、製
造コストも安く、かつ極板製造時の硫酸との反応性から
も効果的である。
Further, in the positive electrode plate, if lead tin or lead dioxide is added to at least one kind of powder selected from the group consisting of lead powder, litharge and lead sulfate as the raw material powder of the active material, the positive electrode formation time will be increased. Has the effect of shortening. In this case, if high-purity red lead or lead dioxide is used, the material cost will be high and it is industrially disadvantageous, but crude lead red lead obtained by partially oxidizing ordinary lead powder is used. If used, the production cost is low, and the reactivity with sulfuric acid at the time of producing the electrode plate is effective.

【0059】また、活物質の原料粉末に別途製造した高
純度の二酸化鉛粉末を使用すれば、図1のフローチャー
トの乾燥工程4を終了した段階で、完成正極板として使
用できる。
If a separately manufactured high-purity lead dioxide powder is used as the raw material powder of the active material, it can be used as a completed positive electrode plate at the stage when the drying step 4 in the flowchart of FIG. 1 is completed.

【0060】なお、二酸化鉛にはα型とβ型の2種類が
ある。前者は電位が僅かに高いが容量が低く、後者は電
位が僅かに低いが容量が高いという特徴があるが、その
後の充放電サイクルによって同じ特性になるので、出発
材料としてどちらを使用するかは、材料費によって決定
すればよい。
There are two types of lead dioxide, α type and β type. The former is characterized by a slightly higher potential but a lower capacity, and the latter is characterized by a slightly lower potential but a higher capacity, but since the characteristics are the same in subsequent charge / discharge cycles, which one should be used as the starting material? It may be determined according to the material cost.

【0061】製造された極板は相対的に薄いので、各1
枚の正,負極板をセパレータを介して渦巻状に捲回した
極板群にして円筒型セルに、また、複数枚の正,負極板
をセパレータを介して交互に重ね合せて極板群を構成し
た角型セルに適用できる。さらに、前述したように、バ
イポーラ電極をセパレータを介して積層した高電圧のバ
ッテリーも構成可能であり、本発明は広範囲かつ工業的
価値大なる鉛蓄電池用極板を提供し得るものである。
Since the produced electrode plates are relatively thin, each 1
A positive electrode plate and a negative electrode plate are spirally wound through a separator to form an electrode plate group in a cylindrical cell, and a plurality of positive and negative electrode plates are alternately stacked to form an electrode plate group. Applicable to configured rectangular cells. Further, as described above, a high-voltage battery in which bipolar electrodes are laminated via a separator can be configured, and the present invention can provide a lead storage battery electrode plate having a wide range and industrial value.

【0062】[0062]

【発明の効果】以上のように本発明によれば、適切な結
着剤のPVDFを採用し、その含有率を規制することに
より、高率放電特性が優れ、サイクル寿命が長い鉛蓄電
池用極板を得ることができる。
As described above, according to the present invention, by adopting PVDF as a suitable binder and regulating the content thereof, the electrode for lead-acid battery having excellent high rate discharge characteristics and long cycle life is obtained. The board can be obtained.

【0063】さらに、従来のように孔隙形成剤の添加を
不要にしたので、繁雑な孔隙形成工程を省略することが
でき、工程の簡略化により、生産性の高い製造方法の提
供が可能になるという有利な効果を奏するものである。
Furthermore, since it is not necessary to add a pore-forming agent as in the conventional case, a complicated pore-forming step can be omitted, and the simplification of the step makes it possible to provide a highly productive manufacturing method. That is an advantageous effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による鉛蓄電池用極板の製造工程を示す
フローチャート
FIG. 1 is a flowchart showing a manufacturing process of a lead-acid battery electrode plate according to the present invention.

【図2】本発明による鉛蓄電池用正極板の活物質中の結
着剤のPVDF含有率と初期容量の相対値およびサイク
ル寿命との関係図
FIG. 2 is a diagram showing the relationship between the PVDF content of the binder in the active material of the positive electrode plate for a lead storage battery according to the present invention, the relative value of the initial capacity, and the cycle life.

