JPH0971889A - Electrolyzing functional element and its production - Google Patents

Electrolyzing functional element and its production

Info

Publication number
JPH0971889A
JPH0971889A JP7267260A JP26726095A JPH0971889A JP H0971889 A JPH0971889 A JP H0971889A JP 7267260 A JP7267260 A JP 7267260A JP 26726095 A JP26726095 A JP 26726095A JP H0971889 A JPH0971889 A JP H0971889A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte membrane
base materials
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7267260A
Other languages
Japanese (ja)
Other versions
JP3299422B2 (en
Inventor
Kenro Mitsuta
憲朗 光田
Hideo Maeda
秀雄 前田
Shiro Yamauchi
四郎 山内
Takeaki Hanada
武明 花田
Tetsuo Moriguchi
哲雄 森口
Masaru Yasuda
勝 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP26726095A priority Critical patent/JP3299422B2/en
Priority to CN96106817A priority patent/CN1143692A/en
Priority to DE19621752A priority patent/DE19621752A1/en
Priority to FR9606755A priority patent/FR2735991A1/en
Publication of JPH0971889A publication Critical patent/JPH0971889A/en
Application granted granted Critical
Publication of JP3299422B2 publication Critical patent/JP3299422B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/326Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 in electrochemical cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Drying Of Gases (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an electrolyzing functional element having a difficult-to- release structure by laminating a base material, a catalyst bed and a moisture- permeable and water-repellent thin film successively on both side faces of a solid high molecular electrolyte membrane under specified conditions to form an anode and a cathode. SOLUTION: The base materials 11 and 21 having many through-holes 31 and 32 tapering toward the inside from the outside and consisting of a perforated metallic sheet to be used as a current collecting sheet are provided on both side faces of a solid high molecular electrolyte membrane 3 (made of naphion), and a part of the membrane 3 is bulged out from the through-holes 31 and 32 and convexed. The catalyst beds 12 and 22 contg. a platinum catalyst grain and a solid high molecular electrolyte are formed on the surfaces of the base materials 11 and 21, the beds 12 and 22 are covered with moisture-permeable and water-repellent thin films 13 and 23 to form an anode 1 and a cathode 2, and an electrolyzing functional element is produced. As a result, an electrolyzing functional element capable of dehumidifying a material 5 and difficult to release is produced at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、固体高分子電解
質膜を用いた電解機能素子及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to an electrolytic functional element using a solid polymer electrolyte membrane and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図14は例えば藤田らによって発明され
た特開昭60−114325号公報や特開昭61−21
6714号公報に示された除湿素子等への応用が可能な
電解機能素子の構成図であり、電解機能素子を気中の水
蒸気を除去する応用例として示したものである。図14
において、1は陽極、2は陰極、3は固体高分子電解質
膜、4は集電体、5は除湿室、6は外部直流電源であ
る。電解機能素子の利用例としては、例えば電気化学協
会第59回大会講演要旨集P36(山内他、講演番号3
A31、平成4年3月19日発行)に半密閉式電子機器
内の結露防止のための適用が記載されている。固体高分
子電解質膜3としては、例えばデュポン(Du Pon
t)社製のナフィオン(Nafion)−117などが
用いられており、その公称厚みは約170μmである。
固体高分子電解質膜3の表裏には、例えば鳥飼らによっ
て提案された無電解メッキ法(特開昭57−13458
6号公報)などの公知の方法を用いて白金メッキが施さ
れ、白金メッキしたエキスパンディドチタンやタンタル
メッシュなどを集電体4に用いて、膜−電極接合体を挟
み、樹脂製の枠などにマウントし、接着剤などで周囲を
固定、ガスシールして、外部直流電源6との電気的接続
を行って構成されている。
2. Description of the Related Art FIG. 14 shows, for example, JP-A-60-114325 and JP-A-61-21 invented by Fujita et al.
FIG. 6 is a configuration diagram of an electrolytic functional element that can be applied to the dehumidifying element and the like disclosed in Japanese Patent No. 6714, and shows the electrolytic functional element as an application example for removing water vapor in the air. FIG.
In the above, 1 is an anode, 2 is a cathode, 3 is a solid polymer electrolyte membrane, 4 is a current collector, 5 is a dehumidifying chamber, and 6 is an external DC power supply. As an example of the use of the electrolytic function element, for example, the Electrochemical Society 59th Annual Conference Proceedings P36 (Yamauchi et al., Lecture No. 3)
A31, issued March 19, 1992) describes application for prevention of dew condensation in a semi-enclosed electronic device. As the solid polymer electrolyte membrane 3, for example, Du Pont
Nafion-117 manufactured by T. Co. is used, and its nominal thickness is about 170 μm.
On the front and back of the solid polymer electrolyte membrane 3, for example, the electroless plating method proposed by Torikai et al. (JP-A-57-13458).
No. 6) and other known methods, and platinum-plated expanded titanium, tantalum mesh, or the like is used as the current collector 4 to sandwich the membrane-electrode assembly and form a resin frame. It is mounted on, for example, the periphery is fixed with an adhesive or the like, and is gas-sealed to be electrically connected to the external DC power source 6.

【0003】次に、上述した構成を備える電解機能素子
の動作について説明する。陽極1では、外部直流電源6
の電力供給により、水が電気分解されて式(1)の反応
が起こり、除湿室5の湿度を低下させる。 2H2 O → O2 + 4H+ + 4e- (1) このとき、発生する水素イオン(H+ )は固体高分子電
解質膜3を通り、また、電子(e- )は外部回路を通っ
て陰極2に達し、陰極2では式(2)の反応により酸素
を消費して水を発生する。 O2 + 4H+ + 4e- → 2H2 O (2) また、一部の水素イオン(H+ )は、式(3)の反応に
より、水素になる。 2H+ + 2e- → H2 (3) さらに、上記水素イオン(H+ )とともに平均3分子程
度の水が陽極1から陰極2へ移動する。したがって、陰
極2では式(2)の反応により生成する水とともに、さ
らに余分の水が陽極1から移動して除湿室5の湿度を低
下させる。
Next, the operation of the electrolytic function element having the above-mentioned structure will be described. For the anode 1, an external DC power source 6
By the power supply of 1, the water is electrolyzed and the reaction of the formula (1) occurs, and the humidity of the dehumidifying chamber 5 is lowered. 2H 2 O → O 2 + 4H + + 4e (1) At this time, generated hydrogen ions (H + ) pass through the solid polymer electrolyte membrane 3, and electrons (e ) pass through an external circuit to form a cathode. 2, the cathode 2 consumes oxygen by the reaction of the formula (2) to generate water. O 2 + 4H + + 4e → 2H 2 O (2) Further, some hydrogen ions (H + ) become hydrogen by the reaction of the formula (3). 2H + + 2e → H 2 (3) Further, together with the hydrogen ions (H + ), about 3 molecules of water move from the anode 1 to the cathode 2. Therefore, in the cathode 2, along with the water generated by the reaction of the formula (2), excess water further moves from the anode 1 to reduce the humidity of the dehumidifying chamber 5.

【0004】従来の電解機能素子は、以上のように構成
されているので、陽極1および陰極2と集電体4を密着
させるために全体に面圧をかける必要があり、面圧をか
けるための押え板7やボルト8・ナット9などの押え治
具が必要なため、重くなるまたは嵩張るなどの問題点が
あった。
Since the conventional electrolytic function element is configured as described above, it is necessary to apply surface pressure to the whole in order to bring the anode 1 and the cathode 2 and the current collector 4 into close contact with each other. Since a holding jig such as the holding plate 7, the bolt 8 and the nut 9 is required, there is a problem that it becomes heavy or bulky.

【0005】そこで、面圧を常時かけておかなくても陽
極1および陰極2と集電体4を密着させておくことので
きる方法として、この発明と出願人が同じ特開平6−6
3343号公報の明細書に記載されているような方法が
発明された。
Therefore, as a method of keeping the anode 1 and the cathode 2 and the current collector 4 in close contact with each other without applying a surface pressure all the time, the present invention and the applicant of the present invention are the same.
A method was invented as described in the specification of the 3343 publication.

【0006】図15は特開平6−63343号公報の明
細書に記載されている実施例の図である。図15におい
て、陽極1は白金を有する触媒層11とステンレス繊維
の多孔質な基材12とからなり、陰極2は同じく白金を
有する触媒層21と基材22とからなる。触媒層11お
よび21は薄膜で、3次元的に基材12および22の中
に分布しており、図15ではこの基材12および22の
中に3次元的に分布している触媒層11および21を波
線で表している。3は上記陽極1と上記陰極2に挟持さ
れ食い込んだ固体高分子電解質膜である。
FIG. 15 is a diagram of an embodiment described in the specification of JP-A-6-63343. In FIG. 15, the anode 1 is composed of a catalyst layer 11 containing platinum and a porous base material 12 of stainless fiber, and the cathode 2 is composed of a catalyst layer 21 also containing platinum and a base material 22. The catalyst layers 11 and 21 are thin films and three-dimensionally distributed in the base materials 12 and 22, and in FIG. 15, the catalyst layers 11 and 21 three-dimensionally distributed in the base materials 12 and 22. 21 is indicated by a wavy line. Reference numeral 3 is a solid polymer electrolyte membrane sandwiched between the anode 1 and the cathode 2 and bite into it.

【0007】白金を有する触媒層11、21は、基材1
2、22に白金粉末と結着剤とからなるペーストを塗布
乾燥して構成したものであるが、白金粉末と樹脂とで混
練薄膜化したものを固体高分子電解質膜3に塗布した
り、あらかじめ固体高分子電解質膜3に無電解メッキ等
により白金めっきして構成されている。
The catalyst layers 11 and 21 containing platinum are the base material 1
2 and 22 are formed by applying and drying a paste containing platinum powder and a binder, and a thin and kneaded mixture of platinum powder and a resin is applied to the solid polymer electrolyte membrane 3 in advance. The solid polymer electrolyte membrane 3 is platinum-plated by electroless plating or the like.

【0008】この電解機能素子の製造方法としては、触
媒層11、21を塗布乾燥したステンレス繊維からなる
多孔質な基材12、22を固体高分子電解質膜3の表裏
に配置して、190℃、50kgf/cm2 の条件でホ
ットプレスするという方法が用いられている。走査型電
子顕微鏡による一部サンプルの断面の観察から、基材1
2、22に固体高分子電解質膜3が食い込むとともに触
媒層11、21も固体高分子電解質膜3に50μm近く
食い込んでおり、しかも触媒層11、21は変形して3
次元的に凹凸状に分布していることが確認されている。
As a method for manufacturing this electrolytic functional element, porous base materials 12 and 22 made of stainless fiber, on which catalyst layers 11 and 21 have been applied and dried, are arranged on the front and back of the solid polymer electrolyte membrane 3, and the temperature is set to 190 ° C. The method of hot pressing is used under the conditions of 50 kgf / cm 2 . From the observation of the cross section of a part of the sample with a scanning electron microscope, the base material 1
The solid polymer electrolyte membrane 3 bites into 2 and 22, and the catalyst layers 11 and 21 also bite into the solid polymer electrolyte membrane 3 by about 50 μm, and the catalyst layers 11 and 21 are deformed to 3
It has been confirmed that the distribution is uneven in a three-dimensional manner.

【0009】このような構造の電解機能素子には、図1
4の従来例のような押え治具が不要であり、構造が簡単
化できた。しかし、長時間の寿命安定性について調べた
ところ、徐々に基材12、22がはがれ易くなり、性能
が低下する欠点があることが判明した。また、この原因
として、触媒層11、21に存在する触媒粒子が離型剤
として働いていること、触媒層11、21に存在する触
媒粒子の近傍に水分が溜って、基材12、22がよりは
がれ易くしていることなどが分った。陽極1と基材12
あるいは陰極1と基材11がはがれると、集電がなされ
なくなり、もはや電解機能素子として機能しなくなる。
The electrolytic functional element having such a structure is shown in FIG.
The pressing jig as in the conventional example of No. 4 is unnecessary, and the structure can be simplified. However, when the long-term life stability was investigated, it was found that the base materials 12 and 22 gradually became easy to peel off, resulting in a decrease in performance. In addition, as the cause, the catalyst particles existing in the catalyst layers 11 and 21 act as a release agent, and the water is accumulated in the vicinity of the catalyst particles existing in the catalyst layers 11 and 21, so that the base materials 12 and 22 are formed. I found that it was easier to peel off. Anode 1 and substrate 12
Alternatively, when the cathode 1 and the base material 11 are peeled off, current collection is stopped and the electrolytic function element no longer functions.

【0010】[0010]

【発明が解決しようとする課題】従来の電解機能素子
は、以上のように構成されているので、図14に示す構
成の場合は、陽極1および陰極2と集電体4を密着させ
るために全体に面圧をかける必要があり、面圧をかける
ための押え板7やボルト8・ナット9などの押え治具が
必要なため、重くなる、嵩張るなどの問題点があった。
また、これを改良した図15に示す構成の従来例では、
陽極1と陰極2の触媒層11、21を基材12、22と
共に固体高分子電解質膜3の内部にまで食い込んだ構成
のものが用いられていたが、触媒層11、21に存在す
る触媒粒子の近傍に水分が溜ったりして徐々に基材1
2、22がはがれやすくなり、性能が低下するなどの欠
点があった。
Since the conventional electrolytic function element is configured as described above, in the case of the configuration shown in FIG. 14, in order to bring the anode 1 and the cathode 2 and the current collector 4 into close contact with each other. Since it is necessary to apply a surface pressure to the whole and a pressing jig such as a pressing plate 7 and bolts 8 and nuts 9 for applying the surface pressure is necessary, there are problems such as being heavy and bulky.
Further, in the conventional example having the configuration shown in FIG.
Although the catalyst layers 11 and 21 of the anode 1 and the cathode 2 are penetrated into the solid polymer electrolyte membrane 3 together with the substrates 12 and 22, the catalyst particles present in the catalyst layers 11 and 21 are used. Water gradually accumulates in the vicinity of the base material 1 and gradually
There was a defect that the Nos. 2 and 22 were easily peeled off and the performance was lowered.

【0011】この発明は上記のような問題点を解消する
ためになされたもので、押え治具を省くことができ、除
湿素子等への応用が可能であり、また、陽極および陰極
の両電極と触媒層および固体高分子電解質膜がはがれに
くい構造の電解機能素子及びその製造方法を得ることを
目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a holding jig can be omitted, and the invention can be applied to a dehumidifying element and the like, and both anode and cathode electrodes can be used. It is an object of the present invention to obtain an electrolytic functional element having a structure in which the catalyst layer and the solid polymer electrolyte membrane are difficult to peel off, and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】この発明に係る電解機能
素子は、固体高分子電解質膜と、複数の貫通穴が形成さ
れていて上記固体高分子電解質膜を挟持するようにして
その表裏に埋め込まれた金属板でなり外部から直流の電
源電圧が供給される電極をなす一対の基材と、この一対
の基材の外側の表面及びこれら基材の各貫通穴の中に存
在する上記固体高分子電解質膜の表面を覆うようにして
形成され外部の気体または液体分子の電解反応を促進さ
せる触媒層とを備えたものである。
An electrolytic functional element according to the present invention is a solid polymer electrolyte membrane, and a plurality of through holes are formed in the solid polymer electrolyte membrane so as to sandwich the solid polymer electrolyte membrane between the front and back sides. A pair of base materials which are electrodes made of a metal plate and to which a DC power supply voltage is supplied from the outside, and the above-mentioned solid heights existing on the outer surfaces of the pair of base materials and the through holes of these base materials. The catalyst layer is formed so as to cover the surface of the molecular electrolyte membrane and accelerates the electrolytic reaction of external gas or liquid molecules.

【0013】また、上記触媒層の外部と接する面には、
透湿性を有しかつ撥水性を有する薄膜が被覆されている
ことを特徴とするものである。
Further, on the surface of the catalyst layer that contacts the outside,
It is characterized by being coated with a thin film having moisture permeability and water repellency.

【0014】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側と上記固体高分子電解質膜に接している内側
とで穴の面積が異なることを特徴とするものである。
Further, the through-holes formed in at least one of the pair of base materials have a hole area between the outside which is not in contact with the solid polymer electrolyte membrane and the inside which is in contact with the solid polymer electrolyte membrane. It is characterized by being different.

【0015】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側から上記固体高分子電解質膜に接している内
側に向かって穴径を絞り、上記固体高分子電解質膜に接
していない外側の穴の面積の方が上記固体高分子電解質
膜に接している内側の穴の面積よりも大きいことを特徴
とするものである。
Further, the through hole formed in at least one of the pair of base materials has a hole diameter from the outside not in contact with the solid polymer electrolyte membrane to the inside in contact with the solid polymer electrolyte membrane. It is characterized in that the area of the outer hole not in contact with the solid polymer electrolyte membrane is larger than the area of the inner hole in contact with the solid polymer electrolyte membrane.

【0016】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いる内側から上記固体高分子電解質膜に接していない外
側に向かって穴径を絞り、上記固体高分子電解質膜に接
していない外側の穴の面積の方が上記固体高分子電解質
膜に接している内側の穴の面積よりも小さいことを特徴
とするものである。
Further, the through hole formed in at least one of the pair of base materials has a hole diameter from the inside which is in contact with the solid polymer electrolyte membrane to the outside which is not in contact with the solid polymer electrolyte membrane. It is characterized in that the area of the outer hole which is not in contact with the solid polymer electrolyte membrane is smaller than the area of the inner hole which is in contact with the solid polymer electrolyte membrane.

【0017】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側から上記固体高分子電解質膜に接している内
側に向かって定められた範囲内では狭めて行きその範囲
を超えると穴径を拡げて行くように開孔されたことを特
徴とするものである。
Further, the through hole formed in at least one of the pair of base materials is defined from the outside not in contact with the solid polymer electrolyte membrane to the inside in contact with the solid polymer electrolyte membrane. The hole is narrowed within the range, and the hole diameter is expanded when the range is exceeded.

【0018】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側と上記固体高分子電解質膜に接している内側
とで穴の面積が等しいことを特徴とするものである。
Further, the through holes formed in at least one of the pair of base materials have a hole area between the outside not in contact with the solid polymer electrolyte membrane and the inside in contact with the solid polymer electrolyte membrane. It is characterized by equality.

【0019】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、穴の内壁に突起を有していること
を特徴とするものである。
Further, the through hole formed in at least one of the pair of base materials is characterized in that it has a protrusion on the inner wall of the hole.

【0020】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、穴の真中が最も膨らんでいるいる
ことを特徴とするものである。
Further, the through hole formed in at least one of the pair of base materials is characterized in that the center of the hole is most swollen.

【0021】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、六角形状でなることを特徴とする
ものである。
Further, the through hole formed in at least one of the pair of base materials has a hexagonal shape.

【0022】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、円形形状でなることを特徴とする
ものである。
Further, the through hole formed in at least one of the pair of base materials has a circular shape.

【0023】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、菱形形状でなることを特徴とする
ものである。
Further, the through hole formed in at least one of the pair of base materials has a rhombic shape.

【0024】また、上記一対の基材の少なくとも一方
は、金属箔に鉛、金、パラジウムのうち少なくとも1つ
の成分の薄膜が被覆されていることを特徴とするもので
ある。
At least one of the pair of base materials is characterized in that a metal foil is coated with a thin film of at least one of lead, gold, and palladium.

【0025】また、上記一対の基材の複数の貫通穴の中
に存在する上記固体高分子電解質膜の一部は、上記固体
高分子電解質膜に接していない外側にまで溢れて凸状に
膨らんでいることを特徴とするものである。
Further, a part of the solid polymer electrolyte membrane present in the plurality of through holes of the pair of base materials overflows to the outside not in contact with the solid polymer electrolyte membrane and bulges in a convex shape. It is characterized by being out.

【0026】また、上記一対の基材の複数の貫通穴の中
に存在する上記固体高分子電解質膜の一部は、穴の内部
に留まり凹状にへこんでいることを特徴とするものであ
る。
Further, a part of the solid polymer electrolyte membrane existing in the plurality of through holes of the pair of base materials is characterized in that it remains in the holes and is recessed.

【0027】また、上記触媒層には、白金触媒粒子およ
び上記固体高分子電解質膜と同一または同等組成の固体
高分子電解質が含まれていることを特徴とするものであ
る。
The catalyst layer is characterized by containing platinum catalyst particles and a solid polymer electrolyte having the same or similar composition as the solid polymer electrolyte membrane.

【0028】また、この発明に係る電解機能素子の製造
方法は、固体高分子電解質膜の表裏に、複数の貫通穴が
形成された金属板でなり外部から直流の電源電圧が供給
される電極をなす一対の基材を埋め込む埋め込み工程
と、上記一対の基材の各貫通穴に存在する上記固体高分
子電解質膜の表面及び上記一対の基材の外側の表面に触
媒を塗布して外部の気体または液体分子の電解反応を促
進させる触媒層を形成する塗布工程とを含むものであ
る。
Further, in the method for manufacturing an electrolytic functional element according to the present invention, an electrode made of a metal plate having a plurality of through holes formed on the front and back sides of a solid polymer electrolyte membrane is provided with an external DC power supply voltage. An embedding step of embedding the pair of base materials, and applying a catalyst to the surface of the solid polymer electrolyte membrane present in each through hole of the pair of base materials and the outer surface of the pair of base materials to external gas. Alternatively, it includes a coating step of forming a catalyst layer for promoting an electrolytic reaction of liquid molecules.

【0029】また、上記埋め込み工程は、上記固体高分
子電解質膜の表裏に、上記一対の基材を該固体高分子電
解質膜が軟化する温度よりも高温でホットプレスして埋
め込むことを特徴とするものである。
The embedding step is characterized in that the pair of base materials are embedded in the front and back of the solid polymer electrolyte membrane by hot pressing at a temperature higher than the temperature at which the solid polymer electrolyte membrane softens. It is a thing.

【0030】また、上記埋め込み工程は、上記固体高分
子電解質膜に該固体高分子電解質膜を膨潤させる溶媒を
吸収させた後、ゲル化した固体高分子電解質膜の表裏に
上記一対の基材をプレスして埋め込むことを特徴とする
ものである。
In the embedding step, the solid polymer electrolyte membrane is allowed to absorb a solvent for swelling the solid polymer electrolyte membrane, and then the pair of base materials are placed on the front and back of the gelled solid polymer electrolyte membrane. It is characterized by being pressed and embedded.

【0031】また、上記溶媒は、有機溶液と水との混合
溶媒であることを特徴とするものである。
The above-mentioned solvent is a mixed solvent of an organic solution and water.

【0032】また、上記埋め込み工程は、上記固体高分
子電解質膜の表裏に配置された一対の基材の外側の表面
に凹凸面を有する板をさらに配置してプレスすることを
特徴とするものである。
The embedding step is characterized by further arranging and pressing a plate having an uneven surface on the outer surface of a pair of base materials arranged on the front and back of the solid polymer electrolyte membrane. is there.

【0033】さらに、上記触媒層の外部と接する表面
に、透湿性を有しかつ撥水性を有する薄膜を被覆する工
程をさらに含むことを特徴とするものである。
Further, the method is characterized by further comprising the step of coating the surface of the catalyst layer in contact with the outside with a thin film having moisture permeability and water repellency.

【0034】[0034]

【発明の実施の形態】以下、図1〜図11に示す実施の
形態に基づいて従来例と同一または相当部分には同一符
号を付してこの発明の電解機能素子の構成および製造方
法を説明する。まず、図1〜図4に示す実施の形態1〜
4に係る電解機能素子の構成例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, based on the embodiments shown in FIGS. 1 to 11, the same or corresponding parts as those of the conventional example will be designated by the same reference numerals to describe the structure and manufacturing method of the electrolytic function element of the present invention. To do. First, the first to the first embodiments shown in FIGS.
A configuration example of the electrolytic function element according to No. 4 will be described.

【0035】実施の形態1.図1はこの発明の実施の形
態1に係る電解機能素子の構成例を示す断面図である。
同図において、1は陽極、2は陰極、3は固体高分子電
解質膜、5は除湿室、6は外部直流電源、11と21は
集電板となる多穴金属板でなる基材、12と22は基材
11と21の各貫通穴31と32を介してはみ出た固体
高分子電解質膜3の表面及び上記基材11と21の外側
の表面を覆うようにして形成された触媒層、13と23
は触媒層12と22の表面を覆うようにして形成された
透湿性−撥水性薄膜で、例えば商品名「NFシート」
(徳山ソーダ製)を用いており、用途によって形成する
場合と形成しない場合がある。
Embodiment 1. 1 is a cross-sectional view showing a configuration example of an electrolytic functional element according to Embodiment 1 of the present invention.
In the figure, 1 is an anode, 2 is a cathode, 3 is a solid polymer electrolyte membrane, 5 is a dehumidifying chamber, 6 is an external DC power source, 11 and 21 are base materials made of a multi-hole metal plate serving as a current collector plate, 12 And 22 are catalyst layers formed so as to cover the surface of the solid polymer electrolyte membrane 3 protruding through the through holes 31 and 32 of the base materials 11 and 21 and the outer surface of the base materials 11 and 21, respectively. 13 and 23
Is a moisture-permeable / water-repellent thin film formed so as to cover the surfaces of the catalyst layers 12 and 22, and is, for example, a product name “NF sheet”.
(Made by Tokuyama Soda) is used and may or may not be formed depending on the application.

【0036】すなわち、図1に示す電解機能素子は、固
体高分子電解質膜3と、複数の貫通穴31、32が形成
されていて固体高分子電解質膜3を挟持するようにして
その表裏に埋め込まれた金属板でなり外部直流電源6に
よる電源電圧が供給される電極をなす一対の基材11、
21と、この一対の基材11、21の外側の表面及びこ
れら基材11、21の各貫通穴31、32に存在する固
体高分子電解質膜3の表面を覆うようにして形成され外
部の気体または液体分子の電解反応を促進させる触媒層
12、22と、この触媒層12、22の外部と接する面
に形成された透湿性−撥水性薄膜13、23とを備えて
いる。
That is, in the electrolytic functional element shown in FIG. 1, the solid polymer electrolyte membrane 3 and a plurality of through holes 31, 32 are formed so that the solid polymer electrolyte membrane 3 is sandwiched and embedded in the front and back. A pair of base materials 11 made of a metal plate and serving as electrodes to which the power supply voltage from the external DC power supply 6 is supplied,
21 and the outside surface of the pair of base materials 11 and 21 and the surface of the solid polymer electrolyte membrane 3 present in the through holes 31 and 32 of the base materials 11 and 21 to form an external gas. Alternatively, it is provided with catalyst layers 12 and 22 that promote the electrolytic reaction of liquid molecules, and moisture-permeable / water-repellent thin films 13 and 23 formed on the surfaces of the catalyst layers 12 and 22 that are in contact with the outside.

【0037】ここで、各貫通穴31、32の大きさは、
図1では拡大して示されているが、実際の大きさは、数
十μmであり、多穴金属板としての基材11、12は厚
さ40μmの福田金属箔粉工業社製の電解ニッケルパタ
ーン箔にパラジウムをメッキしたものを用い、固体高分
子電解質膜3としては、デュポン社から市販されている
ナフィオン−117を用いた。また、触媒層12、22
には、白金黒と、固体高分子電解質3としてアルドリッ
チ社から市販されているナフィオン(Nafion)溶
液(5重量%、水アルコール混合溶媒)を混合塗布した
ものを用いたが、白金触媒粒子および上記固体高分子電
解質膜3と同一または同等組成の固体高分子電解質が含
まれているものを用いても良い。さらに、基材11、1
2の電解ニッケルパターン箔にパラジウム以外にも、鉛
または金をメッキしても耐食性が向上することを確認し
た。
Here, the size of each through hole 31, 32 is
Although it is enlarged and shown in FIG. 1, the actual size is several tens of μm, and the base materials 11 and 12 as multi-hole metal plates are 40 μm thick electrolytic nickel made by Fukuda Metal Foil & Powder Co., Ltd. A pattern foil plated with palladium was used, and as the solid polymer electrolyte membrane 3, Nafion-117 commercially available from DuPont was used. In addition, the catalyst layers 12, 22
As the solid polymer electrolyte 3, a mixture of platinum black and a Nafion solution (5% by weight, hydroalcohol mixed solvent) commercially available from Aldrich Co. was used as the solid polymer electrolyte. You may use what contains the solid polymer electrolyte of the same or equivalent composition as the solid polymer electrolyte membrane 3. Further, the base materials 11, 1
It was confirmed that the corrosion resistance is improved even when the electrolytic nickel pattern foil of 2 is plated with lead or gold in addition to palladium.

【0038】また、図1に示す電解機能素子において、
各貫通穴31、32は、固体高分子電解質膜3に接して
いない外側と固体高分子電解質膜3に接している内側と
で穴の面積が異なり、固体高分子電解質膜3に接してい
ない外側から内側に向かって穴径を絞り、外側の穴の面
積の方が内側の穴の面積よりも大きくなっている。そし
て、各貫通穴31、32の中に存在する固体高分子電解
質膜3の一部は、外側にまで溢れて凸状に膨らんでい
る。
In the electrolytic functional element shown in FIG. 1,
Each of the through holes 31 and 32 has a different hole area between the outer side not in contact with the solid polymer electrolyte membrane 3 and the inner side in contact with the solid polymer electrolyte membrane 3, and the outer side not in contact with the solid polymer electrolyte membrane 3. The diameter of the hole is narrowed from the inside to the outside, and the area of the outside hole is larger than the area of the inside hole. Then, a part of the solid polymer electrolyte membrane 3 existing in each through hole 31, 32 overflows to the outside and bulges in a convex shape.

【0039】図5(a)、(b)は多穴金属板でなる基
材11、21表面の拡大図であり、同図(a)が固体高
分子電解質膜3に接していない外側の表面、同図(b)
は固体高分子電解質膜3と接する内側の表面である。図
において、41、43は基材11、21の金属部、4
2、44は基材11、21の貫通穴であり、内側の貫通
穴44よりも外側の貫通穴42の方が面積が大きくなっ
ている。
FIGS. 5 (a) and 5 (b) are enlarged views of the surfaces of the base materials 11 and 21 made of a multi-hole metal plate. FIG. 5 (a) shows the outer surface not in contact with the solid polymer electrolyte membrane 3. , The figure (b)
Is an inner surface in contact with the solid polymer electrolyte membrane 3. In the figure, 41 and 43 are metal parts of the base materials 11 and 21, 4
Reference numerals 2 and 44 are through holes of the base materials 11 and 21, and the area of the outer through hole 42 is larger than that of the inner through hole 44.

【0040】したがって、この実施の形態1によれば、
固体高分子電解質膜3が基材11、21の貫通穴31、
32の中に食い込んでおり、その間に触媒粒子が介在し
ていないので、固体高分子電解質膜3と集電板である多
穴金属板でなる基材11、21がはがれにくくなると共
に、固体高分子電解質膜3と電極部を構成する基材1
1、21とを機械的に強固に固定して、より安定した電
解機能素子を得ることができる。
Therefore, according to the first embodiment,
The solid polymer electrolyte membrane 3 has through holes 31 in the base materials 11 and 21,
Since the solid polymer electrolyte membrane 3 and the base materials 11 and 21 made of a multi-hole metal plate that is a current collector plate are hard to peel off, the solid high Base material 1 that constitutes the molecular electrolyte membrane 3 and the electrode part
1, 21 can be mechanically and firmly fixed to each other to obtain a more stable electrolytic function element.

【0041】また、基材11、21は、金属箔にパラジ
ウムメッキ、鉛メッキ、または金メッキしたもので構成
するので、基材11、21の耐蝕性が増し、基材11、
21でのガス発生が抑制されるので、固体高分子電解質
膜3が、よりはがれにくくなる。また、貫通穴31、3
2に存在する固体高分子電解質膜3の一部が穴の外側に
まで溢れて凸に膨らんでいるので、電極面積を広くとる
ことができ、除湿性能を向上させることができる。
Further, since the base materials 11 and 21 are composed of a metal foil plated with palladium, lead plated, or gold, the corrosion resistance of the base materials 11 and 21 is increased, and the base materials 11 and 21 are increased.
Since the gas generation at 21 is suppressed, the solid polymer electrolyte membrane 3 becomes more difficult to peel off. Also, the through holes 31, 3
Since a part of the solid polymer electrolyte membrane 3 existing in 2 overflows to the outside of the hole and bulges convexly, the electrode area can be increased and the dehumidification performance can be improved.

【0042】また、触媒層12、22に白金触媒粒子お
よび固体高分子電解質が含まれているので、基材11、
21の貫通穴31、32の中の固体高分子電解質膜3表
面および基材11、21表面の触媒層12、22の白金
触媒粒子を結着させ、電子的およびイオン的な導電性を
維持させることができる。さらに、陽極1と陰極2の外
部気体と接触する面が透湿性を有しかつ撥水性を有する
薄膜13、23で被覆されているので、電極反応面が汚
染されず、非通電時の結露による局部電池腐食等を抑制
することができる。
Further, since the catalyst layers 12 and 22 contain the platinum catalyst particles and the solid polymer electrolyte, the base material 11,
The platinum catalyst particles of the surface of the solid polymer electrolyte membrane 3 in the through holes 31 and 32 of 21 and the catalyst layers 12 and 22 of the surfaces of the substrates 11 and 21 are bound to maintain electronic and ionic conductivity. be able to. Furthermore, since the surfaces of the anode 1 and the cathode 2 that come into contact with the external gas are covered with the moisture-permeable and water-repellent thin films 13 and 23, the electrode reaction surface is not contaminated, and dew condensation occurs when no current is applied. It is possible to suppress local battery corrosion and the like.

【0043】実施の形態2.次に、図2はこの発明の実
施の形態2に係る電解機能素子の構成例を示す断面図で
ある。図2において、図1に示す実施の形態1と同一ま
たは相当部分には同一符号を付してその説明は省略す
る。図2に示す実施の形態2では、図1に示す実施の形
態1と比較して、基材11、21に形成された貫通穴3
1、32を、固体高分子電解質膜3に接している内側か
ら固体高分子電解質膜3に接していない外側に向かって
穴径を絞り、固体高分子電解質膜3に接していない外側
の穴の面積の方が固体高分子電解質膜3に接している内
側の穴の面積よりも小さくしたものである。
Embodiment 2 Next, FIG. 2 is a sectional view showing a configuration example of an electrolytic functional element according to Embodiment 2 of the present invention. In FIG. 2, the same or corresponding parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. The second embodiment shown in FIG. 2 is different from the first embodiment shown in FIG. 1 in that the through holes 3 formed in the base materials 11 and 21.
The holes 1 and 32 are narrowed from the inner side in contact with the solid polymer electrolyte membrane 3 toward the outer side not in contact with the solid polymer electrolyte membrane 3 so that the outer holes not in contact with the solid polymer electrolyte membrane 3 are The area is smaller than the area of the inner hole in contact with the solid polymer electrolyte membrane 3.

【0044】このように構成することにより、固体高分
子電解質膜3に接している内側から固体高分子電解質膜
3に接していない外側にかけて食い込んでいる固体高分
子電解質膜3がよりはがれにくくなり、固体高分子電解
質膜3と電極部を構成する基材11、21とを機械的に
さらに強固に固定することができると共に、触媒層1
2、22表面部分の電界強度を大きくして電極間の印加
電圧を小さくすることができ、かつ素子の電圧特性を改
善することができる。
With this structure, the solid polymer electrolyte membrane 3 that bites from the inside that is in contact with the solid polymer electrolyte membrane 3 to the outside that is not in contact with the solid polymer electrolyte membrane 3 becomes more difficult to peel off, The solid polymer electrolyte membrane 3 and the base materials 11 and 21 forming the electrode portion can be mechanically and more firmly fixed, and the catalyst layer 1
It is possible to increase the electric field strength of the surface portions of the electrodes 22 and 22 to reduce the applied voltage between the electrodes and improve the voltage characteristics of the device.

【0045】実施の形態3.次に、図3はこの発明の実
施の形態3に係る電解機能素子の構成例を示す断面図で
ある。図3において、図1に示す実施の形態1と同一ま
たは相当部分には同一符号を付してその説明は省略す
る。図3に示す実施の形態3では、図1に示す実施の形
態1と比較して、基材11、21に形成された貫通穴3
1、32を、穴の内壁に突起を有する構造としたもの
で、貫通穴31、32は、固体高分子電解質膜3に接し
ていない外側から固体高分子電解質膜3に接している内
側に向かって定められた範囲内では狭めて行きその範囲
を超えると穴径を拡げて行くように開孔されている。
Embodiment 3 Next, FIG. 3 is a sectional view showing a configuration example of an electrolytic functional element according to Embodiment 3 of the present invention. In FIG. 3, the same or corresponding parts as those of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In the third embodiment shown in FIG. 3, as compared with the first embodiment shown in FIG. 1, the through holes 3 formed in the base materials 11 and 21.
1, 32 has a structure having protrusions on the inner wall of the hole, and the through holes 31, 32 are directed from the outer side not in contact with the solid polymer electrolyte membrane 3 to the inner side in contact with the solid polymer electrolyte membrane 3. The hole is narrowed within the range defined by the above, and the hole diameter is expanded when it exceeds the range.

【0046】このように構成することにより、基材1
1、21に形成された貫通穴31、32に食い込んでい
る固体高分子電解質膜3が実施の形態1及び2よりもさ
らにはがれにくくなり、固体高分子電解質膜3と電極部
を構成する基材11、21とを機械的にさらに強固に固
定することができる。
With this structure, the base material 1
The solid polymer electrolyte membrane 3 biting into the through holes 31 and 32 formed in Nos. 1 and 21 becomes more difficult to peel off than in the first and second embodiments, and the base material forming the solid polymer electrolyte membrane 3 and the electrode part 11 and 21 can be mechanically and more firmly fixed.

【0047】実施の形態4.次に、図4はこの発明の実
施の形態4に係る電解機能素子の構成例を示す断面図で
ある。図4において、図1に示す実施の形態1と同一ま
たは相当部分には同一符号を付してその説明は省略す
る。図4に示す実施の形態4では、図1に示す実施の形
態1と比較して、基材11、21に形成された貫通穴3
1、32を、固体高分子電解質膜3に接していない外側
と固体高分子電解質膜3に接している内側とで穴の面積
が等しい構造としたものである。
Embodiment 4 Next, FIG. 4 is a sectional view showing a configuration example of an electrolytic functional element according to Embodiment 4 of the present invention. 4, parts that are the same as or correspond to those in the first embodiment shown in FIG. 1 are assigned the same reference numerals, and descriptions thereof will be omitted. In the fourth embodiment shown in FIG. 4, as compared with the first embodiment shown in FIG. 1, the through holes 3 formed in the base materials 11 and 21.
Nos. 1 and 32 have a structure in which the areas of the holes that are not in contact with the solid polymer electrolyte membrane 3 are the same as the areas of the holes that are in contact with the solid polymer electrolyte membrane 3.

【0048】固体高分子電解質膜3と電極部を構成する
基材11、21とを機械的に強固に固定する要求がない
場合には、このように平行な貫通穴31、32を形成す
るようにして良い。
If there is no requirement to mechanically and firmly fix the solid polymer electrolyte membrane 3 and the base materials 11 and 21 constituting the electrode portion, such parallel through holes 31 and 32 are formed. You can

【0049】図6と図7は上述した実施の形態1〜4に
係る電解機能素子の電極構成を極端に比較して示す電極
構成図と図6に示す貫通穴の外面に沿った点A〜B間の
触媒層表面に形成される電界強度をそれそれ示す特性図
を示すものである。なお、図6では触媒層12、22を
説明の都合上平坦にして示している。図6に示すよう
に、外側に向かって絞った貫通穴の形状の場合(実施の
形態2)の点Bにおける電界強度は、図7に示す如く、
0.3×10-2V/μmであり、外側に向かって開いた
貫通穴の形状の場合(実施の形態1)の点Bにおける電
界強度0.2×10-2V/μmに比べて1.5倍の電界
強度となっている。これから、電界強度と印加電圧は比
例関係にあるため、所定の電界強度を得ようとすると
き、実施の形態2の場合の両極への印加電圧は実施の形
態1の場合に比べて1/1.5に低減できる。すなわ
ち、貫通穴の穴形状を表面に電界集中する形状にするこ
とによって素子の電圧特性を改善している。
6 and 7 are electrode configuration diagrams showing an extreme comparison of the electrode configurations of the electrolytic functional elements according to the above-described first to fourth embodiments, and points A to A along the outer surface of the through hole shown in FIG. It is a characteristic diagram showing the electric field strength formed on the surface of the catalyst layer between B. In FIG. 6, the catalyst layers 12 and 22 are shown flat for convenience of explanation. As shown in FIG. 6, the electric field strength at the point B in the case of the shape of the through hole squeezed outward (Embodiment 2) is as shown in FIG.
0.3 × 10 −2 V / μm, which is higher than the electric field intensity of 0.2 × 10 −2 V / μm at the point B in the case of the shape of the through hole opened toward the outside (Embodiment 1). The electric field strength is 1.5 times. From this, since the electric field strength and the applied voltage are in a proportional relationship, when a predetermined electric field strength is to be obtained, the applied voltage to both electrodes in the case of the second embodiment is 1/1 compared to the case of the first embodiment. It can be reduced to .5. That is, the voltage characteristic of the element is improved by forming the shape of the through hole so that the electric field is concentrated on the surface.

【0050】図示のごとく、実施の形態2は、実施の形
態1と比較して触媒層12、22近傍の電界強度を大き
くするために、貫通穴31、32の穴径を外側(触媒層
12、22側)に向って絞り、また、実施の形態3は、
触媒層12、22近傍の電界強度を大きくすると共に、
電極部を構成する基材11、21と固体高分子電解質膜
3とを機械的に強固に固定するために、貫通穴31、3
2の穴径を外側に向かって絞ると共に、外面近傍で局部
的に穴径を外側に向かって大きくして、穴内壁に突起を
形成するようにし、電極部を構成する基材11、21と
固体高分子電解質膜3を機械的に強固に固定している。
なお、実施の形態4は、平行な貫通穴31、32を形成
した例を示したもので、電極部を構成する基材11、2
1と固体高分子電解質膜3とを機械的に強固に固定する
要求の大きくない場合は実施の形態4に示すような構成
にしても良い。このような電極構成によれば、電界強度
の大きさは、図7に示すごとく、実施の形態2、実施の
形態4、実施の形態3、実施の形態1の順となる。
As shown in the figure, in the second embodiment, in order to increase the electric field strength in the vicinity of the catalyst layers 12 and 22 as compared with the first embodiment, the hole diameters of the through holes 31 and 32 are set outside (the catalyst layer 12). , 22 side), and in the third embodiment,
While increasing the electric field strength near the catalyst layers 12 and 22,
Through holes 31, 3 are provided to mechanically and firmly fix the base materials 11 and 21 forming the electrode portion and the solid polymer electrolyte membrane 3.
The hole diameter of No. 2 is narrowed toward the outside, and the hole diameter is locally increased near the outer surface toward the outside so as to form a protrusion on the inner wall of the hole. The solid polymer electrolyte membrane 3 is mechanically firmly fixed.
In addition, Embodiment 4 shows an example in which the parallel through holes 31 and 32 are formed, and the base materials 11 and 2 that form the electrode portion are shown.
If there is not a strong demand for mechanically firmly fixing the solid polymer electrolyte membrane 1 and the solid polymer electrolyte membrane 3, the configuration shown in Embodiment 4 may be adopted. With such an electrode configuration, the magnitude of the electric field strength is in the order of the second embodiment, the fourth embodiment, the third embodiment, and the first embodiment, as shown in FIG.

【0051】実施の形態5.次に、この発明に係る電解
機能素子の製造方法について説明する。図8はホットプ
レスを行う前の部材を並べた状態の断面図を示したもの
で、図1と同様に、貫通穴31、32を拡大して示して
いる。図8において、50は固体高分子電解質素子3の
表裏に配置された一対の基材11、21の外側の表面に
配置されるサンドペーパーで、51がその布部分、52
が砂の粗粒子があって凹凸のある部分である。
Embodiment 5. Next, a method for manufacturing the electrolytic function element according to the present invention will be described. FIG. 8 shows a cross-sectional view of a state in which members before hot pressing are arranged, and similarly to FIG. 1, the through holes 31 and 32 are enlarged and shown. In FIG. 8, 50 is a sandpaper arranged on the outer surface of the pair of base materials 11 and 21 arranged on the front and back sides of the solid polymer electrolyte element 3, and 51 is a cloth portion, 52
Is a part with rough particles of sand and unevenness.

【0052】これらの部材をホットプレス装置に順次重
ねて配置し、固体高分子電解質素子3が軟化する温度よ
りも高温、例えば190℃、50kgf/cm2 の条件
でホットプレスした。これを100℃以下に冷却した
後、取り出し、サンドベーパー50を分離した後、白金
黒と固体高分子電解質として、アルドリッチ社から市販
されているナフィオン溶液(5重量%、水アルコール混
合溶媒)を混合した溶液を刷毛塗りによって貫通穴3
1、32にしみ出した固体高分子電解質膜3および基材
11、21の金属部41に塗布し、窒素雰囲気中150
℃で5分間加熱処理して固体高分子電解質3を溶融さ
せ、触媒を結着させて触媒層12、22を形成すると共
に、その上に触媒層12と22の表面を覆うようにして
透湿性−撥水性薄膜13、23(図1参照)を形成し
た。
These members were placed one on top of the other in a hot pressing machine and hot pressed at a temperature higher than the temperature at which the solid polymer electrolyte element 3 softened, for example 190 ° C. and 50 kgf / cm 2 . This was cooled to 100 ° C. or lower, taken out, and the sand vapor 50 was separated, and then platinum black and a solid polymer electrolyte were mixed with a Nafion solution (5% by weight, a water-alcohol mixed solvent) commercially available from Aldrich. The solution prepared by brushing is applied to the through hole 3
1 and 32 are applied to the solid polymer electrolyte membrane 3 and the metal parts 41 of the base materials 11 and 21, which are extruded in the nitrogen atmosphere.
The solid polymer electrolyte 3 is melted by heating at 5 ° C for 5 minutes, the catalyst is bound to form the catalyst layers 12 and 22, and the surfaces of the catalyst layers 12 and 22 are covered therewith to have moisture permeability. -Water-repellent thin films 13 and 23 (see FIG. 1) were formed.

【0053】このように、実施の形態5に係る電解機能
素子の製造方法は、固体高分子電解質膜3の表裏に、複
数の貫通穴31、32が形成された一対の基材11、2
1を埋め込む埋め込み工程と、上記一対の基材11、2
1の各貫通穴31、32に存在する上記固体高分子電解
質膜3の表面及び上記一対の基材11、21の外側の表
面に触媒を塗布して外部の気体または液体分子の電解反
応を促進させる触媒層12、22を形成する塗布工程と
を含むので、固体高分子電解質膜3と多穴金属板でなる
基材11、21との間に、はずれの原因になる触媒粒子
を介在させずに、基材11、21の穴に固体高分子電解
質膜3を食い込ませることができ、しかも簡単に触媒層
12、22を形成し、安価に電解機能素子の製造を行う
ことができる。
As described above, in the method of manufacturing the electrolytic functional element according to the fifth embodiment, the pair of base materials 11 and 2 in which the plurality of through holes 31 and 32 are formed on the front and back of the solid polymer electrolyte membrane 3 are used.
1 embedding step, and the pair of base materials 11, 2
A catalyst is applied to the surface of the solid polymer electrolyte membrane 3 present in each of the through holes 31 and 32 of 1 and the outer surface of the pair of base materials 11 and 21 to promote the electrolytic reaction of external gas or liquid molecules. Since it includes a coating step of forming the catalyst layers 12 and 22, the catalyst particles that cause the detachment are not interposed between the solid polymer electrolyte membrane 3 and the base materials 11 and 21 made of a multi-hole metal plate. In addition, the solid polymer electrolyte membrane 3 can be made to bite into the holes of the base materials 11 and 21, and the catalyst layers 12 and 22 can be easily formed, and the electrolytic functional element can be manufactured at low cost.

【0054】また、上記埋め込み工程は、上記固体高分
子電解質膜3の表裏に、凹凸面を有するサンドペーパー
50をさらに配置して、上記一対の基材11、21を該
固体高分子電解質膜3が軟化する温度よりも高温でホッ
トプレスして埋め込むので、固体高分子電解質膜3の一
部が穴の外側にまで溢れて凸に膨らんでいる構造を作る
ことができ、固体高分子電解質膜3がよりはずれにくく
なり、より安定した性能の電解機能素子が得られる。
Further, in the embedding step, sandpaper 50 having an uneven surface is further arranged on the front and back of the solid polymer electrolyte membrane 3 so that the pair of base materials 11 and 21 is attached to the solid polymer electrolyte membrane 3. Since the solid polymer electrolyte membrane 3 is embedded by hot pressing at a temperature higher than the softening temperature, it is possible to form a structure in which a part of the solid polymer electrolyte membrane 3 overflows to the outside of the hole and bulges convexly. Is less likely to come off, and an electrolytic functional element with more stable performance can be obtained.

【0055】さらに、上記触媒層12、22の外部と接
する表面に、透湿性を有しかつ撥水性を有する透湿性−
撥水性薄膜13、23を被覆する工程をさらに含むの
で、陽極及び陰極の気体と接触する面が透湿性−撥水性
薄膜13、23で被覆されて、電極反応面が汚染され
ず、非通電時の結露による局部電池腐食等を抑制するこ
とができる。
Furthermore, the surfaces of the catalyst layers 12 and 22 that come into contact with the outside have moisture permeability and water repellency.
Since the method further includes the step of coating the water-repellent thin films 13 and 23, the surfaces of the anode and the cathode that come into contact with the gas are covered with the moisture-permeable / water-repellent thin films 13 and 23, so that the electrode reaction surface is not contaminated and is not energized. It is possible to suppress local battery corrosion and the like due to dew condensation.

【0056】上述したようにして製造された電解機能素
子に対して、その後、外部直流電源との接続用の端子と
配線を行った後、樹脂製の枠にはめて接着剤で周辺部を
固定し、ガスシールした。最後に、除湿性能の評価箱に
この電解機能素子を取り付け、次に、全体を恒温恒湿槽
に入れて除湿性能の評価を行った。
The electrolytic function element manufactured as described above is then connected to terminals for external DC power supply and wiring, and then fitted in a resin frame to fix the peripheral portion with an adhesive. And gas sealed. Finally, this electrolytic functional element was attached to a dehumidification performance evaluation box, and then the whole was placed in a thermo-hygrostat to evaluate the dehumidification performance.

【0057】図9は従来の電解機能素子とこの発明の電
解機能素子の除湿性能の評価試験結果である。図9の破
線61は陰極側の外部大気湿度で恒温恒湿槽で35℃、
相対湿度80%に保持されている。なお、印加電圧はD
C3V〜4Vで、相対湿度と流れる電流値をモニターし
た。曲線62と曲線63は従来の電解機能素子の除湿性
能を示す除湿室の湿度変化、曲線64はこの発明の図1
の電解機能素子の除湿性能を示す除湿室の湿度変化であ
る。図において横軸は時間であり、湿度の低下が早いも
の程、除湿性能が高い。従って、実施の形態は従来の電
解機能素子よりも除湿性能が高くなっていることがわか
る。なお、曲線62の従来の電解機能素子としては、ナ
フィオン−117の両面をサンドブラストにより粗面化
し、無電解メッキにより白金を析出させた後、2枚のタ
ンタル製メッシュの集電板ではさんで、押え板などで面
圧をかけたものを用いた。
FIG. 9 shows the dehumidification performance evaluation test results of the conventional electrolytic function element and the electrolytic function element of the present invention. The broken line 61 in FIG. 9 indicates the outside atmospheric humidity on the cathode side at 35 ° C. in a constant temperature and humidity chamber.
The relative humidity is maintained at 80%. The applied voltage is D
The relative humidity and the flowing current value were monitored at C3V to 4V. Curves 62 and 63 represent changes in the humidity of the dehumidifying chamber showing the dehumidifying performance of the conventional electrolytic function element, and a curve 64 represents FIG. 1 of the present invention.
3 is a humidity change in the dehumidifying chamber showing the dehumidifying performance of the electrolytic function element of FIG. In the figure, the horizontal axis is time, and the faster the humidity decreases, the higher the dehumidification performance. Therefore, it is understood that the embodiment has higher dehumidification performance than the conventional electrolytic function element. As the conventional electrolytic function element of the curve 62, both surfaces of Nafion-117 are roughened by sandblasting, platinum is deposited by electroless plating, and then sandwiched by two tantalum mesh current collector plates. A pressure plate was used to apply surface pressure.

【0058】また、曲線63の従来の電解機能素子とし
ては、図15の構成のものを用いた。曲線63の従来の
電解機能素子と曲線64の実施の形態の電解機能素子の
除湿性能の差は小さかったが、しかし、外部回路を流れ
た電流値は、この発明の実施の形態よりも図15の構成
の従来例の方がはるかに大きく、この発明の実施の形態
の方が電流効率が高く優れていることが分った。これ
は、多穴金属板でなる基材11、21によって固体高分
子電解質膜3が覆われているので、固体高分子電解質膜
3を介しての水の逆拡散(陰極から陽極への水の戻り)
が起こりにくいためと推定される。
As the conventional electrolytic function element having the curve 63, the one having the structure shown in FIG. 15 was used. Although the difference in dehumidification performance between the conventional electrolytic function element of curve 63 and the electrolytic function element of the embodiment of curve 64 was small, the current value flowing through the external circuit was smaller than that of the embodiment of the present invention. It has been found that the conventional example having the above-mentioned configuration is much larger, and the embodiment of the present invention is superior in current efficiency. This is because the solid polymer electrolyte membrane 3 is covered with the base materials 11 and 21 made of a multi-hole metal plate, so that the water is reversely diffused through the solid polymer electrolyte membrane 3 (the water from the cathode to the anode is return)
It is presumed that this is unlikely to occur.

【0059】さらに、図15の従来例の構成の電解機能
素子とこの発明の実施の形態を長期に運転試験して除湿
性能の安定性を試験した。図10は長時間の除湿性能の
安定性を試験したもので、曲線65は図15の従来例の
構成の電解機能素子の相対湿度の変化、曲線66はこの
発明の実施の形態の電解機能素子の相対湿度の変化で、
実施の形態の場合、相対湿度が安定していて、安定した
除湿性能が維持されているのに対して、従来例の場合、
相対湿度が徐々に増大して4000時間付近で急激に増
大しており、除湿性能が低下していることが分る。試験
後の電解機能素子の分解調査の結果、従来例の場合に固
体高分子膜3と集電板4が素子の中央付近を中心に、は
がれかかっていたことが分った。
Further, the stability of dehumidification performance was tested by conducting an operation test for a long time on the electrolytic functional element having the configuration of the conventional example of FIG. 15 and the embodiment of the present invention. FIG. 10 shows a test of stability of dehumidification performance for a long time. A curve 65 shows a change in relative humidity of the electrolytic functional element having the configuration of the conventional example shown in FIG. 15, and a curve 66 shows an electrolytic functional element of the embodiment of the present invention. Change in relative humidity of
In the case of the embodiment, relative humidity is stable, while stable dehumidification performance is maintained, whereas in the case of the conventional example,
It can be seen that the relative humidity gradually increased and then drastically increased in the vicinity of 4000 hours, and the dehumidification performance deteriorated. As a result of disassembling and investigating the electrolytic functional element after the test, it was found that in the case of the conventional example, the solid polymer film 3 and the current collector plate 4 were about to come off around the center of the element.

【0060】実施の形態6.図11はこの発明の実施の
形態6の構成を示す断面図である。この実施の形態6で
は、図1に示す実施の形態1と異なり、多穴金属板でな
る基材11、21の貫通穴31、32に固体高分子電解
質膜3の一部が凹状に入っており、触媒層12、23及
び透湿性−撥水性薄膜13、23も凹状になっている。
貫通穴31、32への固体高分子電解質膜3の入り方に
よる除湿性能の違いを調べた所、図1のように凸状に膨
らんでいる場合と、図11のように凹状にへこんでいる
場合に除湿性能が高くなることが分った。おそらく、凸
または凹になった場合には触媒層13、23及び透湿性
−撥水性薄膜13、23の表面積が拡大され、電極面積
を広く取ることができて電解反応が向上するためと推定
される。なお、基材11、21上の触媒層13、23を
取り去った場合には、抵抗が高くなって除湿性能も低下
するなどの影響が見られたので、集電の役割の他に、基
材11、21上の触媒層13、23についてもある程度
除湿反応に関与していると推定される。また、触媒層1
3、23として白金黒のみを塗布した場合は、固体高分
子電解質膜3から白金黒が剥がれ落ちてしまった。
Embodiment 6 FIG. 11 is a sectional view showing the structure of the sixth embodiment of the present invention. In the sixth embodiment, unlike the first embodiment shown in FIG. 1, a part of the solid polymer electrolyte membrane 3 is recessed in the through holes 31, 32 of the base materials 11, 21 made of a multi-hole metal plate. Thus, the catalyst layers 12 and 23 and the moisture-permeable / water-repellent thin films 13 and 23 are also concave.
When the difference in dehumidification performance depending on how the solid polymer electrolyte membrane 3 enters the through holes 31 and 32 was examined, it was bulged in a convex shape as shown in FIG. 1 and was dented in a concave shape as shown in FIG. It was found that the dehumidification performance was improved in some cases. It is presumed that if the surface becomes convex or concave, the surface areas of the catalyst layers 13 and 23 and the moisture-permeable / water-repellent thin films 13 and 23 are increased, and the electrode area can be increased to improve the electrolytic reaction. It In addition, when the catalyst layers 13 and 23 on the base materials 11 and 21 were removed, the resistance was increased and the dehumidification performance was also decreased. It is estimated that the catalyst layers 13 and 23 on 11 and 21 are also involved in the dehumidification reaction to some extent. Also, the catalyst layer 1
When only platinum black was applied as Nos. 3 and 23, the platinum black was peeled off from the solid polymer electrolyte membrane 3.

【0061】実施の形態7.次に、図12(a)、
(b)は、それぞれこの発明の実施の形態7の構成を示
す多穴金属板でなる基材11、21上の表面の模様であ
り、基材12、21の貫通穴42、44が必ずしも図5
(a)、(b)のような六角形である必要はなく、図1
2(a)の円形の貫通穴42や、図12(b)のような
菱形の貫通穴44になる多穴金属板を用いても、はがれ
にくく、除湿性能の高い電解機能素子を得ることができ
た。これらの多穴金属板でなる基材11、21は全てニ
ッケル箔であり、表と裏で模様の大きさが異なる。これ
は、このような市販の多穴金属板が、一方の面にのみ感
光液を塗布して穴の模様のネガを介して光を照射して不
溶性に変化させて耐蝕膜とし、電解槽で電解して残りの
部分にニッケルを電析させるという製法を用いているた
めである。
Embodiment 7 FIG. Next, as shown in FIG.
(B) is a pattern of the surface on the base materials 11, 21 made of a multi-hole metal plate showing the configuration of the seventh embodiment of the present invention, and the through holes 42, 44 of the base materials 12, 21 are not necessarily shown. 5
It is not necessary to have a hexagonal shape as shown in (a) and (b).
Even if a circular through hole 42 of 2 (a) or a multi-hole metal plate forming a rhombic through hole 44 as shown in FIG. 12 (b) is used, it is possible to obtain an electrolytic functional element that is hard to peel off and has high dehumidification performance. did it. The base materials 11 and 21 made of these multi-hole metal plates are all nickel foils, and the sizes of the patterns are different between the front and back. This is because such a commercially available multi-hole metal plate is coated with a photosensitive solution on only one surface and irradiated with light through the negative of the hole pattern to change it to insoluble to form a corrosion resistant film, This is because a manufacturing method is used in which electrolysis is performed to deposit nickel on the remaining portion.

【0062】実施の形態8.図13(a)、(b)はそ
れぞれこの発明の実施の形態8の構成を示す多穴金属板
の断面図であり、図13(a)では貫通穴31に突起3
3が、図13(b)では貫通穴31の真中が最も膨らん
でいる盛り上がり部34がある。機械的なパンチングで
作成した場合に突起33が生じることがあり、化学的エ
ッチングによって作成した場合には真中が最も膨れ易く
盛り上がり部34が生じやすい。これらの多穴金属板で
なる基材11、21を用いた場合についても、はがれに
くく、除湿性能の高い電解機能素子3を得ることができ
た。
Embodiment 8 FIG. 13 (a) and 13 (b) are cross-sectional views of a multi-hole metal plate showing the configuration of Embodiment 8 of the present invention, and in FIG.
In FIG. 13 (b), there is a raised portion 34 in which the center of the through hole 31 is the most swollen. When formed by mechanical punching, protrusions 33 may occur, and when formed by chemical etching, the center is most likely to swell and a raised portion 34 is likely to occur. Also when the base materials 11 and 21 made of these multi-hole metal plates were used, it was possible to obtain the electrolytic functional element 3 that was difficult to peel off and had high dehumidification performance.

【0063】実施の形態9.次に、この発明の実施の形
態9に係る電解機能素子の製造方法について説明する。
まず、イソプロピルアルコールと水の混合溶媒(重量比
率1:1)をナフィオン−117に含浸した。この時、
ナフィオン−117は膨潤するとともにゲル化し、豆腐
やプリン状の固形物が簡単に挿入できる状態になる。次
に、図8のように部材を並べ、室温で10kgf/cm
2 の圧力でプレスして、基材11、21の貫通穴31、
32に固体高分子電解質膜3の一部を埋め込んだ。80
℃で乾燥した後、実施の形態5の場合と同様に、白金黒
と固体高分子電解質として、ナフィオン溶液を混合した
溶液を刷毛塗りによって貫通穴にしみ出した固体高分子
電解質膜3および基材の金属部41に塗布し、窒素雰囲
気中150℃で5分間加熱処理して固体高分子電解質3
を溶融させ、触媒を結着させて触媒層12、22を形成
した。この製造方法を用いて作成した場合にも、はがれ
にくく、除湿性能の高い電解機能素子を得ることができ
た。
Embodiment 9 FIG. Next, a method for manufacturing an electrolytic function element according to Embodiment 9 of the present invention will be described.
First, Nafion-117 was impregnated with a mixed solvent of isopropyl alcohol and water (weight ratio 1: 1). This time,
Nafion-117 swells and gels, so that tofu or pudding-like solids can be easily inserted. Next, the members are arranged as shown in FIG. 8, and 10 kgf / cm at room temperature.
By pressing with a pressure of 2 , the through holes 31 of the base materials 11 and 21,
A part of the solid polymer electrolyte membrane 3 was embedded in 32. 80
After being dried at 0 ° C., as in the case of the fifth embodiment, the solid polymer electrolyte membrane 3 and the base material, in which platinum black and a solid polymer electrolyte, which are Nafion solutions mixed, are extruded into the through holes by brush coating, Of the solid polymer electrolyte 3 by applying it to the metal part 41 of No. 1 and heat-treating at 150 ° C. for 5 minutes in a nitrogen atmosphere
Was melted and the catalyst was bound to form catalyst layers 12 and 22. Even when produced using this manufacturing method, it was possible to obtain an electrolytic functional element that is difficult to peel off and has high dehumidification performance.

【0064】なお、アルコールやケトンなど有機溶媒単
独でも固体高分子電解質膜3は多少ゲル化して、圧力を
加えれば固いものが挿入できる状態になるが、有機溶媒
と水との混合溶媒の場合に溶媒吸収量が多くなり、ゲル
化が進んで最もやわらかくなるので、この発明の電解機
能素子の製造方法を適用しやすくなる。
Even if an organic solvent such as alcohol or ketone is used alone, the solid polymer electrolyte membrane 3 gels to some extent, and a solid substance can be inserted by applying pressure. However, in the case of a mixed solvent of an organic solvent and water, Since the solvent absorption amount increases and gelation progresses and becomes the softest, it becomes easy to apply the method for producing an electrolytic functional element of the present invention.

【0065】また、基材11、21の材質については、
つまり除湿の陰極多穴金属板の材料については、それほ
ど高い耐蝕性は求められないので、ニッケルやステンレ
ス鋼のような材料をメッキを施さずに用いることができ
るが、陽極多穴金属板の材料については、高い耐蝕性が
求められるのでニッケルやステンレス鋼のような材料を
用いる場合にはメッキを施す必要がある。金メッキや白
金メッキは高い耐蝕性があるがコストが高くなるので、
パラジウム、鉛、二酸化鉛のような安価な被膜を形成し
ておくことが望ましい。
Regarding the materials of the base materials 11 and 21,
In other words, as for the material of the dehumidified cathode multi-hole metal plate, since not so high corrosion resistance is required, it is possible to use a material such as nickel or stainless steel without plating, but the material of the anode multi-hole metal plate. With respect to, since high corrosion resistance is required, it is necessary to perform plating when using a material such as nickel or stainless steel. Gold plating and platinum plating have high corrosion resistance, but the cost is high, so
It is desirable to form an inexpensive coating such as palladium, lead or lead dioxide.

【0066】また、固体高分子電解質膜3としては、水
素イオンを伝導するものであればよく、デュポン社のナ
フィオン−117、ナフィオン−115、ナフィオン−
112、ナフィオン−105のほか、旭硝子社のフレミ
オン、旭化成社のアシプレックス、ダウケミカル社のX
US−13.204.10、などがあげられる。また、
側鎖にスルホン酸基を持つものの他にカルボン酸基を持
つものも用いることができる。
The solid polymer electrolyte membrane 3 may be any one that conducts hydrogen ions, such as Nafion-117, Nafion-115 and Nafion- from DuPont.
112, Nafion-105, Flemion from Asahi Glass, Aciplex from Asahi Kasei, X from Dow Chemical
US-13.204.10, and the like. Also,
In addition to those having a sulfonic acid group in the side chain, those having a carboxylic acid group can also be used.

【0067】以上のように、この発明によれば、固体高
分子電解質膜の表裏に、多穴金属板でなる基材を埋め込
み、これら基材の貫通穴の中に固体高分子電解質膜の一
部を存在させ、両電極の触媒層を、貫通穴の中に存在す
る固体高分子電解質膜の表面と基材の外側の表面とに形
成したので、膜と基材の多穴金属板がはずれにくくな
り、長期にわたって性能の安定した高性能な電解機能素
子が得られる。
As described above, according to the present invention, the base material made of a multi-hole metal plate is embedded in the front and back of the solid polymer electrolyte membrane, and the solid polymer electrolyte membrane is filled in the through holes of these base materials. Part was present and the catalyst layers of both electrodes were formed on the surface of the solid polymer electrolyte membrane existing in the through hole and the outer surface of the base material, so that the membrane and the multi-hole metal plate of the base material were separated. It becomes difficult to obtain a high-performance electrolytic functional element having stable performance over a long period of time.

【0068】また、上記触媒層の外部と接する面に、透
湿性を有しかつ撥水性を有する薄膜を被覆することによ
り、電極面が汚染されることなく、かつ非通電時の結露
による局部電池腐食等を抑制することができ、信頼性の
高い電解機能素子が得られる。
The surface of the catalyst layer that contacts the outside is covered with a thin film having moisture permeability and water repellency, so that the electrode surface is not contaminated and the local battery is formed by dew condensation when not energized. A highly reliable electrolytic functional element capable of suppressing corrosion and the like can be obtained.

【0069】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側と上記固体高分子電解質膜に接している内側
とで穴の面積を異ならせることにより、電極と固体高分
子電解質膜を機械的に強固に固定してより安定した電解
機能素子を得ることができる。
Further, the through holes formed in at least one of the pair of base materials have a hole area that is not in contact with the solid polymer electrolyte membrane and is in the area in contact with the solid polymer electrolyte membrane. By making them different, the electrode and the solid polymer electrolyte membrane can be mechanically firmly fixed and a more stable electrolytic functional element can be obtained.

【0070】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側から上記固体高分子電解質膜に接している内
側に向かって穴径を絞り、上記固体高分子電解質膜に接
していない外側の穴の面積の方を上記固体高分子電解質
膜に接している内側の穴の面積よりも大きくすることに
より、固体高分子電解質膜と基材がよりはずれにくくな
り、電極と固体高分子電解質膜を機械的に強固に固定し
てより性能の安定した電解機能素子を得ることができ
る。
Further, the through hole formed in at least one of the pair of base materials has a hole diameter from the outside not in contact with the solid polymer electrolyte membrane to the inside in contact with the solid polymer electrolyte membrane. Squeezing, by making the area of the outer hole not in contact with the solid polymer electrolyte membrane larger than the area of the inner hole in contact with the solid polymer electrolyte membrane, the solid polymer electrolyte membrane and the substrate Is more unlikely to come off, and the electrode and the solid polymer electrolyte membrane can be mechanically firmly fixed to obtain an electrolytic functional element with more stable performance.

【0071】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いる内側から上記固体高分子電解質膜に接していない外
側に向かって穴径を絞り、上記固体高分子電解質膜に接
していない外側の穴の面積の方を上記固体高分子電解質
膜に接している内側の穴の面積よりも小さくすることに
より、触媒層表面部分の電界強度を大きくして両電極間
の印加電圧を小さくすることができ、素子の電圧特性を
改善することができる。
Further, the through hole formed in at least one of the pair of base materials has a hole diameter from the inner side which is in contact with the solid polymer electrolyte membrane to the outer side which is not in contact with the solid polymer electrolyte membrane. Squeezing, by making the area of the outer hole not in contact with the solid polymer electrolyte membrane smaller than the area of the inner hole in contact with the solid polymer electrolyte membrane, the electric field strength of the catalyst layer surface portion The voltage applied between both electrodes can be decreased by increasing the voltage, and the voltage characteristics of the device can be improved.

【0072】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側から上記固体高分子電解質膜に接している内
側に向かって定められた範囲内では狭めて行きその範囲
を超えると穴径を拡げて行くように開孔することによ
り、電極部と固体高分子電解質膜を機械的に強固に固定
することができ、基材の貫通穴に食い込んでいる固体高
分子電解質膜がよいはがれにくくなり、より性能の安定
した電解機能素子を得ることができる。
Further, the through hole formed in at least one of the pair of base materials is defined from the outside not in contact with the solid polymer electrolyte membrane to the inside in contact with the solid polymer electrolyte membrane. By narrowing within the range and expanding the hole diameter beyond that range, the electrode part and the solid polymer electrolyte membrane can be mechanically firmly fixed, and the through hole of the base material The solid polymer electrolyte membrane that has digged into the surface of the solid polymer electrolyte film does not easily peel off, and an electrolytic functional element with more stable performance can be obtained.

【0073】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、上記固体高分子電解質膜に接して
いない外側と上記固体高分子電解質膜に接している内側
とで穴の面積を等しくすることにより、電極と固体高分
子電解質膜を機械的に強固に固定する要求が大きくない
場合に対応した貫通穴を有する電解機能素子を得ること
ができる。
Further, the through holes formed in at least one of the pair of base materials have a hole area that is outside the area not in contact with the solid polymer electrolyte membrane and inside the area in contact with the solid polymer electrolyte membrane. By making them equal, it is possible to obtain an electrolytic functional element having a through hole corresponding to the case where there is not a strong demand for mechanically firmly fixing the electrode and the solid polymer electrolyte membrane.

【0074】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、穴の内壁に突起を有することによ
り、基材の貫通穴に食い込んでいる固体高分子電解質膜
がよいはがれにくくなり、より性能の安定した電解機能
素子を得ることができる。
In addition, since the through hole formed in at least one of the pair of base materials has a protrusion on the inner wall of the hole, the solid polymer electrolyte membrane biting into the through hole of the base material does not easily peel off. Thus, it is possible to obtain an electrolytic functional element having more stable performance.

【0075】また、上記一対の基材の少なくとも一方に
形成された貫通穴は、穴の真中が最も膨らんでいること
により、同様にして基材の貫通穴に食い込んでいる固体
高分子電解質膜がよいはがれにくくなり、より性能の安
定した電解機能素子を得ることができる。
Further, since the through hole formed in at least one of the pair of base materials is the most swelled in the center of the hole, the solid polymer electrolyte membrane which also bites into the through hole of the base material is the same. Good peeling is less likely to occur, and an electrolytic functional element having more stable performance can be obtained.

【0076】また、上記一対の基材の少なくとも一方に
形成された貫通穴を、六角形状とすることにより、基材
の貫通穴に食い込んでいる固体高分子電解質膜がよいは
がれにくくなり、より性能の安定した電解機能素子を得
ることができる。
Further, by forming the through hole formed in at least one of the pair of base materials into a hexagonal shape, the solid polymer electrolyte membrane which is biting into the through hole of the base material does not easily peel off, and the performance is further improved. It is possible to obtain a stable electrolytic function element.

【0077】また、上記一対の基材の少なくとも一方に
形成された貫通穴を、円形形状とすることにより、基材
の貫通穴に食い込んでいる固体高分子電解質膜がよいは
がれにくくなり、より性能の安定した電解機能素子を得
ることができる。
Further, by forming the through hole formed in at least one of the pair of base materials in a circular shape, the solid polymer electrolyte membrane biting into the through hole of the base material is less likely to be peeled off, resulting in better performance. It is possible to obtain a stable electrolytic function element.

【0078】また、上記一対の基材の少なくとも一方に
形成された貫通穴を、菱形形状とすることにより、基材
の貫通穴に食い込んでいる固体高分子電解質膜がよいは
がれにくくなり、より性能の安定した電解機能素子を得
ることができる。
Further, by forming the through-hole formed in at least one of the pair of base materials into a rhombic shape, the solid polymer electrolyte membrane biting into the through-hole of the base material is less likely to be peeled off, resulting in better performance. It is possible to obtain a stable electrolytic function element.

【0079】また、上記一対の基材の少なくとも一方
に、金属箔に鉛、金、パラジウムのうち少なくとも1つ
の成分の薄膜を被覆することにより、基材の金属部であ
る多穴金属板の耐蝕性が増し、多穴金属板でのガス発生
が抑制されるので、固体高分子電解質膜がよりはずれに
くくなり、より性能の安定した電解機能素子を得ること
ができる。
Further, at least one of the pair of base materials is coated with a thin film of at least one component of lead, gold and palladium on a metal foil to prevent corrosion of a multi-hole metal plate which is a metal part of the base material. Since the property is increased and the generation of gas in the multi-hole metal plate is suppressed, the solid polymer electrolyte membrane is less likely to come off, and an electrolytic functional element with more stable performance can be obtained.

【0080】また、上記一対の基材の複数の貫通穴の中
に存在する上記固体高分子電解質膜の一部は、上記固体
高分子電解質膜に接していない外側にまで溢れて凸状に
膨らんでいるので、電極面積を広く取ることができ、電
解反応特性を向上させることができる。
Further, a part of the solid polymer electrolyte membrane present in the plurality of through holes of the pair of base materials overflows to the outside not in contact with the solid polymer electrolyte membrane and bulges in a convex shape. Therefore, the electrode area can be increased and the electrolytic reaction characteristics can be improved.

【0081】また、上記一対の基材の複数の貫通穴の中
に存在する上記固体高分子電解質膜の一部は、穴の内部
に留まり凹状にへこんでいるので、電極面積を広く取る
ことができ、電解反応特性を向上させることができる。
Further, since a part of the solid polymer electrolyte membrane existing in the plurality of through holes of the pair of base materials remains in the holes and is recessed, a large electrode area can be taken. It is possible to improve the electrolytic reaction characteristics.

【0082】また、上記触媒層には、白金触媒粒子およ
び上記固体高分子電解質膜と同一または同等組成の固体
高分子電解質が含まれているので、基材の貫通穴の中の
固体高分子電解質膜及び基材の金属部表面の触媒層の白
金触媒粒子を結着させ、電子的及びイオン的な導電性を
維持させることができ、高い電解反応特性をを維持する
ことができる。
Since the catalyst layer contains the platinum catalyst particles and the solid polymer electrolyte having the same or the same composition as that of the solid polymer electrolyte membrane, the solid polymer electrolyte in the through hole of the base material. The platinum catalyst particles of the catalyst layer on the surface of the metal part of the membrane and the base material can be bound to each other to maintain electronic and ionic conductivity, and thus high electrolytic reaction characteristics can be maintained.

【0083】また、この発明に係る電界機能素子の製造
方法によれば、固体高分子電解質膜の表裏に、複数の貫
通穴が形成された金属板でなり外部から直流の電源電圧
が供給される電極をなす一対の基材を埋め込む埋め込み
工程と、上記一対の基材の各貫通穴に存在する上記固体
高分子電解質膜の表面及び上記一対の基材の外側の表面
に触媒を塗布して外部の気体または液体分子の電解反応
を促進させる触媒層を形成する塗布工程とを含むことに
より、固体高分子電解質膜と基材との間に、はずれの原
因になる触媒粒子を介在させずに、基材の貫通穴に固体
高分子電解質膜を食い込ませることができ、しかも簡単
に触媒層を形成し、安価に電解機能素子の製造を行うこ
とができる。
Further, according to the method of manufacturing an electric field function element according to the present invention, the solid polymer electrolyte membrane is made of a metal plate having a plurality of through holes, and a direct-current power supply voltage is supplied from the outside. An embedding step of embedding a pair of base materials forming electrodes, and applying a catalyst to the surface of the solid polymer electrolyte membrane present in each through hole of the pair of base materials and the outer surface of the pair of base materials to externally By including a coating step of forming a catalyst layer for promoting the electrolytic reaction of the gas or liquid molecule, between the solid polymer electrolyte membrane and the base material, without intervening catalyst particles that cause detachment, The solid polymer electrolyte membrane can be made to dig into the through holes of the base material, and furthermore, the catalyst layer can be easily formed, and the electrolytic functional element can be manufactured at low cost.

【0084】上記埋め込み工程は、上記固体高分子電解
質膜の表裏に、上記一対の基材を該固体高分子電解質膜
が軟化する温度よりも高温でホットプレスして埋め込む
ことにより、基材の貫通穴に固体高分子電解質膜を簡単
に食い込ませることができる。
In the embedding step, by embedding the pair of base materials in the front and back of the solid polymer electrolyte membrane by hot pressing at a temperature higher than the temperature at which the solid polymer electrolyte membrane softens, the base material penetrates. The solid polymer electrolyte membrane can be easily bited into the hole.

【0085】また、上記埋め込み工程は、上記固体高分
子電解質膜に該固体高分子電解質膜を膨潤させる溶媒を
吸収させた後、ゲル化した固体高分子電解質膜の表裏に
上記一対の基材をプレスして埋め込むので、固体高分子
電解質膜を高温で加熱することなく、基材の貫通穴に固
体高分子電解質膜を食い込ませることができ、製造コス
トを低減することができる。
In the embedding step, the solid polymer electrolyte membrane is allowed to absorb a solvent for swelling the solid polymer electrolyte membrane, and then the pair of base materials are placed on the front and back of the gelled solid polymer electrolyte membrane. Since the solid polymer electrolyte membrane is pressed and embedded, the solid polymer electrolyte membrane can be bitten into the through holes of the base material without heating the solid polymer electrolyte membrane at a high temperature, and the manufacturing cost can be reduced.

【0086】また、上記溶媒は、有機溶液と水との混合
溶媒であるので、固体高分子電解質膜が軟らかくなり、
低い圧力で基材の貫通穴に固体高分子電解質膜を食い込
ませることができる。
Further, since the above solvent is a mixed solvent of an organic solution and water, the solid polymer electrolyte membrane becomes soft,
The solid polymer electrolyte membrane can be made to dig into the through holes of the base material with a low pressure.

【0087】また、上記埋め込み工程は、上記固体高分
子電解質膜の表裏に配置された一対の基材の外側の表面
に凹凸面を有する板をさらに配置してプレスすることに
より、固体高分子電解質膜の一部が貫通穴の外側にまで
溢れて凸状に膨らんでいる構造を作ることができる。
In the embedding step, the solid polymer electrolyte is prepared by further disposing and pressing a plate having an uneven surface on the outer surface of a pair of base materials arranged on the front and back of the solid polymer electrolyte membrane. It is possible to form a structure in which a part of the film overflows to the outside of the through hole and bulges in a convex shape.

【0088】さらに、上記触媒層の外部と接する表面
に、透湿性を有しかつ撥水性を有する薄膜を被覆する工
程をさらに含むことにより、電極面が汚染されることな
く、かつ非通電時の結露による局部電池腐食等を抑制す
ることができる。
Further, by further including a step of coating the surface of the catalyst layer which is in contact with the outside with a thin film having moisture permeability and water repellency, the electrode surface is not contaminated and is not energized. Local battery corrosion and the like due to dew condensation can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1に係る電解機能素子
の構成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of an electrolytic functional element according to a first embodiment of the present invention.

【図2】 この発明の実施の形態2に係る電解機能素子
の構成を示す断面図である。
FIG. 2 is a sectional view showing a configuration of an electrolytic functional element according to Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3に係る電解機能素子
の構成を示す断面図である。
FIG. 3 is a sectional view showing a configuration of an electrolytic functional element according to Embodiment 3 of the present invention.

【図4】 この発明の実施の形態4に係る電解機能素子
の構成を示す断面図である。
FIG. 4 is a sectional view showing a configuration of an electrolytic functional element according to a fourth embodiment of the present invention.

【図5】 この発明の実施の形態1ないし4に係る電解
機能素子の多穴金属板でなる基材の外側の表面を示す平
面拡大図である。
FIG. 5 is an enlarged plan view showing an outer surface of a base material formed of a multi-hole metal plate of the electrolytic function element according to the first to fourth embodiments of the present invention.

【図6】 この発明の実施の形態1〜4に係る電解機能
素子の電極構成を極端に比較して示す電極構成図であ
る。
FIG. 6 is an electrode configuration diagram showing an extreme comparison of electrode configurations of the electrolytic functional elements according to the first to fourth embodiments of the present invention.

【図7】 図6に示す貫通穴の外面に沿った点A〜B間
の触媒層表面に形成される電界強度をそれそれ示す特性
図である。
7 is a characteristic diagram showing the electric field strength formed on the surface of the catalyst layer between points A and B along the outer surface of the through hole shown in FIG.

【図8】 この発明の実施の形態6に係るもので、電解
機能素子の製造方法を示す部材構成の断面図である。
FIG. 8 is a cross-sectional view of a member structure according to the sixth embodiment of the present invention and showing a method for manufacturing an electrolytic functional element.

【図9】 従来の電解機能素子とこの発明の電解機能素
子の除湿性能の評価試験結果を示す説明図である。
FIG. 9 is an explanatory diagram showing evaluation test results of dehumidification performance of a conventional electrolytic function element and the electrolytic function element of the present invention.

【図10】 従来の電解機能素子とこの発明の電解機能
素子の除湿性能の寿命試験結果を示す説明図である。
FIG. 10 is an explanatory diagram showing a life test result of dehumidification performance of a conventional electrolytic functional element and the electrolytic functional element of the present invention.

【図11】 この発明の実施の形態6に係る電解機能素
子の構成を示す断面図である。
FIG. 11 is a sectional view showing a configuration of an electrolytic functional element according to Embodiment 6 of the present invention.

【図12】 この発明の実施の形態7に係る電解機能素
子の多穴金属板でなる基材の外側の表面を示す平面拡大
図である。
FIG. 12 is an enlarged plan view showing an outer surface of a base material made of a multi-hole metal plate of an electrolytic functional element according to a seventh embodiment of the present invention.

【図13】 この発明の実施の形態8に係る電解機能素
子の多穴金属板でなる基材の内側の表面を示す平面拡大
図である。
FIG. 13 is an enlarged plan view showing an inner surface of a base material made of a multi-hole metal plate of an electrolytic functional element according to an eighth embodiment of the present invention.

【図14】 従来の電解機能素子の構成を示す構成図で
ある。
FIG. 14 is a configuration diagram showing a configuration of a conventional electrolytic functional element.

【図15】 従来の他の電解機能素子の構成を示す構成
図である。
FIG. 15 is a configuration diagram showing a configuration of another conventional electrolytic functional element.

【符号の説明】[Explanation of symbols]

1 陽極、2 陰極、3 固体高分子電解質膜、11、
21 基材、12、22 触媒層、13、23 透湿性
−撥水性薄膜、31、32 貫通穴、33 貫通穴の突
起、34 貫通穴の膨らみ部、50 サンドペーパー。
1 anode, 2 cathode, 3 solid polymer electrolyte membrane, 11,
21 base material, 12, 22 catalyst layer, 13, 23 moisture permeable-water repellent thin film, 31, 32 through hole, 33 through hole protrusion, 34 through hole bulge portion, 50 sandpaper.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B01D 53/26 B01D 53/26 Z (72)発明者 花田 武明 兵庫県尼崎市塚口本町8丁目1番1号 菱 彩テクニカ株式会社内 (72)発明者 森口 哲雄 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 安田 勝 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B01D 53/26 B01D 53/26 Z (72) Inventor Takeaki Hanada 8-1, Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture No. 1 In Ryosai Technica Co., Ltd. (72) Inventor Tetsuo Moriguchi 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd. (72) Masaru Yasuda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanryo Electric Co., Ltd.

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜と、 複数の貫通穴が形成されていて上記固体高分子電解質膜
を挟持するようにしてその表裏に埋め込まれた金属板で
なり外部から直流の電源電圧が供給される電極をなす一
対の基材と、 この一対の基材の外側の表面及びこれら基材の各貫通穴
の中に存在する上記固体高分子電解質膜の表面を覆うよ
うにして形成され外部の気体または液体分子の電解反応
を促進させる触媒層とを備えた電解機能素子。
1. A solid polymer electrolyte membrane and a metal plate having a plurality of through holes formed therein and embedded on both sides of the solid polymer electrolyte membrane so as to sandwich the solid polymer electrolyte membrane. It is formed so as to cover the pair of base materials that form the electrodes to be supplied, the outer surfaces of the pair of base materials, and the surface of the solid polymer electrolyte membrane present in each through hole of these base materials. And an electrolysis functional element comprising a catalyst layer for promoting the electrolysis reaction of the gas or liquid molecule.
【請求項2】 上記触媒層の外部と接する面には、透湿
性を有しかつ撥水性を有する薄膜が被覆されていること
を特徴とする請求項1記載の電解機能素子。
2. The electrolytic function element according to claim 1, wherein a surface of the catalyst layer that contacts the outside is covered with a thin film having moisture permeability and water repellency.
【請求項3】 上記一対の基材の少なくとも一方に形成
された貫通穴は、上記固体高分子電解質膜に接していな
い外側と上記固体高分子電解質膜に接している内側とで
穴の面積が異なることを特徴とする請求項1または2記
載の電解機能素子。
3. The through hole formed in at least one of the pair of base materials has a hole area between an outer side not in contact with the solid polymer electrolyte membrane and an inner side in contact with the solid polymer electrolyte membrane. 3. The electrolytic function element according to claim 1, which is different.
【請求項4】 上記一対の基材の少なくとも一方に形成
された貫通穴は、上記固体高分子電解質膜に接していな
い外側から上記固体高分子電解質膜に接している内側に
向かって穴径を絞り、上記固体高分子電解質膜に接して
いない外側の穴の面積の方が上記固体高分子電解質膜に
接している内側の穴の面積よりも大きいことを特徴とす
る請求項3記載の電解機能素子。
4. The through hole formed in at least one of the pair of base materials has a hole diameter increasing from the outside not in contact with the solid polymer electrolyte membrane to the inside in contact with the solid polymer electrolyte membrane. 4. The electrolytic function according to claim 3, wherein the area of the outer hole which is not in contact with the solid polymer electrolyte membrane is larger than the area of the inner hole which is in contact with the solid polymer electrolyte membrane. element.
【請求項5】 上記一対の基材の少なくとも一方に形成
された貫通穴は、上記固体高分子電解質膜に接している
内側から上記固体高分子電解質膜に接していない外側に
向かって穴径を絞り、上記固体高分子電解質膜に接して
いない外側の穴の面積の方が上記固体高分子電解質膜に
接している内側の穴の面積よりも小さいことを特徴とす
る請求項3記載の電解機能素子。
5. The through hole formed in at least one of the pair of base materials has a hole diameter extending from the inner side in contact with the solid polymer electrolyte membrane to the outer side not in contact with the solid polymer electrolyte membrane. The electrolytic function according to claim 3, wherein the area of the outer hole which is not in contact with the solid polymer electrolyte membrane is smaller than the area of the inner hole which is in contact with the solid polymer electrolyte membrane. element.
【請求項6】 上記一対の基材の少なくとも一方に形成
された貫通穴は、上記固体高分子電解質膜に接していな
い外側から上記固体高分子電解質膜に接している内側に
向かって定められた範囲内では狭めて行きその範囲を超
えると穴径を拡げて行くように開孔されたことを特徴と
する請求項1または2記載の電解機能素子。
6. The through hole formed in at least one of the pair of base materials is defined from the outside not in contact with the solid polymer electrolyte membrane to the inside in contact with the solid polymer electrolyte membrane. 3. The electrolytic functional element according to claim 1, wherein the electrolytic function element is opened so as to narrow within the range and expand the hole diameter when exceeding the range.
【請求項7】 上記一対の基材の少なくとも一方に形成
された貫通穴は、上記固体高分子電解質膜に接していな
い外側と上記固体高分子電解質膜に接している内側とで
穴の面積が等しいことを特徴とする請求項1または2記
載の電解機能素子。
7. The through hole formed in at least one of the pair of base materials has an area of the hole between the outer side not in contact with the solid polymer electrolyte membrane and the inner side in contact with the solid polymer electrolyte membrane. 3. The electrolytic function element according to claim 1 or 2, wherein they are equal.
【請求項8】 上記一対の基材の少なくとも一方に形成
された貫通穴は、穴の内壁に突起を有していることを特
徴とする請求項7記載の電解機能素子。
8. The electrolytic function element according to claim 7, wherein the through hole formed in at least one of the pair of base materials has a protrusion on the inner wall of the hole.
【請求項9】 上記一対の基材の少なくとも一方に形成
された貫通穴は、穴の真中が最も膨らんでいるいること
を特徴とする請求項7記載の電解機能素子。
9. The electrolytic function element according to claim 7, wherein the through hole formed in at least one of the pair of base materials is most bulged in the center of the hole.
【請求項10】 上記一対の基材の少なくとも一方に形
成された貫通穴は、六角形状でなることを特徴とする請
求項1ないし9のいずれかに記載の電解機能素子。
10. The electrolytic function element according to claim 1, wherein the through hole formed in at least one of the pair of base materials has a hexagonal shape.
【請求項11】 上記一対の基材の少なくとも一方に形
成された貫通穴は、円形形状でなることを特徴とする請
求項1ないし9のいずれかに記載の電解機能素子。
11. The electrolytic function element according to claim 1, wherein the through hole formed in at least one of the pair of base materials has a circular shape.
【請求項12】 上記一対の基材の少なくとも一方に形
成された貫通穴は、菱形形状でなることを特徴とする請
求項1ないし9のいずれかに記載の電解機能素子。
12. The electrolytic function element according to claim 1, wherein the through hole formed in at least one of the pair of base materials has a diamond shape.
【請求項13】 上記一対の基材の少なくとも一方は、
金属箔に鉛、金、パラジウムのうち少なくとも1つの成
分の薄膜が被覆されていることを特徴とする請求項1な
いし12のいずれかに記載の電解機能素子。
13. At least one of the pair of base materials comprises:
13. The electrolytic functional element according to claim 1, wherein the metal foil is coated with a thin film of at least one component selected from lead, gold, and palladium.
【請求項14】 上記一対の基材の複数の貫通穴の中に
存在する上記固体高分子電解質膜の一部は、上記固体高
分子電解質膜に接していない外側にまで溢れて凸状に膨
らんでいることを特徴とする請求項1ないし13のいず
れかに記載の電解機能素子。
14. A part of the solid polymer electrolyte membrane existing in the plurality of through holes of the pair of base materials overflows to the outside not in contact with the solid polymer electrolyte membrane and bulges in a convex shape. The electrolytic function element according to any one of claims 1 to 13, wherein
【請求項15】 上記一対の基材の複数の貫通穴の中に
存在する上記固体高分子電解質膜の一部は、穴の内部に
留まり凹状にへこんでいることを特徴とする請求項1な
いし13のいずれかに記載の電解機能素子。
15. The method according to claim 1, wherein a part of the solid polymer electrolyte membrane existing in the plurality of through holes of the pair of base materials remains inside the hole and is recessed. 13. The electrolytic function element according to any one of 13 above.
【請求項16】 上記触媒層には、白金触媒粒子および
上記固体高分子電解質膜と同一または同等組成の固体高
分子電解質が含まれていることを特徴とする請求項1な
いし15のいずれかに記載の電解機能素子。
16. The catalyst layer contains platinum catalyst particles and a solid polymer electrolyte having the same or an equivalent composition as the solid polymer electrolyte membrane, according to any one of claims 1 to 15. The electrolytic function element described.
【請求項17】 固体高分子電解質膜の表裏に、複数の
貫通穴が形成された金属板でなり外部から直流の電源電
圧が供給される電極をなす一対の基材を埋め込む埋め込
み工程と、 上記一対の基材の各貫通穴に存在する上記固体高分子電
解質膜の表面及び上記一対の基材の外側の表面に触媒を
塗布して外部の気体または液体分子の電解反応を促進さ
せる触媒層を形成する塗布工程とを含む電解機能素子の
製造方法。
17. An embedding step of embedding a pair of base materials which are electrodes made of a metal plate having a plurality of through holes formed on the front and back of the solid polymer electrolyte membrane, and which are electrodes to which a DC power supply voltage is externally supplied. A catalyst layer for promoting the electrolytic reaction of external gas or liquid molecules by applying a catalyst to the surface of the solid polymer electrolyte membrane present in each through hole of the pair of base materials and the outer surface of the pair of base materials. A method of manufacturing an electrolytic functional element, which includes a forming step.
【請求項18】 上記埋め込み工程は、上記固体高分子
電解質膜の表裏に、上記一対の基材を該固体高分子電解
質膜が軟化する温度よりも高温でホットプレスして埋め
込むことを特徴とする請求項17記載の電解機能素子の
製造方法。
18. The embedding step comprises embedding the pair of base materials on the front and back of the solid polymer electrolyte membrane by hot pressing at a temperature higher than the temperature at which the solid polymer electrolyte membrane softens. The method for manufacturing an electrolytic functional element according to claim 17.
【請求項19】 上記埋め込み工程は、上記固体高分子
電解質膜に該固体高分子電解質膜を膨潤させる溶媒を吸
収させた後、ゲル化した固体高分子電解質膜の表裏に上
記一対の基材をプレスして埋め込むことを特徴とする請
求項17記載の電解機能素子の製造方法。
19. In the embedding step, the solid polymer electrolyte membrane is made to absorb a solvent for swelling the solid polymer electrolyte membrane, and then the pair of base materials are provided on the front and back of the gelled solid polymer electrolyte membrane. The method for manufacturing an electrolytic functional element according to claim 17, wherein the method is embedding by pressing.
【請求項20】 上記溶媒は、有機溶液と水との混合溶
媒であることを特徴とする請求項第19項記載の電解機
能素子の製造方法。
20. The method for producing an electrolytic functional element according to claim 19, wherein the solvent is a mixed solvent of an organic solution and water.
【請求項21】 上記埋め込み工程は、上記固体高分子
電解質膜の表裏に配置された一対の基材の外側の表面に
凹凸面を有する板をさらに配置してプレスすることを特
徴とする請求項16ないし20のいずれかに記載の電解
機能素子の製造方法。
21. The embedding step further comprises arranging and pressing a plate having an uneven surface on the outer surface of a pair of base materials arranged on the front and back of the solid polymer electrolyte membrane. 21. A method for manufacturing an electrolytic functional element according to any one of 16 to 20.
【請求項22】 上記触媒層の外部と接する表面に、透
湿性を有しかつ撥水性を有する薄膜を被覆する工程をさ
らに含むことを特徴とする請求項16ないし21のいず
れかに記載の電解機能素子の製造方法。
22. The electrolysis according to claim 16, further comprising a step of coating a surface of the catalyst layer, which is in contact with the outside, with a thin film having moisture permeability and water repellency. Method of manufacturing functional element.
JP26726095A 1995-06-30 1995-10-16 Electrolytic functional element and method of manufacturing the same Expired - Fee Related JP3299422B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26726095A JP3299422B2 (en) 1995-06-30 1995-10-16 Electrolytic functional element and method of manufacturing the same
CN96106817A CN1143692A (en) 1995-06-30 1996-05-30 Electrolytic functional device and manufacture method of same
DE19621752A DE19621752A1 (en) 1995-06-30 1996-05-30 Electrolytic cell having solid polymer electrolyte de-humidifiers e.g. to prevent condensation
FR9606755A FR2735991A1 (en) 1995-06-30 1996-05-31 ELECTROLYTIC FUNCTIONAL DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16528895 1995-06-30
JP7-165288 1995-06-30
JP26726095A JP3299422B2 (en) 1995-06-30 1995-10-16 Electrolytic functional element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0971889A true JPH0971889A (en) 1997-03-18
JP3299422B2 JP3299422B2 (en) 2002-07-08

Family

ID=26490080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26726095A Expired - Fee Related JP3299422B2 (en) 1995-06-30 1995-10-16 Electrolytic functional element and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP3299422B2 (en)
CN (1) CN1143692A (en)
DE (1) DE19621752A1 (en)
FR (1) FR2735991A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589403B2 (en) * 2000-02-25 2003-07-08 Mitsubishi Denki Kabushiki Kaisha Electrolysis gas converter and electric device using same
US6599403B2 (en) * 1999-12-21 2003-07-29 Mitsubishi Denki Kabushiki Kaisha Electrochemical device using solid polymer electrolytic film
JP2005322452A (en) * 2004-05-07 2005-11-17 Nissan Motor Co Ltd Cell plate for solid oxide fuel cell, and solid oxide fuel cell
JP2005537618A (en) * 2002-08-28 2005-12-08 ニューキャッスル ユニバーシティ ベンチャーズ リミティド Fuel cell electrode
JP2006507627A (en) * 2002-03-29 2006-03-02 ヒューレット・パッカード・カンパニー Fuel cell electrolyte
JP2012074140A (en) * 2010-09-27 2012-04-12 Toppan Printing Co Ltd Gas diffusion layer for fuel cell and method for manufacturing the same
JP2012074141A (en) * 2010-09-27 2012-04-12 Toppan Printing Co Ltd Gas diffusion layer for fuel cell and method for manufacturing the same
JP2014037620A (en) * 2012-06-29 2014-02-27 Toshiba Corp Device for reducing oxygen, chamber for reducing oxygen and refrigerator
JP2014094334A (en) * 2012-11-08 2014-05-22 Toshiba Corp Oxygen decreasing device and refrigerator
WO2016043134A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrode unit, electrolysis device, and electrode used in electrolysis device
CN110715493A (en) * 2018-07-11 2020-01-21 青岛海尔智能技术研发有限公司 Refrigerating and freezing device and storage container thereof
CN110715494A (en) * 2018-07-11 2020-01-21 青岛海尔智能技术研发有限公司 Refrigerating and freezing device and storage container thereof
JP2020535001A (en) * 2017-09-22 2020-12-03 スカイア・インコーポレイテッドSkyre, Inc. Air-water extraction system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221523B1 (en) * 1998-02-10 2001-04-24 California Institute Of Technology Direct deposit of catalyst on the membrane of direct feed fuel cells
US5992008A (en) * 1998-02-10 1999-11-30 California Institute Of Technology Direct methanol feed fuel cell with reduced catalyst loading
DE19939727A1 (en) * 1999-08-21 2001-02-22 Forschungszentrum Juelich Gmbh Current collector for fuel cell has honeycomb, mesh or fibrous structure conductor grid embedded in porous diffusion layer and electronically coupled to collector-distributor plate
DE102004041782B3 (en) * 2004-08-28 2006-01-12 Forschungszentrum Jülich GmbH Method for coating membranes with catalyst, for use in fuel cells, comprises applying suspension of catalyst in solvent containing unpolar solvent with dipole moment which is no more than 0.5 Debye
CN100441273C (en) * 2004-09-30 2008-12-10 广东工业大学 Photoelectricity catalytic reactor for degrading organic contaminant and degradation method
KR101233146B1 (en) * 2008-04-09 2013-02-14 스미토모덴키고교가부시키가이샤 Gas decomposition apparatus and method for decomposing gas
WO2013175538A1 (en) * 2012-05-24 2013-11-28 三菱電機株式会社 Moisture removal device, lighting device for mounting on vehicle, light source lighting device
EP2677586A1 (en) 2012-06-20 2013-12-25 Solvay Sa Bipolar electrode and method for producing same
TWI519744B (en) * 2012-11-30 2016-02-01 財團法人工業技術研究院 Electro-osmosis dehumidification apparatus and method thereof
CN105518383A (en) * 2013-07-05 2016-04-20 Sgm照明股份公司 A lighting fixture and a method of de-humidifying a water-proof led lighting fixture.
CN112522734A (en) * 2020-11-17 2021-03-19 广东省科学院新材料研究所 Porous electrode for electrolytic gas production in liquid environment and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847471B2 (en) * 1981-02-13 1983-10-22 工業技術院長 Manufacturing method of electrolytic assembly
JPS60114325A (en) * 1983-11-22 1985-06-20 Japan Storage Battery Co Ltd Dehumidifying method
US4528078A (en) * 1984-05-23 1985-07-09 The United States Of America As Represented By The United States Department Of Energy Nonsaturable microdryer
JPS61216714A (en) * 1985-03-20 1986-09-26 Japan Storage Battery Co Ltd Dehumidification
WO1988008742A1 (en) * 1987-05-08 1988-11-17 Mitsubishi Denki Kabushiki Kaisha Moisture remover
EP0781588A3 (en) * 1992-03-12 1998-11-11 Mitsubishi Denki Kabushiki Kaisha Oxygen concentration or humidity controlling apparatus
JP3036248B2 (en) * 1992-08-18 2000-04-24 三菱電機株式会社 Dehumidifying element using solid polymer electrolyte membrane

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599403B2 (en) * 1999-12-21 2003-07-29 Mitsubishi Denki Kabushiki Kaisha Electrochemical device using solid polymer electrolytic film
US6589403B2 (en) * 2000-02-25 2003-07-08 Mitsubishi Denki Kabushiki Kaisha Electrolysis gas converter and electric device using same
JP2006507627A (en) * 2002-03-29 2006-03-02 ヒューレット・パッカード・カンパニー Fuel cell electrolyte
JP4880876B2 (en) * 2002-03-29 2012-02-22 エバレデイ バツテリ カンパニー インコーポレーテツド Fuel cell electrolyte
JP2005537618A (en) * 2002-08-28 2005-12-08 ニューキャッスル ユニバーシティ ベンチャーズ リミティド Fuel cell electrode
JP2005322452A (en) * 2004-05-07 2005-11-17 Nissan Motor Co Ltd Cell plate for solid oxide fuel cell, and solid oxide fuel cell
JP2012074140A (en) * 2010-09-27 2012-04-12 Toppan Printing Co Ltd Gas diffusion layer for fuel cell and method for manufacturing the same
JP2012074141A (en) * 2010-09-27 2012-04-12 Toppan Printing Co Ltd Gas diffusion layer for fuel cell and method for manufacturing the same
JP2014037620A (en) * 2012-06-29 2014-02-27 Toshiba Corp Device for reducing oxygen, chamber for reducing oxygen and refrigerator
JP2014094334A (en) * 2012-11-08 2014-05-22 Toshiba Corp Oxygen decreasing device and refrigerator
WO2016043134A1 (en) * 2014-09-19 2016-03-24 株式会社 東芝 Electrode unit, electrolysis device, and electrode used in electrolysis device
JPWO2016043134A1 (en) * 2014-09-19 2017-04-27 株式会社東芝 Electrode unit, electrolyzer, and electrode used in electrolyzer
JP2020535001A (en) * 2017-09-22 2020-12-03 スカイア・インコーポレイテッドSkyre, Inc. Air-water extraction system
CN110715493A (en) * 2018-07-11 2020-01-21 青岛海尔智能技术研发有限公司 Refrigerating and freezing device and storage container thereof
CN110715494A (en) * 2018-07-11 2020-01-21 青岛海尔智能技术研发有限公司 Refrigerating and freezing device and storage container thereof

Also Published As

Publication number Publication date
FR2735991A1 (en) 1997-01-03
DE19621752A1 (en) 1997-01-02
CN1143692A (en) 1997-02-26
JP3299422B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
JP3299422B2 (en) Electrolytic functional element and method of manufacturing the same
US6723464B2 (en) Membrane-electrode-assembly with solid polymer electrolyte
US5395705A (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles
EP0718903B1 (en) An ion exchange membrane and electrode assembly for an electrochemical cell
US7901829B2 (en) Enhanced catalyst interface for membrane electrode assembly
JP4334618B2 (en) Gas diffusion electrode for polymer electrolyte membrane fuel cell
JP4702053B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
US6238534B1 (en) Hybrid membrane electrode assembly
CN101186139B (en) Method of manufacturing multilayer electrolyte reinforced composite membrane
JP2000503158A (en) Continuous production method of membrane electrode assembly (MEA)
JP2005520311A5 (en)
US3595700A (en) Method of making electrode
JP3480988B2 (en) Sealing and reinforcing membrane material for fluoropolymer solid electrolyte membrane, fluoropolymer solid electrolyte membrane using the same, and plating method thereof
US20080178991A1 (en) Method of making membrane electrode assemblies
JP2000090944A (en) Manufacture of catalyst layer-electrolyte film joint body and solid polymer electrolyte fuel cell using the joint body
JPH0349992B2 (en)
JPH1131515A (en) High molecular electrolyte film-gas diffusion electrode body and its manufacture
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JPH0663343A (en) Dehumidifying element formed by using solid high-polymer electrolyte membrane
FI80482C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN FAST POLYMER ELEKTROLYTSTRUKTUR GENOM ANVAENDNING AV EN VAETSKA ELLER ETT LOESNINGSMEDEL.
JP5283826B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
US6328862B1 (en) Ozone generating electrolysis cell and method of fabricating the same
JP4843928B2 (en) Solid polymer electrolyte membrane, membrane electrode assembly for solid polymer fuel cell, and method for producing solid polymer electrolyte membrane
JP4870328B2 (en) Method for manufacturing membrane-electrode assembly
CA2181560C (en) Electrochemical cell having an electrode containing a carbon fiber paper coated with catalytic metal particles

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees