JP2005322452A - Cell plate for solid oxide fuel cell, and solid oxide fuel cell - Google Patents

Cell plate for solid oxide fuel cell, and solid oxide fuel cell Download PDF

Info

Publication number
JP2005322452A
JP2005322452A JP2004137994A JP2004137994A JP2005322452A JP 2005322452 A JP2005322452 A JP 2005322452A JP 2004137994 A JP2004137994 A JP 2004137994A JP 2004137994 A JP2004137994 A JP 2004137994A JP 2005322452 A JP2005322452 A JP 2005322452A
Authority
JP
Japan
Prior art keywords
electrode
cell
fuel cell
solid oxide
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004137994A
Other languages
Japanese (ja)
Inventor
Itaru Shibata
格 柴田
Hiromi Sugimoto
博美 杉本
Kazufumi Takeuchi
和史 竹内
Tatsuya Yaguchi
竜也 矢口
Mitsugi Yamanaka
貢 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004137994A priority Critical patent/JP2005322452A/en
Publication of JP2005322452A publication Critical patent/JP2005322452A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell plate for a solid oxide fuel cell which is superior in cell strength and is light-weighted, in which capacity and weight can be reduced in the case a stack is made, and in which an electric electrode or an electrode reed can be installed easily, and provide the fuel cell stack and the solid oxide fuel cell using such a cell plate. <P>SOLUTION: The cell plate 1 for the solid oxide fuel cell is prepared because a base plate of a honey-comb structure made of an insulating material such as ceramics or made of a metal foil provided with conductivity, for example, an insulating base plate 2 is used, and a single cell composed of a first electrode, an electrolyte layer 4, and a second electrode 5 is formed at every through-hole 2a of the honeycomb structure base plate 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体酸化物から成る電解質を空気極及び燃料極の間に挟持した基本構造を有する固体酸化物形燃料電池に係わり、特に、電気絶縁性材料、又は電気伝導性材料から成るハニカム構造を有する基材の各貫通孔毎に単セルを形成したハニカム状の固体酸化物形燃料電池用セル板と、該セル板から成る燃料電池スタック、さらにはこのようなセル板やスタックを用いた固体酸化物形燃料電池に関するものである。   The present invention relates to a solid oxide fuel cell having a basic structure in which an electrolyte made of a solid oxide is sandwiched between an air electrode and a fuel electrode, and in particular, a honeycomb structure made of an electrically insulating material or an electrically conductive material. A cell plate for a honeycomb-shaped solid oxide fuel cell in which a single cell is formed for each through hole of a base material having a fuel cell, a fuel cell stack composed of the cell plate, and such a cell plate or stack were used. The present invention relates to a solid oxide fuel cell.

固体酸化物形燃料電池(SOFC)は、電解質としての固体酸化物と、この酸化物から成る固体電解質を間に挟んで互いに対向する状態に配置された燃料極と空気極とを基本構成要素として備えており、燃料極側に水素などの燃料ガスを供給する一方、空気極側に空気などの酸化性ガスを供給することによって、電気化学反応に基づく直流電力を得ることができる。   A solid oxide fuel cell (SOFC) has, as basic components, a solid oxide as an electrolyte, and a fuel electrode and an air electrode arranged to face each other with the solid electrolyte made of the oxide interposed therebetween. In addition, while supplying a fuel gas such as hydrogen to the fuel electrode side and supplying an oxidizing gas such as air to the air electrode side, DC power based on an electrochemical reaction can be obtained.

一般に固体酸化物形燃料電池においては、電池の内部抵抗を減じることが電池性能の向上に繋がるために、内部抵抗を減少させる種々の手段が検討されている。
内部抵抗としては、電解質抵抗と反応抵抗が支配的であり、このうち反応抵抗は材料的要素や電極ミクロ構造など、種々の要素に影響される一方、電解質抵抗は電解質材料の電気伝導性及び膜厚に影響されることから、上記電解質の膜厚を減じ、電解質部分の抵抗(IR抵抗)を減じることが望ましい。
In general, in a solid oxide fuel cell, reducing the internal resistance of the battery leads to an improvement in battery performance. Therefore, various means for reducing the internal resistance have been studied.
As the internal resistance, the electrolyte resistance and the reaction resistance are dominant. Among these, the reaction resistance is affected by various factors such as the material element and the electrode microstructure, while the electrolyte resistance is the electric conductivity of the electrolyte material and the membrane. Since it is affected by the thickness, it is desirable to reduce the thickness of the electrolyte and reduce the resistance of the electrolyte portion (IR resistance).

このようなSOFCのセル構造としては、固体酸化物から成る電解質の両側にそれぞれ燃料極及び空気極を形成した構造(電解質支持型セル)のものが知られているが、例えばイットリア安定化ジルコニア(YSZ)のようなセラミックス材料から成る電解質は、一般に素材強度が低く、セル全体を支えるための強度を確保するためには、ある程度の厚さが必要となることから、電解質の内部抵抗による電圧降下が避けられず、電池性能の向上には限界がある。   As such a SOFC cell structure, a structure (electrolyte-supported cell) in which a fuel electrode and an air electrode are formed on both sides of an electrolyte made of a solid oxide is known. For example, yttria-stabilized zirconia ( An electrolyte made of a ceramic material such as YSZ) generally has a low material strength, and a certain amount of thickness is required to secure the strength to support the entire cell. Therefore, the voltage drop due to the internal resistance of the electrolyte However, there are limits to improving battery performance.

これに対し、上記電解質の膜厚を減じ、電解質部分の抵抗を減じることができるセル構造として電極支持型セル、すなわち一方の電極を支持基板として使用し、この電極材料から成る基板の上に電解質を薄膜状に形成したセル構造が提案されている(例えば、特許文献1参照)。
また、例えばNiやオーステナイト系ステンレス鋼などから成る多孔質金属基板上に、電池要素薄膜を形成した金属支持型のセル構造も提案されている(例えば、特許文献2参照)。
特開平11−067226号公報 特開平11−162483号公報
On the other hand, an electrode supporting cell, that is, one electrode is used as a supporting substrate as a cell structure capable of reducing the thickness of the electrolyte and reducing the resistance of the electrolyte portion, and the electrolyte is formed on the substrate made of this electrode material. A cell structure in which a thin film is formed has been proposed (see, for example, Patent Document 1).
In addition, a metal-supported cell structure in which a battery element thin film is formed on a porous metal substrate made of, for example, Ni or austenitic stainless steel has also been proposed (see, for example, Patent Document 2).
Japanese Patent Application Laid-Open No. 11-067226 Japanese Patent Laid-Open No. 11-162483

しかしながら、上記特許文献1に記載されたような電極支持型セルにおける電極材料は、例えばNi−サーメットや複合酸化物などから成るものであって、素材強度が高いとは言えず、しかもガス透過性を確保するため多孔質であるからして、セルの強度を担保するためには、電極基板の板厚を増すことが必要となり、これによってセルを集積化(スタック化)した場合にスタック容量や重量増加の問題が生じる。
また、通常の電極支持型セルは電気化学的電極を備えてはいるものの、発電電力を外部に取り出すための電気的電極は具備しておらず、スタック化する際には電極リードを別部品として設ける必要がある。
However, the electrode material in the electrode-supported cell as described in Patent Document 1 is made of, for example, Ni-cermet or composite oxide, and cannot be said to have high material strength, and gas permeability. In order to ensure the strength of the cell, it is necessary to increase the plate thickness of the electrode substrate, so that when the cells are integrated (stacked), the stack capacity and The problem of weight increase arises.
In addition, although an ordinary electrode-supported cell is equipped with an electrochemical electrode, it does not have an electrical electrode for extracting generated power to the outside. It is necessary to provide it.

一方、上記特許文献2に記載されたような金属支持型セルは、上記した電極支持型セルの問題点を解決するためのものであるが、この多孔質金属基板もガス透過性を必要とすることから、基板としての強度が必ずしも十分とは言えず、支持基材としての強度、剛性を確保しようとすると、いきおい金属支持基板自体が厚くなり、結果としてスタック容量や重量が増加するといった問題があった。   On the other hand, the metal-supported cell as described in Patent Document 2 is for solving the problems of the electrode-supported cell described above, but this porous metal substrate also requires gas permeability. Therefore, the strength as a substrate is not necessarily sufficient, and when trying to ensure the strength and rigidity as a support base material, the metal support substrate itself becomes thick, resulting in an increase in stack capacity and weight. there were.

本発明は、従来の固体酸化物形燃料電池における上記課題に鑑みてなされたものであって、その目的とするところは、セル強度に優れると共に軽量であって、スタック化した場合の容量及び重量を低減することができ、電気的電極あるいは電極リードを容易に設置することができる固体酸化物形燃料電池用セル板と、当該燃料電池用セル板を積層した燃料電池スタック、さらにこのようなセル板あるいはスタックを使用した固体酸化物形燃料電池を提供することにある。   The present invention has been made in view of the above-mentioned problems in conventional solid oxide fuel cells, and its object is to achieve excellent cell strength and light weight, and capacity and weight when stacked. A cell plate for a solid oxide fuel cell in which electrical electrodes or electrode leads can be easily installed, a fuel cell stack in which the fuel cell plate is laminated, and such a cell An object of the present invention is to provide a solid oxide fuel cell using a plate or a stack.

本発明者らは、上記目的を達成すべく、燃料電池基板材料やその構造等について鋭意検討を重ねた結果、セル強度を向上させるための構造としてハニカム構造に着目し、絶縁性材料又は金属箔から成るハニカム構造基板の各貫通孔(小室)を一方の電極材料によって封孔したのち、封孔したハニカム構造基板の表面、あるいは上記貫通孔内に電解質層及び他方の電極を形成すると共に、ハニカム構造基板の材質に応じて、電極同士の電気的導通をとるための導電体や、一方の電極と基板とを絶縁するための絶縁体を設けることによって、上記目的の達成が可能になることを見出し、本発明を完成するに到った。   As a result of intensive studies on the fuel cell substrate material and its structure in order to achieve the above object, the present inventors have paid attention to the honeycomb structure as a structure for improving the cell strength, and the insulating material or metal foil. Each of the through holes (small chambers) of the honeycomb structure substrate is sealed with one electrode material, and then the electrolyte layer and the other electrode are formed on the surface of the sealed honeycomb structure substrate or in the through holes. According to the material of the structure substrate, it is possible to achieve the above object by providing a conductor for electrical conduction between the electrodes and an insulator for insulating one electrode from the substrate. The headline and the present invention have been completed.

すなわち、本発明の固体酸化物形燃料電池用セル板は、複数の貫通孔を有するハニカム構造をなす基材の各貫通孔毎に単セルが形成されて成り、絶縁性材料から成る基材の各貫通孔内に第1の電極が充填されており、該電極が充填された上記基材の全表面上に電解質層が形成され、さらにこの電解質層表面に第2の電極が形成された構造を有している。 また、同じく絶縁性材料から成る基材の各貫通孔内に第1の電極及び電解質層がこの順に充填されており、表面に電解質層が充填された上記基材の全表面上に第2の電極が形成されている構造としたことを特徴とし、同じく絶縁性材料から成る基材の各貫通孔内に、第1及び第2の電極が電解質層を挟持した状態に充填されている構造としたことを特徴とている。   That is, the cell plate for a solid oxide fuel cell according to the present invention is formed by forming a single cell for each through-hole of a base material having a honeycomb structure having a plurality of through-holes. A structure in which each through-hole is filled with a first electrode, an electrolyte layer is formed on the entire surface of the substrate filled with the electrode, and a second electrode is formed on the surface of the electrolyte layer have. In addition, the first electrode and the electrolyte layer are filled in this order in each through hole of the base material that is also made of an insulating material, and the second surface is filled on the entire surface of the base material filled with the electrolyte layer on the surface. A structure in which an electrode is formed, and a structure in which first and second electrodes are filled in a state in which an electrolyte layer is sandwiched in each through hole of a base material that is also made of an insulating material. It is characterized by that.

さらに、本発明の固体酸化物形燃料電池用セル板は、同様に複数の貫通孔を有するハニカム構造をなす基材の各貫通孔毎に単セルが形成されて成るものであって、金属箔から成る基材の各貫通孔内に第1の電極が充填されており、該電極が充填された上記基材の全表面上に電解質層が形成され、さらにこの表面に第2の電極が形成された構造としたことを特徴としている。
また、同じく金属箔から成る基材の各貫通孔内に第1の電極及び電解質層がこの順に充填されており、表面に電解質層が充填された上記基材の全表面上に第2の電極が形成されると共に、上記基材に第2電極との間を絶縁するための絶縁体が配設されている構造とし、さらには同じく絶縁性材料から成る基材の各貫通孔内に、第1及び第2の電極が電解質層を挟持した状態に充填されると共に、同様に上記基材に第2電極との間を絶縁するための絶縁体が配設されている構造としたことを特徴としている。
Furthermore, the cell plate for a solid oxide fuel cell according to the present invention is formed by forming a single cell for each through-hole of a base material that similarly has a honeycomb structure having a plurality of through-holes. The first electrode is filled in each through-hole of the base material made of, and an electrolyte layer is formed on the entire surface of the base material filled with the electrode, and the second electrode is formed on the surface. It is characterized by having a structured structure.
Also, the first electrode and the electrolyte layer are filled in this order in each through-hole of the base material also made of metal foil, and the second electrode is formed on the entire surface of the base material filled with the electrolyte layer on the surface. Is formed, and an insulator for insulating the second electrode is disposed on the base material. Further, in each through hole of the base material that is also made of an insulating material, The first and second electrodes are filled in a state in which the electrolyte layer is sandwiched, and similarly, an insulating material for insulating the second electrode is provided on the base material. It is said.

また、本発明の固体酸化物形燃料電池スタックは、上記燃料電池用セル板を複数枚積層して成るものであり、本発明の固体酸化物形燃料電池は、上記燃料電池用セル板やスタックを用いたものであることを特徴としている。   Further, the solid oxide fuel cell stack of the present invention is formed by laminating a plurality of the fuel cell plate, and the solid oxide fuel cell of the present invention includes the fuel cell plate or stack. It is characterized by using.

本発明によれば、セルの支持体、補強材としてハニカム構造を採用しているため、セル強度を向上させることができ、ハニカム構造基材の材料としてセラミックスのような絶縁性材料又は金属箔を使用するようにしていることから、その軽量化が可能になり、スタック化した場合の容量及び重量の低減を実現することができる固体酸化物形燃料電池用セル板を得ることができる。さらに、本発明の燃料電池用セル板においては、ハニカム構造基材の材質が絶縁性の場合には隣接する電極同士の電気的導通をとるための導電体を設けたり、ハニカム構造基材が金属箔から成る場合には、単セル内の両電極を絶縁するための絶縁体を設けたりすることによって、発電された電力を外部に容易に取り出すことができるようになる。   According to the present invention, since the honeycomb structure is adopted as the cell support and the reinforcing material, the cell strength can be improved, and an insulating material such as ceramics or a metal foil can be used as the material of the honeycomb structure base material. Since it is used, it is possible to obtain a cell plate for a solid oxide fuel cell that can be reduced in weight and can realize a reduction in capacity and weight when stacked. Furthermore, in the cell plate for a fuel cell of the present invention, when the material of the honeycomb structure base material is insulative, a conductor for establishing electrical continuity between adjacent electrodes is provided, or the honeycomb structure base material is a metal. In the case of the foil, the generated electric power can be easily taken out by providing an insulator for insulating both electrodes in the single cell.

また、本発明の固体酸化物形燃料電池スタックは、上記の燃料電池用セル板を積層したものであり、本発明の固体酸化物形燃料電池においては、上記セル板や燃料電池スタックを用いているため、小型で軽量、高性能なものとなる。   The solid oxide fuel cell stack of the present invention is a laminate of the above fuel cell plate. In the solid oxide fuel cell of the present invention, the cell plate or the fuel cell stack is used. Therefore, it is small, light and high performance.

以下、本発明の固体酸化物形燃料電池用セル板について、さらに詳細に説明する。
なお、本明細書の記載において、説明の便宜上、基材や電解質層など各層の位置関係を「上」「下」、「上面」「下面」、「表面」「底面」などと称することがあるが、これらは、相対的な位置関係を示すに過ぎないものであって、必ずしも使用状態における上下関係を示すものではなく、状況によっては「上面」が下方側を向いていたり、鉛直状態や斜めとなったりした状態で使用されることもあり得る。
Hereinafter, the cell plate for a solid oxide fuel cell according to the present invention will be described in more detail.
In the description of this specification, for convenience of explanation, the positional relationship between layers such as the base material and the electrolyte layer may be referred to as “upper”, “lower”, “upper surface”, “lower surface”, “front surface”, “bottom surface”, etc. However, these are merely relative positional relationships, and do not necessarily indicate the vertical relationship in the usage state. Depending on the situation, the “upper surface” may face downward, It may be used in the state of becoming.

本発明の固体酸化物形燃料電池用セル板においては、ハニカム構造基材の材質及び電池要素の積層位置に応じて、概ね9種類の形態が考えられる。そのうち、セラミックスなどの絶縁性材料から成るハニカム構造基材を用いた場合には、図1〜図6に示す6種類の構造がある。なお、これらの図において、各図(a)は当該セル板1の単セル部分の断面図、各図(b)は当該セル板1の平面図、各図(c)は底面図を示すものである。   In the cell plate for a solid oxide fuel cell of the present invention, there are generally nine types of forms depending on the material of the honeycomb structure base material and the stacking position of the battery elements. Among them, when a honeycomb structure base material made of an insulating material such as ceramics is used, there are six types of structures shown in FIGS. In these drawings, each figure (a) is a sectional view of a single cell portion of the cell plate 1, each figure (b) is a plan view of the cell board 1, and each figure (c) is a bottom view. It is.

すなわち、図1は、本発明の固体酸化物形燃料電池用セル板における第1の構造例を示すものであって、図に示す燃料電池用セル板セル板1においては、図1(a)に示すように、絶縁性材料から成り、ハニカム構造をなす基材2の各貫通孔2a内に、第1の電極3として、例えば燃料極用の材料が充填され、燃料極3が充填された状態の基材2を覆うように電解質層4、さらにその上に第2の電極5としての空気極が形成された構造を有している。当然のことながら、空気極を第1の電極3とし、燃料極を第2の電極としても何ら差し支えない。   That is, FIG. 1 shows a first structural example of the cell plate for a solid oxide fuel cell according to the present invention. In the cell plate 1 for a fuel cell shown in the drawing, FIG. As shown in FIG. 1, each of the through holes 2a of the substrate 2 made of an insulating material and having a honeycomb structure is filled with, for example, a material for the fuel electrode as the first electrode 3, and the fuel electrode 3 is filled. It has a structure in which an electrolyte layer 4 is formed so as to cover the substrate 2 in a state, and an air electrode as a second electrode 5 is formed thereon. Of course, the air electrode may be the first electrode 3 and the fuel electrode may be the second electrode.

このとき、ハニカム構造をなす上記基材2を構成する絶縁性材料としては、例えば緻密なアルミナ、ジルコニア、シリカ、あるいはこれらの混合セラミックスを使用することができ、これら材料を押し出し成形、プレス成形等、一般的にセラミックスの加工方法として知られている成形方法を用いて、所望のハニカム形状に成形することができる。   At this time, as the insulating material constituting the substrate 2 having a honeycomb structure, for example, dense alumina, zirconia, silica, or mixed ceramics thereof can be used, and these materials are extruded, pressed, etc. It can be formed into a desired honeycomb shape using a forming method generally known as a ceramic processing method.

図2は、本発明の固体酸化物形燃料電池用セル板における第2の構造例を示すものであって、この図に示す燃料電池用セル板セル板1においては、図2(a)に示すように、絶縁性材料から成り、ハニカム構造をなす基材2の各貫通孔2a内に第1の電極3としての燃料極と電解質層4が形成され、さらにその上に電解質層4を含む基材2の全面を覆うように第2の電極5としての空気極が形成された構造を備えている。   FIG. 2 shows a second structural example of the cell plate for a solid oxide fuel cell according to the present invention. In the cell plate 1 for a fuel cell shown in this drawing, FIG. As shown, a fuel electrode and an electrolyte layer 4 as a first electrode 3 are formed in each through hole 2a of a substrate 2 made of an insulating material and having a honeycomb structure, and further includes an electrolyte layer 4 thereon. A structure in which an air electrode as the second electrode 5 is formed so as to cover the entire surface of the substrate 2 is provided.

また、図3は、本発明の燃料電池用セル板における第3の構造例を示すものであって、この図に示す燃料電池用セル板セル板1においては、図3(a)に示すように、同様のハニカム構造をなす基材2の各貫通孔2a内に、第1の電極3としての燃料極と電解質層4と第2の電極5としての空気極が充填された構造を備えたものである。   FIG. 3 shows a third structural example of the fuel cell plate according to the present invention. In the fuel cell plate 1 shown in FIG. 3, the cell plate 1 shown in FIG. In addition, each through-hole 2a of the base material 2 having the same honeycomb structure was provided with a structure in which the fuel electrode as the first electrode 3, the electrolyte layer 4 and the air electrode as the second electrode 5 were filled. Is.

そして、図4ないし図6は、本発明の燃料電池用セル板における第4ないし第6の構造例を示すものであって、上記した第1ないし第3の構造例における基材2の一部、すなわち第1の電極3の側に、導電性キャップ6(導電体)を配設することによって、隣接する単セル間の第1の電極3(燃料極)同士が電気的に接続された構造を有している。もちろんこの場合も、燃料極と空気極とを入れ替えたとしても何ら不都合はない。
なお、上記導電性キャップ6としては、Ni、Ni−Al合金、Ni−Cr合金、Fe−Ni−Cr合金などの金属材料や、Cr、CrB、CrN、TaC、TaN、ZrB、ZrNなどの導電性セラミックス材、あるいはこれらの混合物材を使用することができる。
4 to 6 show fourth to sixth structural examples of the fuel cell plate according to the present invention, and a part of the base material 2 in the first to third structural examples described above. That is, a structure in which the first electrodes 3 (fuel electrodes) between adjacent single cells are electrically connected by disposing the conductive cap 6 (conductor) on the first electrode 3 side. have. Of course, in this case, there is no inconvenience even if the fuel electrode and the air electrode are replaced.
The conductive cap 6 may be made of a metal material such as Ni, Ni—Al alloy, Ni—Cr alloy, Fe—Ni—Cr alloy, Cr 3 C 2 , CrB, Cr 2 N, TaC, TaN, ZrB. 2. Conductive ceramic materials such as ZrN, or a mixture of these materials can be used.

一方、基材2として、電気伝導性を有する金属箔製のハニカム基材を用いた場合には、図7〜図9に示すような概ね3種類の構造が考えられる。なお、これらの図においても、各図(a)は当該セル板1の単セル部分の断面図、各図(b)は当該セル板1の平面図、各図(c)は底面図を示す。   On the other hand, when a honeycomb substrate made of metal foil having electrical conductivity is used as the substrate 2, there are roughly three types of structures as shown in FIGS. Also in these drawings, each figure (a) is a sectional view of a single cell portion of the cell plate 1, each figure (b) is a plan view of the cell board 1, and each figure (c) is a bottom view. .

すなわち、図7は、本発明の固体酸化物形燃料電池用セル板における第7の構造例を示すものであって、図に示す燃料電池用セル板セル板1においては、図7(a)に示すように、ハニカム構造をなす金属箔製の基材7の各貫通孔7a内に、第1の電極3として、例えば燃料極用の材料が充填され、燃料極3が充填された状態の基材2を覆うように電解質層4、さらにその上に第2の電極5としての空気極が形成された構造を有している。もちろん、空気極を第1の電極3とし、燃料極を第2の電極としても何ら不都合はない。
なお、この図では、燃料極3と空気極5間の絶縁の完全を期すために、予め基材7の図中上側に絶縁性キャップ8(絶縁体)を配設した例を示しているが、これら電極3、5間は、電解質層4によって絶縁されることから、絶縁性キャップ8は必ずしも設置しなくてもよい。
That is, FIG. 7 shows a seventh structural example of the cell plate for a solid oxide fuel cell according to the present invention. In the cell plate 1 for a fuel cell shown in the drawing, FIG. As shown in FIG. 1, each of the through holes 7a of the metal foil base material 7 having a honeycomb structure is filled with, for example, a material for the fuel electrode as the first electrode 3, and the fuel electrode 3 is filled. It has a structure in which an electrolyte layer 4 is formed so as to cover the substrate 2, and an air electrode as a second electrode 5 is formed thereon. Of course, there is no problem even if the air electrode is the first electrode 3 and the fuel electrode is the second electrode.
This figure shows an example in which an insulating cap 8 (insulator) is previously disposed on the upper side of the substrate 7 in the drawing in order to ensure complete insulation between the fuel electrode 3 and the air electrode 5. Since the electrodes 3 and 5 are insulated by the electrolyte layer 4, the insulating cap 8 is not necessarily installed.

また、図8は、本発明の燃料電池用セル板における第8の構造例を示すものであって、この図に示す燃料電池用セル板セル板1においては、図7(a)に示すように、金属箔から成り、ハニカム構造をなす基材7の各貫通孔7a内に第1の電極3としての燃料極と電解質層4が形成され、さらにその上に電解質層4を含む基材2の全面を覆うように第2の電極5としての空気極が形成された構造を備えると共に、予め基材7の図中上側に絶縁性キャップ8を配設することによって燃料極3と空気極5の間を絶縁するようにしている。
上記絶縁性キャップ8としては、アルミナ、シリカ、ジルコニアなど絶縁性セラミックス材を使用することができる。
FIG. 8 shows an eighth structural example of the cell plate for a fuel cell according to the present invention. In the cell plate 1 for a fuel cell shown in this drawing, as shown in FIG. In addition, a fuel electrode and an electrolyte layer 4 as the first electrode 3 are formed in each through-hole 7a of the substrate 7 made of a metal foil and having a honeycomb structure, and the substrate 2 including the electrolyte layer 4 thereon. The air electrode as the second electrode 5 is formed so as to cover the entire surface of the substrate, and the insulating cap 8 is previously disposed on the upper side of the base material 7 in the figure to thereby provide the fuel electrode 3 and the air electrode 5. Insulate between the two.
As the insulating cap 8, an insulating ceramic material such as alumina, silica, or zirconia can be used.

さらに、図9は、本発明の燃料電池用セル板における第9の構造例を示すものであって、この図に示す燃料電池用セル板セル板1においては、図9(a)に示すように、同様のハニカム構造をなす基材7の各貫通孔7a内に、第1の電極3としての燃料極と電解質層4と第2の電極5としての空気極がこの順に充填された構造を備え、第8の構造例と同様に、基材7の図中上側に絶縁性キャップ8を予め配設することによって燃料極3と空気極5の間が絶縁されている。   Further, FIG. 9 shows a ninth structural example of the fuel cell plate of the present invention. In the fuel cell plate 1 shown in this figure, as shown in FIG. Further, a structure in which the fuel electrode as the first electrode 3, the electrolyte layer 4 and the air electrode as the second electrode 5 are filled in this order in each through hole 7a of the base material 7 having the same honeycomb structure. In the same manner as in the eighth structure example, an insulating cap 8 is disposed in advance on the upper side of the base material 7 in the drawing to insulate between the fuel electrode 3 and the air electrode 5.

なお、ハニカム構造をなす上記基材7を構成する金属箔材料としては、例えばSUS材(ステンレス鋼材)やNi基耐熱合金を使用することができ、これら金属材料を冷間圧延することによって得られた金属箔を曲げ加工し、例えばろう付けなどによってハニカム構造に組み立てることができる。
また、上記各構造例において、ハニカム基材2あるいは7として、文字通り六角形の貫通孔2aあるいは7aを備えたものを示したが、本発明に用いるハニカム構造基材における貫通孔(小室:セル)の形状としては、とくに限定はなく、三角形や四角形、さらには八角形セルの間に四角形セルが入り込むような形状とすることも可能であるが、強度と開口面積のバランスの観点からは、六角形あるいは四角形の貫通孔が好適と考えられる。
In addition, as a metal foil material which comprises the said base material 7 which makes a honeycomb structure, a SUS material (stainless steel material) and a Ni-base heat-resistant alloy can be used, for example, and it is obtained by cold-rolling these metal materials. The metal foil can be bent and assembled into a honeycomb structure, for example, by brazing.
In each of the above structural examples, the honeycomb substrate 2 or 7 is literally provided with a hexagonal through hole 2a or 7a, but the through hole (small chamber: cell) in the honeycomb structure substrate used in the present invention is shown. There is no particular limitation on the shape of the shape, and it is possible to adopt a shape in which a square cell is inserted between a triangular shape, a quadrangular shape, or an octagonal shape cell. Square or square through holes are considered suitable.

次に、本発明の固体酸化物形燃料電池用セル板の製造方法について、図6に示した第6の構造例及び図に示した第9の構造例を例に挙げて説明する。   Next, a method for manufacturing a cell plate for a solid oxide fuel cell according to the present invention will be described using the sixth structural example shown in FIG. 6 and the ninth structural example shown in the drawing as examples.

すなわち、絶縁性基材2を用いた第6の構造例のセル板を製造するには、まず、セラミックス材、例えばアルミナを使用し、主にアルミナ粒子から成るスラリーを鋳型に入れ、焼成することによって、図10(a)に示すような形状を有する絶縁性ハニカム基材2を作製する。   That is, in order to manufacture the cell plate of the sixth structural example using the insulating base material 2, first, a ceramic material such as alumina is used, and a slurry mainly composed of alumina particles is put in a mold and fired. Thus, the insulating honeycomb substrate 2 having a shape as shown in FIG.

次いで、上記セラミックス製基材2の底面側に、図10(b)に示すよう導電性キャップ6を形成する。このとき、当該導電性キャップ6は、導電性塗料を上記基材2の下面側に塗布したのち焼成することによって、あるいは上記基材2の形状に合わせた金属性セラミックス材を接合することによって形成することができる。   Next, a conductive cap 6 is formed on the bottom surface side of the ceramic substrate 2 as shown in FIG. At this time, the conductive cap 6 is formed by applying a conductive paint to the lower surface side of the base material 2 and then firing, or by joining a metallic ceramic material matched to the shape of the base material 2. can do.

次に、このように導電性キャップ6を設けたセラミックス製基材2の貫通孔内に、燃料極3、電解質4、空気極5を順次形成する。
すなわち、図10に示した基材2の貫通孔2a内に燃料極材料を含むスラリー、例えばNi及びイットリア安定化ジルコニア粒子と、エチルセルロースなどの有機バインダと、テレピン油などの有機溶剤を含むスラリーを鋳込み、乾燥後、大気中にて700℃程度で焼成することによって、図11(a)及び(b)に示すように燃料極(第1の電極)3を形成する。なお、図11(a)は、燃料極3が形成された状態の基材2の表面(上面)側、図11(b)は底面(下面)側を示している。
Next, the fuel electrode 3, the electrolyte 4, and the air electrode 5 are sequentially formed in the through hole of the ceramic substrate 2 provided with the conductive cap 6 as described above.
That is, a slurry containing a fuel electrode material in the through hole 2a of the substrate 2 shown in FIG. 10, for example, a slurry containing Ni and yttria stabilized zirconia particles, an organic binder such as ethyl cellulose, and an organic solvent such as turpentine oil. After casting and drying, the fuel electrode (first electrode) 3 is formed as shown in FIGS. 11A and 11B by firing at about 700 ° C. in the atmosphere. 11A shows the surface (upper surface) side of the base material 2 in a state where the fuel electrode 3 is formed, and FIG. 11B shows the bottom surface (lower surface) side.

次いで、底部に燃料極3が形成された基材2の貫通孔2a内に、電解質材料を含むスラリー、例えばイットリア安定化ジルコニア粒子と共に、エチルセルロースなどの有機バインダ及びテレピン油などの有機溶剤を含むスラリーを鋳込み、乾燥後、大気中にて1400℃程度で焼成することによって、図12(a)に示すように、上記燃料極3の上に電解質層4を形成する。   Next, a slurry containing an electrolyte material, for example, a yttria-stabilized zirconia particle together with an organic binder such as ethyl cellulose and an organic solvent such as turpentine oil, in the through hole 2a of the base material 2 having the fuel electrode 3 formed on the bottom. The electrolyte layer 4 is formed on the fuel electrode 3 as shown in FIG. 12A by firing and drying at about 1400 ° C. in the atmosphere.

そして、底部に燃料極3及び電解質層4が形成された基材2の貫通孔2a内に、さらに空気極材料を含むスラリー、例えばランタン・ストロンチウム・マンガン酸化物粒子と共に、エチルセルロースなどの有機バインダ及びテレピン油などの有機溶剤を含むスラリーを鋳込み、乾燥後、大気中にて例えば1150℃で焼成することによって、図12(b)に示すように、電解質層4の上に空気極(第2の電極)4を形成し、図13に示すような断面形状を有する固体酸化物形燃料電池用セル板1を得ることができる。   And in the through-hole 2a of the base material 2 in which the fuel electrode 3 and the electrolyte layer 4 are formed at the bottom, a slurry further containing an air electrode material, for example, an organic binder such as ethyl cellulose, together with lanthanum / strontium / manganese oxide particles, and A slurry containing an organic solvent such as turpentine oil is cast, dried, and then fired in the atmosphere at, for example, 1150 ° C., thereby forming an air electrode (second electrode) on the electrolyte layer 4 as shown in FIG. Electrode) 4 is formed, and a cell plate 1 for a solid oxide fuel cell having a cross-sectional shape as shown in FIG. 13 can be obtained.

一方、図14ないし図17は、金属箔から成る導電性基材7を用いた第9の構造例のセル板の製造手順を示すものであって、まず、耐熱金属箔、例えばFe−20Cr−3Al合金から成る厚さ0.5mmの金属箔を加工し、ろう付けあるいは溶接によって、図14(a)に示すような形状を有する導電性ハニカム基材7を作製する。   On the other hand, FIGS. 14 to 17 show the manufacturing procedure of the cell plate of the ninth structural example using the conductive base material 7 made of metal foil. First, a heat-resistant metal foil, for example, Fe-20Cr— A conductive honeycomb substrate 7 having a shape as shown in FIG. 14A is fabricated by processing a metal foil made of 3Al alloy having a thickness of 0.5 mm and brazing or welding.

次いで、上記金属箔製基材7の上面側に、図14(b)に示すよう絶縁性キャップ8を形成する。このとき、当該絶縁性キャップ8は、当該基材7の上方に絶縁性塗料を塗布し、焼成することによって、あるいは上記基材7の形状に合わせた絶縁性セラミックス材を接合することによって形成することができる。   Next, an insulating cap 8 is formed on the upper surface side of the metal foil substrate 7 as shown in FIG. At this time, the insulating cap 8 is formed by applying an insulating paint above the base material 7 and baking it, or by joining an insulating ceramic material matched to the shape of the base material 7. be able to.

次に、このように絶縁性キャップ8を設けた上記基材7の貫通孔7a内に、燃料極材料を含むスラリー、例えば上記同様の燃料極形成用スラリーを鋳込み、同様に乾燥、焼成することによって、図15(a)及び(b)にその表両及び底面側を示すように、燃料極(第1の電極)3を形成する。   Next, a slurry containing a fuel electrode material, for example, a fuel electrode forming slurry similar to the above, is cast into the through-hole 7a of the base material 7 thus provided with the insulating cap 8, and similarly dried and fired. Thus, the fuel electrode (first electrode) 3 is formed as shown in FIGS. 15 (a) and 15 (b).

続いて、底部側に燃料極3が形成された基材7の貫通孔7a内に、電解質材料を含むスラリー、例えば上記同様の電解質形成用スラリーを鋳込み、同様に乾燥、焼成することによって、図16(a)に示すように、上記燃料極3の上に電解質層4を形成する。   Subsequently, a slurry containing an electrolyte material, for example, the same electrolyte forming slurry as described above, is cast into the through hole 7a of the base material 7 on which the fuel electrode 3 is formed on the bottom side, and similarly dried and fired. As shown in 16 (a), the electrolyte layer 4 is formed on the fuel electrode 3.

そして、底部に燃料極3及び電解質層4が形成された基材7の貫通孔7a内に、さらに空気極材料を含むスラリー、例えば上記同様の空気極形成用スラリーを鋳込み、同様に乾燥、焼成することによって、図16(b)に電解質層4の上に空気極(第2の電極)4を形成し、図17(a)及び(b)に示すような断面及び外観形状を有する固体酸化物形燃料電池用セル板1を得ることができる。   Then, a slurry containing an air electrode material, for example, an air electrode forming slurry similar to the above, is cast into the through hole 7a of the base material 7 on which the fuel electrode 3 and the electrolyte layer 4 are formed at the bottom, and similarly dried and fired. As a result, an air electrode (second electrode) 4 is formed on the electrolyte layer 4 in FIG. 16B, and a solid oxide having a cross section and an external shape as shown in FIGS. 17A and 17B is formed. The cell board 1 for physical fuel cells can be obtained.

本発明において、電解質材料としては、上記したYSZ(イットリア安定化ジルコニア)の他、SSZ(スカンジウム安定化ジルコニア)、SDC(サマリウム・ドープ・セリア)、LSGM(ランタンガレート)などを用いることができる。   In the present invention, as the electrolyte material, SSZ (scandium stabilized zirconia), SDC (samarium-doped ceria), LSGM (lanthanum gallate), etc. can be used in addition to the above-described YSZ (yttria stabilized zirconia).

また、燃料極材料としては、上記したNi−YSZサーメットの他には、Niのような金属材料や、Ni−SDC、Ni−CGO(セリウム−ガリウム複合酸化物)、Cu−CeO(セリア)などのサーメット材料、あるいはこれらの混合材料を用いることができる。
そして、空気極材料としては上記したLSM(La1−XSrMnO)の他には、PtやPd等の金属材料や、LCM(La1−XCaMnO)、LSC(La1−XSrCoO)、SSC(Sm1−XSrCoO)などの複合酸化物を用いることができる。
As the fuel electrode material, in addition to the Ni-YSZ cermet described above, a metal material such as Ni, Ni-SDC, Ni-CGO (cerium-gallium composite oxide), Cu-CeO 2 (ceria) A cermet material such as, or a mixed material thereof can be used.
Then, as in addition to the above LSM (La 1-X Sr X MnO 3) is an air electrode material, and metal material such as Pt or Pd, LCM (La 1-X Ca X MnO 3), LSC (La 1 -X Sr X CoO 3), SSC (Sm 1-X Sr X CoO 3) can be formed using a composite oxide such.

以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例のみに限定されることはない。   Hereinafter, the present invention will be specifically described based on examples. In addition, this invention is not limited only to these Examples.

(実施例1)
絶縁性のハニカム構造基材として、アルミナ焼結体から成り、図10(a)に示したような形状を備えた外径:100mm、厚さ:1mm、隔壁厚さ:1mmの寸法の基材2を準備した。
一方、平均粒径が0.8μmのNiO粉末と、0.5μmのイットリア安定化ジルコニア粉を6:4の質量比で混合した混合粉末100重量部に対して、エチルセルロースを15重量部、テレピン油を80重量部添加し、混錬することによって燃料極スラリーを調製し、当該燃料極スラリーを上記基材2の貫通孔2a内に充填したのち、大気中700℃において2時間焼成し、ハニカム構造をなす絶縁性基材2の貫通孔2aの底部側に、燃料極(第1の電極)3を形成した。この状態を図18(a)に示す。
(Example 1)
As an insulating honeycomb structure base material, a base material made of an alumina sintered body and having a shape as shown in FIG. 10 (a) and having an outer diameter of 100 mm, a thickness of 1 mm, and a partition wall thickness of 1 mm. 2 was prepared.
On the other hand, 15 parts by weight of ethyl cellulose and turpentine oil are added to 100 parts by weight of mixed powder obtained by mixing NiO powder having an average particle diameter of 0.8 μm and yttria-stabilized zirconia powder of 0.5 μm in a mass ratio of 6: 4. 80 parts by weight and kneading to prepare a fuel electrode slurry, filling the fuel electrode slurry into the through-hole 2a of the base material 2, and then firing at 700 ° C. in the atmosphere for 2 hours to obtain a honeycomb structure A fuel electrode (first electrode) 3 was formed on the bottom side of the through hole 2a of the insulating base material 2 forming the structure. This state is shown in FIG.

次に、平均粒径が0.8μmと0.5μmのイットリア安定化ジルコニア粉を3:7の質量比で混合した混合粉末100重量部に対して、エチルセルロースを15重量部、テレピン油を80重量部加えて混錬することにより電解質スラリーを調製し、この電解質スラリーを上記基材2の貫通孔2a内に充填し、大気中1400℃において5時間焼成するこことによって、貫通孔2a内であって、上記燃料極3の上部に電解質層4を形成した。
この状態を図18(b)に示す。
Next, 15 parts by weight of ethyl cellulose and 80 parts by weight of turpentine oil are added to 100 parts by weight of a mixed powder obtained by mixing yttria-stabilized zirconia powder having an average particle diameter of 0.8 μm and 0.5 μm at a mass ratio of 3: 7. An electrolyte slurry was prepared by adding and kneading a portion, and the electrolyte slurry was filled in the through-hole 2a of the base material 2 and fired at 1400 ° C. in the atmosphere for 5 hours. Thus, an electrolyte layer 4 was formed on the fuel electrode 3.
This state is shown in FIG.

そして、平均粒径が0.5μmのランタン・ストロンチウム・マンガン酸化物粉末(La0.2Sr0.8MnO)100重量部に対してエチルセルロースを15重量部、テレピン油を80重量部添加し、混錬することによって空気極スラリーを調製し、この電解質スラリーを上記基材2の貫通孔2a内に充填し、大気中1150℃において2時間焼成することによって、上記電解質層4の上部の貫通孔2a内に空気極(第2の電極)5を形成し、これによって図3に示したような固体酸化物形燃料電池用セル板1が得られた。 Then, 15 parts by weight of ethyl cellulose and 80 parts by weight of turpentine oil are added to 100 parts by weight of lanthanum / strontium / manganese oxide powder (La 0.2 Sr 0.8 MnO 3 ) having an average particle size of 0.5 μm. Then, an air electrode slurry is prepared by kneading, and the electrolyte slurry is filled in the through holes 2a of the substrate 2 and baked at 1150 ° C. for 2 hours in the atmosphere, thereby penetrating the upper part of the electrolyte layer 4. An air electrode (second electrode) 5 was formed in the hole 2a, whereby a cell plate 1 for a solid oxide fuel cell as shown in FIG. 3 was obtained.

このようにして作成された上記燃料電池用セル板1においては、各単セルがセラミックス製のハニカム基材2の中に形成されていることから、セル強度に優れた構造とすることができる。   In the fuel cell plate 1 produced in this way, each single cell is formed in the ceramic honeycomb substrate 2, so that a structure having excellent cell strength can be obtained.

(実施例2)
絶縁性のハニカム構造基材として、上記実施例1と同様に、図10(a)に示したようなアルミナ焼結体から成り、外径:100mm、厚さ:1mm、隔壁厚さ:1mmの寸法の基材2を準備した。
一方、平均粒径が0.5μmのNiO粉末100重量部に対して、エチルセルロースを10重量部、テレピン油を40重量部添加し、混錬することによって導電性スラリーを調製し、当該導電性スラリーに上記基材2の底面(下面)側を浸漬して乾燥したのち、1300℃において2時間焼成し、図10(b)に示したように、基材2の底面側に導電性キャップ6を形成した。
(Example 2)
As an insulating honeycomb structure base material, it is made of an alumina sintered body as shown in FIG. 10 (a), as in Example 1, and has an outer diameter of 100 mm, a thickness of 1 mm, and a partition wall thickness of 1 mm. A substrate 2 having dimensions was prepared.
On the other hand, with respect to 100 parts by weight of NiO powder having an average particle size of 0.5 μm, 10 parts by weight of ethyl cellulose and 40 parts by weight of turpentine oil are added and kneaded to prepare a conductive slurry. After the bottom surface (lower surface) side of the substrate 2 is immersed and dried, the substrate 2 is baked for 2 hours at 1300 ° C., and the conductive cap 6 is placed on the bottom surface side of the substrate 2 as shown in FIG. Formed.

こののち、上記実施例1と同様の操作を繰り返すことによって、燃料極3、電解質層4及び空気極5を基板2の貫通孔2a内に順次形成し、図6及び図13に示したような固体酸化物形燃料電池用セル板1を得た。
このようにして作成された上記燃料電池用セル板1においては、単セルが各々セラミックス製ハニカム基材2の中に形成されており、セル強度に優れた構造とすることができると共に、各単セルの燃料極3が導電性キャップ6を介して電気的に接続できるので、スタック化する際に電気接続端子などを別途設ける必要がない。
Thereafter, by repeating the same operation as in the first embodiment, the fuel electrode 3, the electrolyte layer 4 and the air electrode 5 are sequentially formed in the through hole 2a of the substrate 2, as shown in FIGS. A cell plate 1 for a solid oxide fuel cell was obtained.
In the fuel cell plate 1 produced in this way, each single cell is formed in the ceramic honeycomb substrate 2, and a structure with excellent cell strength can be obtained. Since the fuel electrode 3 of the cell can be electrically connected via the conductive cap 6, it is not necessary to separately provide an electrical connection terminal or the like when stacking.

(実施例3)
導電性のハニカム構造基材として、Fe−20Cr−3Al合金の金属箔から成り、図14(a)に示したような外径:100mm、厚さ:1mm、隔壁厚さ:0.3mmの寸法の基材7を準備した。
他方、電気絶縁性スラリーとして、平均粒径が0.4μmのアルミナ粉末100重量部に対して、エチルセルロースを10重量部、テレピン油を40重量部混錬したものを調製し、このスラリーに上記基材7の表面(上面)側を浸漬して乾燥したのち、1400℃において2時間焼成し、図14(b)に示したように、基材7の上面側に絶縁性キャップ8を形成した。
(Example 3)
As a conductive honeycomb structure base material, it is composed of a metal foil of Fe-20Cr-3Al alloy, and the outer diameter is 100 mm, the thickness is 1 mm, and the partition wall thickness is 0.3 mm as shown in FIG. The base material 7 was prepared.
On the other hand, an electrically insulating slurry was prepared by kneading 10 parts by weight of ethyl cellulose and 40 parts by weight of turpentine oil with respect to 100 parts by weight of alumina powder having an average particle size of 0.4 μm. The surface (upper surface) side of the material 7 was dipped and dried, and then fired at 1400 ° C. for 2 hours to form an insulating cap 8 on the upper surface side of the substrate 7 as shown in FIG.

次いで、上記実施例1と同様の操作を繰り返すことによって、燃料極3、電解質層4及び空気極5を基板7の貫通孔7a内に順次形成し、図9及び図17に示したような固体酸化物形燃料電池用セル板1を得た。
このようにして作成された上記燃料電池用セル板1においては、各単セルが金属箔製ハニカム基材中に形成されているため、セル強度に優れた構造であると共に、絶縁性キャップ8を設けたことによって、各単セルの燃料極3と空気極5とを電気的に絶縁することができる。また、各単セルの燃料極3同士が電気的に接続されているのでスタック化する際に、電気接続端子などを別部材として設ける必要がないものとなる。
Subsequently, the fuel electrode 3, the electrolyte layer 4, and the air electrode 5 are sequentially formed in the through hole 7a of the substrate 7 by repeating the same operation as in the first embodiment, and the solid as shown in FIGS. An oxide fuel cell plate 1 was obtained.
In the fuel cell plate 1 thus produced, each single cell is formed in a honeycomb substrate made of metal foil, so that the structure is excellent in cell strength and the insulating cap 8 is provided. By providing, the fuel electrode 3 and the air electrode 5 of each single cell can be electrically insulated. In addition, since the fuel electrodes 3 of each single cell are electrically connected, it is not necessary to provide an electrical connection terminal or the like as a separate member when stacking.

本発明の固体酸化物形燃料電池用セル板の第1の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 1st structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第2の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 2nd structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第3の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 3rd structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第4の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 4th structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第5の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 5th structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第6の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 6th structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第7の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 7th structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第8の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 8th structural example of the cell board for solid oxide fuel cells of this invention. 本発明の固体酸化物形燃料電池用セル板の第9の構造例を示す部分断面図(a)、平面図(b)及び底面図(c)である。It is the fragmentary sectional view (a), the top view (b), and the bottom view (c) which show the 9th structural example of the cell board for solid oxide fuel cells of this invention. (a)本発明に用いる絶縁性基板の形状例を示す平面図である。(b)図10(a)に示した基材に導電性キャップを施した状態を示す底面図である。(A) It is a top view which shows the example of a shape of the insulating board | substrate used for this invention. (B) It is a bottom view which shows the state which gave the electroconductive cap to the base material shown to Fig.10 (a). 図10(a)に示した基材の貫通孔内に燃料極を形成した状態を示す平面図(a)及び底面図(b)である。It is the top view (a) and bottom view (b) which show the state which formed the fuel electrode in the through-hole of the base material shown to Fig.10 (a). (a)図11(a)に示した基材貫通孔内の燃料極の上に電解質層を形成した状態を示す平面図である。(b)図12(a)に示した基材貫通孔内の電解質層の上に空気極を形成した完成状態のセル板を示す平面図である。(A) It is a top view which shows the state which formed the electrolyte layer on the fuel electrode in the base-material through-hole shown to Fig.11 (a). (B) It is a top view which shows the cell board of the completion state which formed the air electrode on the electrolyte layer in the base-material through-hole shown to Fig.12 (a). 図12(b)に示したセル板の隣接する単セル形状を示す断面図である。It is sectional drawing which shows the single cell shape which the cell board shown in FIG.12 (b) adjoins. (a)本発明に用いる金属箔製基板の形状例を示す平面図である。(b) 図14(a)に示した基材に絶縁性キャップを施した状態を示す平面図である。(A) It is a top view which shows the example of a shape of the metal foil board | substrates used for this invention. (B) It is a top view which shows the state which gave the insulating cap to the base material shown to Fig.14 (a). 図14(a)に示した基材の貫通孔内に燃料極を形成した状態を示す平面図(a)及び底面図(b)である。It is the top view (a) and bottom view (b) which show the state which formed the fuel electrode in the through-hole of the base material shown to Fig.14 (a). (a)図15(a)に示した基材貫通孔内の燃料極の上に電解質層を形成した状態を示す平面図である。(b)図16(a)に示した基材貫通孔内の電解質層の上に空気極を形成した完成状態のセル板を示す平面図である。(A) It is a top view which shows the state which formed the electrolyte layer on the fuel electrode in the base-material through-hole shown to Fig.15 (a). (B) It is a top view which shows the cell board of the completion state which formed the air electrode on the electrolyte layer in the base-material through-hole shown to Fig.16 (a). (a)図16(b)に示したセル板の隣接する単セル形状を示す断面図である。(b)図16(b)に示したセル板の全体構造を示す斜視図である。(A) It is sectional drawing which shows the single cell shape which the cell board shown in FIG.16 (b) adjoins. (B) It is a perspective view which shows the whole structure of the cell board shown in FIG.16 (b). (a)本発明の実施例1において、基材の貫通孔内に燃料極を形成した状態を示す平面図である。(b)図18(a)に示した基材貫通孔内の燃料極の上に電解質層を形成した状態を示す平面図である。(A) In Example 1 of this invention, it is a top view which shows the state which formed the fuel electrode in the through-hole of a base material. (B) It is a top view which shows the state which formed the electrolyte layer on the fuel electrode in the base-material through-hole shown to Fig.18 (a).

符号の説明Explanation of symbols

1 固体酸化物形燃料電池用セル板
2 (絶縁性)基材
2a 貫通孔
3 燃料極(第1の電極)
4 電解質層
5 空気極(第2の電極)
6 導電性キャップ(導電体)
7 (金属箔製)基材
7a 貫通孔
8 絶縁性キャップ(絶縁体)
DESCRIPTION OF SYMBOLS 1 Cell board for solid oxide fuel cells 2 (Insulating) base material 2a Through-hole 3 Fuel electrode (1st electrode)
4 Electrolyte layer 5 Air electrode (second electrode)
6 Conductive cap (conductor)
7 (made of metal foil) base material 7a through hole 8 insulating cap (insulator)

Claims (9)

絶縁性材料から成り、複数の貫通孔を備えたハニカム構造をなす基板の各貫通孔内に第1の電極が充填されており、第1の電極面を含む上記基板全面に電解質層及び第2の電極がこの順に形成されていることを特徴とする固体酸化物形燃料電池用セル板。   A first electrode is filled in each through hole of a substrate made of an insulating material and having a honeycomb structure having a plurality of through holes, and an electrolyte layer and a second electrode are formed on the entire surface of the substrate including the first electrode surface. The electrodes of the solid oxide fuel cell are formed in this order. 絶縁性材料から成り、複数の貫通孔を備えたハニカム構造をなす基板の各貫通孔内に第1の電極及び電解質層がこの順に充填されており、電解質面を含む上記基板全面に第2の電極が形成されていることを特徴とする固体酸化物形燃料電池用セル板。   A first electrode and an electrolyte layer are filled in this order into each through-hole of a substrate made of an insulating material and having a honeycomb structure having a plurality of through-holes. A cell plate for a solid oxide fuel cell, wherein an electrode is formed. 絶縁性材料から成り、複数の貫通孔を備えたハニカム構造をなす基板の各貫通孔内に、第1及び第2の電極が電解質層を挟持した状態に充填されていることを特徴とする固体酸化物形燃料電池用セル板。   A solid made of an insulating material, wherein first and second electrodes are filled in a state in which an electrolyte layer is sandwiched in each through-hole of a substrate having a honeycomb structure having a plurality of through-holes Oxide fuel cell plate. 上記基板に、隣接する単セルの第1の電極同士を連結する導電体を設けたことを特徴とする請求項1〜3のいずれか1つの項に記載の固体酸化物形燃料電池用セル板。   The cell board for a solid oxide fuel cell according to any one of claims 1 to 3, wherein a conductor for connecting the first electrodes of adjacent single cells to each other is provided on the substrate. . 金属箔から成り、複数の貫通孔を備えたハニカム構造をなす基材の各貫通孔内に第1の電極が充填されており、第1の電極面を含む上記基材全面に電解質層及び第2の電極がこの順に形成されていることを特徴とする固体酸化物形燃料電池用セル板。   A first electrode is filled in each through-hole of a base material that is made of a metal foil and has a honeycomb structure having a plurality of through-holes, and an electrolyte layer and a first electrode are formed on the entire surface of the base material including the first electrode surface. 2. A cell plate for a solid oxide fuel cell, wherein two electrodes are formed in this order. 金属箔から成り、複数の貫通孔を備えたハニカム構造をなす基材の各貫通孔内に第1の電極及び電解質層がこの順に充填されており、電解質面を含む上記基材全面に第2の電極が形成されていると共に、上記基材に当該基材と上記第2電極と間を絶縁する絶縁体を設けたことを特徴とする固体酸化物形燃料電池用セル板。   A first electrode and an electrolyte layer are filled in this order in each through-hole of a base material that is made of a metal foil and has a honeycomb structure having a plurality of through-holes. The solid oxide fuel cell plate according to claim 1, wherein an electrode is formed on the base material and an insulator for insulating the base material and the second electrode is provided on the base material. 金属箔から成り、複数の貫通孔を備えたハニカム構造をなす基材の各貫通孔内に、第1及び第2の電極が電解質層を挟持した状態に充填されていると共に、上記基材に当該基材と上記第2電極と間を絶縁する絶縁体を設けたことを特徴とする固体酸化物形燃料電池用セル板。   The first and second electrodes are filled in a state in which the electrolyte layer is sandwiched in each through hole of the base material that is made of a metal foil and has a honeycomb structure having a plurality of through holes. A cell plate for a solid oxide fuel cell, comprising an insulator for insulating between the base material and the second electrode. 請求項1〜7のいずれか1つの項に記載の燃料電池用セル板を複数枚積層して成ることを特徴とする固体酸化物形燃料電池スタック。   A solid oxide fuel cell stack comprising a plurality of the fuel cell plate according to any one of claims 1 to 7. 請求項1〜7のいずれか1つの項に記載の燃料電池用セル板及び/又は請求項9に記載の燃料電池スタックを用いて成ることを特徴とする固体酸化物形燃料電池。   A solid oxide fuel cell comprising the fuel cell plate according to any one of claims 1 to 7 and / or the fuel cell stack according to claim 9.
JP2004137994A 2004-05-07 2004-05-07 Cell plate for solid oxide fuel cell, and solid oxide fuel cell Pending JP2005322452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004137994A JP2005322452A (en) 2004-05-07 2004-05-07 Cell plate for solid oxide fuel cell, and solid oxide fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004137994A JP2005322452A (en) 2004-05-07 2004-05-07 Cell plate for solid oxide fuel cell, and solid oxide fuel cell

Publications (1)

Publication Number Publication Date
JP2005322452A true JP2005322452A (en) 2005-11-17

Family

ID=35469570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004137994A Pending JP2005322452A (en) 2004-05-07 2004-05-07 Cell plate for solid oxide fuel cell, and solid oxide fuel cell

Country Status (1)

Country Link
JP (1) JP2005322452A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009020627A1 (en) * 2007-08-07 2009-02-12 Lilliputian Systems, Inc. Fuel cell with substrate-patterned lower electrode
JP2009245660A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2009245663A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
US7858261B2 (en) 2006-05-02 2010-12-28 Lilliputian Systems, Inc. Systems and methods for stacking fuel cells
US10505241B2 (en) 2014-05-16 2019-12-10 Samsung Electronics Co., Ltd. Metal-air battery

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632264A (en) * 1986-06-20 1988-01-07 Mitsubishi Electric Corp Fuel cell
JPH06223848A (en) * 1992-12-23 1994-08-12 Corning Inc Solid electrolytic fuel cell
JPH0670162U (en) * 1993-03-15 1994-09-30 三菱重工業株式会社 Flat plate solid oxide fuel cell
JPH087900A (en) * 1994-06-15 1996-01-12 Murata Mfg Co Ltd Solid electrolytic fuel cell
JPH0971889A (en) * 1995-06-30 1997-03-18 Mitsubishi Electric Corp Electrolyzing functional element and its production
JPH10189016A (en) * 1996-12-27 1998-07-21 Kyocera Corp Solid electrolyte fuel cell
JPH1173978A (en) * 1997-09-01 1999-03-16 Ngk Insulators Ltd Electrochemical cell, electrochemical device and manufacture of the electrochemical cell
JP2002170578A (en) * 2000-11-29 2002-06-14 Nissan Motor Co Ltd Cell for fuel battery and manufacturing method thereof
JP2002203580A (en) * 2000-12-28 2002-07-19 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2002222659A (en) * 2000-11-27 2002-08-09 Nissan Motor Co Ltd Single cell for fuel cell, and solid electrolyte fuel cell
JP2002289221A (en) * 2001-03-26 2002-10-04 Nissan Motor Co Ltd Cell plate for fuel cell, its manufacturing method and solid electrolyte type fuel cell
JP2003077480A (en) * 2001-08-31 2003-03-14 Mitsubishi Electric Corp Fuel cell
JP2004507876A (en) * 2000-09-01 2004-03-11 グローバル サーモエレクトリック インコーポレイテッド Electrode pattern for solid ion device
JP2004288382A (en) * 2003-03-19 2004-10-14 Nissan Motor Co Ltd Solid oxide fuel battery cell, cell plate, and its manufacturing method
JP2005129370A (en) * 2003-10-24 2005-05-19 Nissan Motor Co Ltd Cell for solid oxide fuel battery and its manufacturing method
JP2006500735A (en) * 2002-07-03 2006-01-05 ステフティング エネルギーオンデルゾエク セントラム ネーデルランド Anode-supported fuel cell

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632264A (en) * 1986-06-20 1988-01-07 Mitsubishi Electric Corp Fuel cell
JPH06223848A (en) * 1992-12-23 1994-08-12 Corning Inc Solid electrolytic fuel cell
JPH0670162U (en) * 1993-03-15 1994-09-30 三菱重工業株式会社 Flat plate solid oxide fuel cell
JPH087900A (en) * 1994-06-15 1996-01-12 Murata Mfg Co Ltd Solid electrolytic fuel cell
JPH0971889A (en) * 1995-06-30 1997-03-18 Mitsubishi Electric Corp Electrolyzing functional element and its production
JPH10189016A (en) * 1996-12-27 1998-07-21 Kyocera Corp Solid electrolyte fuel cell
JPH1173978A (en) * 1997-09-01 1999-03-16 Ngk Insulators Ltd Electrochemical cell, electrochemical device and manufacture of the electrochemical cell
JP2004507876A (en) * 2000-09-01 2004-03-11 グローバル サーモエレクトリック インコーポレイテッド Electrode pattern for solid ion device
JP2002222659A (en) * 2000-11-27 2002-08-09 Nissan Motor Co Ltd Single cell for fuel cell, and solid electrolyte fuel cell
JP2002170578A (en) * 2000-11-29 2002-06-14 Nissan Motor Co Ltd Cell for fuel battery and manufacturing method thereof
JP2002203580A (en) * 2000-12-28 2002-07-19 Nissan Motor Co Ltd Single cell for fuel cell and solid electrolyte fuel cell
JP2002289221A (en) * 2001-03-26 2002-10-04 Nissan Motor Co Ltd Cell plate for fuel cell, its manufacturing method and solid electrolyte type fuel cell
JP2003077480A (en) * 2001-08-31 2003-03-14 Mitsubishi Electric Corp Fuel cell
JP2006500735A (en) * 2002-07-03 2006-01-05 ステフティング エネルギーオンデルゾエク セントラム ネーデルランド Anode-supported fuel cell
JP2004288382A (en) * 2003-03-19 2004-10-14 Nissan Motor Co Ltd Solid oxide fuel battery cell, cell plate, and its manufacturing method
JP2005129370A (en) * 2003-10-24 2005-05-19 Nissan Motor Co Ltd Cell for solid oxide fuel battery and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858261B2 (en) 2006-05-02 2010-12-28 Lilliputian Systems, Inc. Systems and methods for stacking fuel cells
WO2009020627A1 (en) * 2007-08-07 2009-02-12 Lilliputian Systems, Inc. Fuel cell with substrate-patterned lower electrode
JP2009245660A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
JP2009245663A (en) * 2008-03-28 2009-10-22 Dainippon Printing Co Ltd Solid oxide fuel cell and manufacturing method therefor
US10505241B2 (en) 2014-05-16 2019-12-10 Samsung Electronics Co., Ltd. Metal-air battery

Similar Documents

Publication Publication Date Title
KR101045168B1 (en) Ceramic membranes with integral seals and support, and electrochemical cells and electrochemical cell stacks including the same
JP4850980B1 (en) Fuel cell structure
JP5456134B2 (en) Fuel cell stack structure
JP5080951B2 (en) Horizontal stripe fuel cell stack and fuel cell
JP5116184B1 (en) Fuel cell structure
JP5117627B1 (en) Fuel cell structure
US9666892B2 (en) Cell, cell stack device, module, and module housing device
US9005844B2 (en) Structure of solid oxide fuel cell
JP4923407B2 (en) Method for producing solid oxide fuel cell
JP5294649B2 (en) Cell stack and fuel cell module
JP5443648B1 (en) Fuel cell structure
JP2008053045A (en) Solid oxide fuel cell and its manufacturing method
JP4883992B2 (en) Fuel cell and fuel cell
JP5501484B1 (en) Fuel cell stack structure
JP2005322452A (en) Cell plate for solid oxide fuel cell, and solid oxide fuel cell
JP5920880B2 (en) Mounting structure of stacked solid oxide fuel cell
JP2005085522A (en) Supporting membrane type solid oxide fuel cell
JP5074004B2 (en) Solid oxide fuel cell and method for producing the same
JP2005166455A (en) Solid oxide fuel battery cell, cell plate, and its manufacturing method
JP5062786B1 (en) Fuel cell structure
JP2005216619A (en) Fuel battery cell and fuel battery
JP5727062B1 (en) Fuel cell
JP2019075197A (en) Electrochemical reaction single cell, and electrochemical reaction cell stack
JP4557578B2 (en) Fuel cell, cell stack and fuel cell
JP5752340B1 (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100308