【図3】本発明による鉛蓄電池用正極板の活物質の原料
粉末中のリサージ含有率とサイクル寿命との関係図
FIG. 3 is a graph showing the relationship between the litharge content in the raw material powder of the active material of the positive electrode plate for a lead storage battery according to the present invention and the cycle life.

【図4】従来例と比較した本発明による鉛蓄電池用極板
における各種芯材によるサイクル寿命に及ぼす影響を示
す図
FIG. 4 is a diagram showing the influence of various core materials on the cycle life in the lead-acid battery electrode plate according to the present invention compared with the conventional example.

【符号の説明】[Explanation of symbols]

1 溶解 2 混練 3 塗着 4 乾燥I 5 浸酸 6 熟成 7 乾燥II 8 化成 1 Melt 2 Kneading 3 Coating 4 Dry I 5 Dip Acid 6 Aging 7 Dry II 8 Chemical Formation

フロントページの続き (72)発明者 岡村 一広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued Front Page (72) Inventor Kazuhiro Okamura 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】導電材シートからなる芯材の両面に、ポリ
フッ化ビニリデンを結着剤に用いて活物質層を形成させ
た鉛蓄電池用極板。
1. An electrode plate for a lead storage battery, wherein an active material layer is formed on both surfaces of a core material made of a conductive material sheet by using polyvinylidene fluoride as a binder.
【請求項2】活物質層中の結着材のポリフッ化ビニリデ
ンの含有率を1〜10重量%の範囲に規制した請求項1
記載の鉛蓄電池用極板。
2. The polyvinylidene fluoride content of the binder in the active material layer is regulated within the range of 1 to 10% by weight.
The electrode plate for the lead acid battery described.
【請求項3】芯材に、純鉛または鉛合金からなる箔状シ
ート、鉛メッキまたは黒鉛を主体とする炭素粉末の導電
性塗膜層により被覆されたポリエステルフィルムからな
る群より選ばれた少なくとも1種を用いた請求項1記載
の鉛蓄電池用極板。
3. At least one selected from the group consisting of a foil-like sheet made of pure lead or a lead alloy as a core material, a polyester film coated with a conductive coating layer of carbon powder mainly containing lead plating or graphite. The lead-acid battery electrode plate according to claim 1, wherein one type is used.
【請求項4】純鉛または鉛合金からなる箔状シートの片
面または両面に、畝状または瘤状の***を設けた芯材を
用いた請求項1記載の鉛蓄電池用極板。
4. The electrode plate for a lead storage battery according to claim 1, wherein a core material having a ridge-shaped or bump-shaped protrusion on one or both sides of a foil sheet made of pure lead or a lead alloy is used.
【請求項5】芯材の両面に、鉛粉、リサージ、鉛丹、二
酸化鉛、鉛の硫酸塩からなる群から選ばれた少なくとも
1種の活物質の原料粉末に、結着剤のポリフッ化ビニリ
デンを予め溶媒のN−メチルピロリドンで溶解した溶液
を注加し、混練したペーストを塗着した後、乾燥して活
物質層を形成した鉛蓄電池用極板の製造方法。
5. A raw material powder of at least one active material selected from the group consisting of lead powder, litharge, red lead, lead dioxide, and lead sulfate on both sides of a core material, and polyfluoride as a binder. A method for producing a lead-acid battery electrode plate, which comprises adding a solution of vinylidene previously dissolved in N-methylpyrrolidone as a solvent, applying a kneaded paste, and then drying to form an active material layer.
【請求項6】芯材の両面に、鉛粉、リサージ、鉛丹、二
酸化鉛、鉛の硫酸塩からなる群から選ばれた少なくとも
1種の活物質の原料粉末と、結着剤のポリフッ化ビニリ
デンとを主体とするペーストを塗着、乾燥して活物質層
を形成させ、次いで、希硫酸中に浸漬してから高温高湿
の大気中で熟成、乾燥した後、希硫酸電解液中で化成し
た鉛蓄電池用極板の製造方法。
6. A raw material powder of at least one active material selected from the group consisting of lead powder, litharge, red lead, lead dioxide and lead sulfate on both surfaces of a core material, and a polyfluoride binder. A paste mainly consisting of vinylidene is applied, dried to form an active material layer, then immersed in dilute sulfuric acid, aged in a high temperature and high humidity atmosphere, dried, and then in a dilute sulfuric acid electrolytic solution. A method for manufacturing a chemically modified lead-acid battery electrode plate.
【請求項7】芯材の両面に、鉛粉、リサージ、鉛丹、二
酸化鉛、鉛の硫酸塩からなる群から選ばれた少なくとも
1種の活物質の原料粉末と結着剤のポリフッ化ビニリデ
ンとを主体とするペーストを塗着、乾燥して活物質層を
形成させ、直ちに希硫酸電解液中で化成した鉛蓄電池用
極板の製造方法。
7. A raw material powder of at least one active material selected from the group consisting of lead powder, litharge, red lead, lead dioxide, and lead sulfate on both sides of the core material, and polyvinylidene fluoride as a binder. A method for producing an electrode plate for a lead storage battery, which comprises applying a paste mainly composed of and to form an active material layer by drying, and immediately forming the active material layer in a dilute sulfuric acid electrolyte.
【請求項8】正極活物質の原料粉末として鉛粉、リサー
ジ、鉛丹、二酸化鉛等の鉛酸化物および鉛の硫酸塩から
なる活物質の原料粉末中のリサージ含有率が少なくとも
50重量%、好ましくは60〜80重量%の範囲に規制
した請求項6または7記載の鉛蓄電池用正極板の製造方
法。
8. A litharge content of at least 50% by weight in the raw material powder of the active material comprising lead powder, lead oxide such as litharge, lead tin, lead dioxide and the like, and lead sulfate as the raw material powder of the positive electrode active material, The method for producing a positive electrode plate for a lead storage battery according to claim 6 or 7, wherein the range is preferably 60 to 80% by weight.
【請求項9】正極活物質の原料粉末として鉛粉、リサー
ジ、鉛の硫酸塩からなる群から選ばれた少なくとも1種
の粉末に、鉛丹または二酸化鉛を含む鉛酸化物粉末を添
加混合した活物質の原料粉末を用いた請求項6または7
記載の鉛蓄電池用極板の製造方法。
9. A lead oxide powder containing lead oxide or lead dioxide is added to and mixed with at least one powder selected from the group consisting of lead powder, litharge, and lead sulfate as a raw material powder for the positive electrode active material. The raw material powder of the active material is used, or claim 6 or 7 is used.
A method for manufacturing the electrode plate for a lead acid battery according to the description.
【請求項10】負極活物質の原料粉末として、鉛粉、リ
サージ、鉛の硫酸塩からなる群から選ばれた少なくとも
1種を用いた請求項6および7記載の鉛蓄電池用極板の
製造方法。
10. The method for producing an electrode plate for a lead storage battery according to claim 6, wherein at least one selected from the group consisting of lead powder, litharge and lead sulfate is used as a raw material powder of the negative electrode active material. .
JP14537796A 1995-07-04 1996-06-07 Electrode plate for lead storage battery and method of manufacturing the same Expired - Fee Related JP3493900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14537796A JP3493900B2 (en) 1995-07-04 1996-06-07 Electrode plate for lead storage battery and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-168487 1995-07-04
JP16848795 1995-07-04
JP14537796A JP3493900B2 (en) 1995-07-04 1996-06-07 Electrode plate for lead storage battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0973895A true JPH0973895A (en) 1997-03-18
JP3493900B2 JP3493900B2 (en) 2004-02-03

Family

ID=26476525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14537796A Expired - Fee Related JP3493900B2 (en) 1995-07-04 1996-06-07 Electrode plate for lead storage battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3493900B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433001B1 (en) * 2001-11-05 2004-05-24 삼성에스디아이 주식회사 Method for manufacturing cathode electrode, cathode electrode manufactured using the same, and lithium battery containing the same
KR100495567B1 (en) * 2002-08-14 2005-06-16 한국과학기술원 Lithium/Sulfur Rechargeable Battery Comprising Electrode Composition Based on Vinylidene Fluoride Polymer as A Binder, and Preparation Method thereof
JP2006339026A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for battery
KR101009300B1 (en) * 2002-06-28 2011-01-18 화이어플라이 에너지 인코포레이티드 Battery Including Carbon Foam Current Collectors
WO2013005733A1 (en) 2011-07-05 2013-01-10 株式会社Gsユアサ Flooded lead-acid battery
WO2020241882A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Lead storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433001B1 (en) * 2001-11-05 2004-05-24 삼성에스디아이 주식회사 Method for manufacturing cathode electrode, cathode electrode manufactured using the same, and lithium battery containing the same
KR101009300B1 (en) * 2002-06-28 2011-01-18 화이어플라이 에너지 인코포레이티드 Battery Including Carbon Foam Current Collectors
KR100495567B1 (en) * 2002-08-14 2005-06-16 한국과학기술원 Lithium/Sulfur Rechargeable Battery Comprising Electrode Composition Based on Vinylidene Fluoride Polymer as A Binder, and Preparation Method thereof
JP2006339026A (en) * 2005-06-02 2006-12-14 Matsushita Electric Ind Co Ltd Method of manufacturing electrode for battery
WO2013005733A1 (en) 2011-07-05 2013-01-10 株式会社Gsユアサ Flooded lead-acid battery
WO2020241882A1 (en) * 2019-05-31 2020-12-03 株式会社Gsユアサ Lead storage battery
US11658347B2 (en) 2019-05-31 2023-05-23 Gs Yuasa International Ltd. Lead-acid battery

Also Published As

Publication number Publication date
JP3493900B2 (en) 2004-02-03

Similar Documents

Publication Publication Date Title
US5952123A (en) Electrode plates for lead-acid battery and their manufacturing method
US6280878B1 (en) Electrode and lithium secondary battery using this electrode
US20060210877A1 (en) Flexible pasted anode, primary cell with pasted anode, and method for making same
JP5711483B2 (en) Method for producing negative electrode plate of composite capacitor for lead storage battery and lead storage battery
JP2000182623A (en) Electrolytic copper foil, copper foil for current collector of secondary battery, and secondary battery
JP2001508916A (en) Lithium ion battery and method of manufacturing the same
JP2003163006A (en) Nonaqueous secondary battery and its manufacturing method
JP7160731B2 (en) secondary battery
JP2003017041A (en) Electrode film manufacturing method and battery element including electrode film
WO2014205186A2 (en) Electrochemical device electrode including cobalt oxyhydroxide
JP3493900B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
KR20190065153A (en) Method of Preparing Electrode for Secondary Battery
JP3508455B2 (en) Negative electrode plate for lithium ion battery and method for producing the same
JP4843842B2 (en) Method for manufacturing positive electrode plate for lithium secondary battery
JPH08106897A (en) Positive electrode for lithium secondary battery and its manufacture
CN112002906A (en) Hydrophobic electrode, preparation method thereof and battery
JP4374662B2 (en) Method for producing electrode plate for positive electrode of lithium secondary battery
JP3774980B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
WO2006047588A2 (en) Flexible pasted anode, primary cell with pasted anode, and method for making same
JP2002134103A (en) Method of producing electrode for polymer lithium secondary battery
JPH11260354A (en) Manufacture of battery
JP2002141059A (en) Manufacturing method of battery electrode and non- aqueous electrolyte secondary battery using the same
JP4016630B2 (en) Method for manufacturing lithium ion battery
JP2000348715A (en) Manufacture of lead-acid battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees