JPH0967672A - Ferritic stainless steel, solid electrolytic fuel cell and production of the same ferritic stainless steel - Google Patents

Ferritic stainless steel, solid electrolytic fuel cell and production of the same ferritic stainless steel

Info

Publication number
JPH0967672A
JPH0967672A JP7220345A JP22034595A JPH0967672A JP H0967672 A JPH0967672 A JP H0967672A JP 7220345 A JP7220345 A JP 7220345A JP 22034595 A JP22034595 A JP 22034595A JP H0967672 A JPH0967672 A JP H0967672A
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
fuel cell
solid electrolytic
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7220345A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuzaki
良雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP7220345A priority Critical patent/JPH0967672A/en
Publication of JPH0967672A publication Critical patent/JPH0967672A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a ferritic stainless steel in which the oxidizing rate is sufficiently reduced and the heat resistance by is improved by coating the surface of a ferritic stainless steel contg. specified amounts of Cr and Al with ZrO2 . SOLUTION: The surface of a ferritic stainless steel contg., by weight, >=15% Cr and >=3% Al is coated with ZrO2 by a CVD method. Thus, the ferritic stainless steel in which the oxidizing rate at a high temp. is reduced and the heat resistance is improved is obtd., which is useful as the material for the gasket of a solid electrolytic fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はフェライト系ステン
レス鋼、これを使用した固体電解質燃料電池およびこの
フェライト系ステンレス鋼の製造方法に関する。
TECHNICAL FIELD The present invention relates to a ferritic stainless steel, a solid electrolyte fuel cell using the same, and a method for producing the ferritic stainless steel.

【0002】[0002]

【従来の技術】最近、例えば空気と水素をそれぞれ、酸
化剤および燃料として、燃料が本来持っている化学エネ
ルギーを直接電気エネルギーに変換する燃料電池が、省
資源、環境保護の観点から注目されている。
2. Description of the Related Art Recently, for example, fuel cells which directly convert chemical energy originally possessed by fuels into electric energy by using air and hydrogen respectively as an oxidant and a fuel have attracted attention from the viewpoint of resource saving and environmental protection. There is.

【0003】燃料電池の中で固体電解質燃料電池は、固
体電解質の両面にそれぞれ空気極、燃料極を配置してな
る平板状単電池と、隣接する単電池同士を電気的に直列
に接続し、かつ各単電池に燃料と酸化剤ガスとを分配す
るセパレータとを交互に積層し、燃料極とセパレータの
燃料ガス流通路側との間に金属メッシュを介在し、単電
池の固体電解質とセパレータの間にそれぞれシール剤ま
たはガスケットを介在してスタックに積層したものであ
る。
Among the fuel cells, a solid electrolyte fuel cell is a flat-type cell in which an air electrode and a fuel electrode are arranged on both sides of a solid electrolyte, and adjacent cells are electrically connected in series. And the separators that distribute the fuel and the oxidant gas to each unit cell are alternately laminated, a metal mesh is interposed between the fuel electrode and the fuel gas flow passage side of the separator, and between the solid electrolyte of the unit cell and the separator. Are laminated in a stack with a sealant or gasket interposed therebetween.

【0004】固体電解質燃料電池の構成材料は次のよう
である。
The constituent materials of the solid electrolyte fuel cell are as follows.

【0005】単電池はイットリアなどをドープしたジル
コニア焼結体(YSZ)からなる固体電解質をNi/Y
SZサーメットの燃料極と(La、Sr)MnOの空気
極が両側から挟んでいる。セパレータはストロンチウ
ム、カルシウム、マグネシウム等をドープしたランタン
クロマイト酸化物LaCrO3 、または耐熱性合金で造
られる。ガスケットは部分安定化ジルコニアまたは耐熱
性金属で造られている。
A unit cell is a Ni / Y solid electrolyte composed of a zirconia sintered body (YSZ) doped with yttria or the like.
The fuel electrode of SZ cermet and the air electrode of (La, Sr) MnO are sandwiched from both sides. The separator is made of lanthanum chromite oxide LaCrO 3 doped with strontium, calcium, magnesium or the like, or a heat resistant alloy. The gasket is made of partially stabilized zirconia or refractory metal.

【0006】固体電解質燃料電池の作動温度は1000
℃と高く、そのため構成材料が金属の場合、酸素が侵入
して厚みや重量を増加し、最終的に異常酸化を起こす。
そこで、構成材料に金属を用いる場合表面の改質が必要
となる。
The operating temperature of a solid oxide fuel cell is 1000
As high as ℃, when the constituent material is metal, oxygen invades to increase the thickness and weight, and finally causes abnormal oxidation.
Therefore, when a metal is used as a constituent material, surface modification is required.

【0007】フェライト系ステンレス鋼は、耐酸化性に
優れ、金属の中では熱膨張率も小さいため、固体電解質
燃料電池の構成材料として期待されている。
Ferrite stainless steel is excellent in oxidation resistance and has a small coefficient of thermal expansion among metals, so that it is expected as a constituent material of a solid electrolyte fuel cell.

【0008】[0008]

【発明が解決しようとする課題】しかるに、フェライト
系ステンレス鋼は表面処理を施していない場合、表面に
酸化クロムの層が現れ、固体電解質燃料電池の電極、特
に空気極に悪影響して劣化させる欠点と、高温度での酸
化速度を大きくする欠点がある。
However, when the ferritic stainless steel is not surface-treated, a layer of chromium oxide appears on the surface, which adversely deteriorates the electrode of the solid electrolyte fuel cell, particularly the air electrode. And, there is a drawback that the oxidation rate at high temperature is increased.

【0009】例えば特開平6−146006に開示され
ているように、フェライト系ステンレス鋼の表面に導電
酸化物を低温プラズマやスパッタリングにより被覆する
ことにより酸化速度すなわち単位時間あたりの酸化増量
変化(単位:mg/cm2 )を減少させるよう試みてい
るが、従来例ではこれを充分に減少できたとはいい難
い。
For example, as disclosed in JP-A-6-146006, the surface of ferritic stainless steel is coated with a conductive oxide by low-temperature plasma or sputtering to change the oxidation rate, that is, the increase in oxidation amount per unit time (unit: Attempts have been made to reduce the amount (mg / cm 2 ), but it is hard to say that this can be sufficiently reduced in the conventional example.

【0010】本発明は上述の点にかんがみてなされたも
ので、フェライト系ステンレス鋼の酸化速度を充分に減
少させて耐熱性を向上させることができるフェライト系
ステンレス鋼の表面改質法と、この方法により改質され
たフェライト系ステンレス鋼およびこの材料をガスケッ
トとして用いた固体電解質燃料電池を提供することを目
的とする。
The present invention has been made in view of the above points, and a surface modification method for a ferritic stainless steel capable of sufficiently reducing the oxidation rate of the ferritic stainless steel to improve the heat resistance, and An object of the present invention is to provide a ferritic stainless steel modified by the method and a solid electrolyte fuel cell using this material as a gasket.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明は表面にZrO2 を被覆したフェライト系ス
テンレス鋼を特徴とする。
To achieve the above object, the present invention features a ferritic stainless steel having a surface coated with ZrO 2 .

【0012】また、重量%でCr:15%以上、Al:
3%以上を含有し、表面にZrO2を被覆したフェライ
ト系ステンレス鋼を特徴とする。
In addition, Cr: 15% or more by weight%, Al:
It is characterized by ferritic stainless steel containing 3% or more and having ZrO 2 coated on the surface.

【0013】また、上記フェライト系ステンレス鋼をガ
スケットの材料として用いた固体電解質燃料電池を特徴
とする。
A solid electrolyte fuel cell using the above ferritic stainless steel as a gasket material is also featured.

【0014】また、フェライト系ステンレス鋼の表面に
CVD(Chemical Vapor Deposition )法によりZr
2 を被覆することを特徴とする。
Zr is formed on the surface of ferritic stainless steel by the CVD (Chemical Vapor Deposition) method.
It is characterized by coating with O 2 .

【0015】また、重量%でCr:15%以上、Al:
3%以上を含有するフェライト系ステンレス鋼の表面に
CVD法によりZrO2 を被覆することを特徴とする。
In addition, Cr: 15% or more by weight%, Al:
The surface of ferritic stainless steel containing 3% or more is coated with ZrO 2 by the CVD method.

【0016】[0016]

【発明の実施の形態】以下に本発明を図面に基づいて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to the drawings.

【0017】本発明の方法に使用されるフェライト系ス
テンレス鋼は通常の成分を有するものであるが、重量%
でCr:15%以上、Al:3%以上を含有するものが
好まれる。
The ferritic stainless steel used in the method of the present invention has the usual constituents, but is in weight percent.
Therefore, those containing Cr: 15% or more and Al: 3% or more are preferred.

【0018】表面被覆材料としてZrO2 を用いるが、
CeO2 やAl23 を使用することもできる。
ZrO 2 is used as the surface coating material,
CeO 2 or Al 2 O 3 can also be used.

【0019】表面被覆はCVD法により実施する。The surface coating is carried out by the CVD method.

【0020】CVD法とは原料を気体の状態で供給し、
化学反応により膜を析出させる方法である。原料として
特に金属有機化合物を用いた場合MOCVD法と呼ばれ
る。
The CVD method is to supply raw materials in a gaseous state,
It is a method of depositing a film by a chemical reaction. When a metal organic compound is used as a raw material, it is called a MOCVD method.

【0021】[0021]

【実施例】MOCVD法あるいは光CVD法でZrO2
薄膜を合成し、耐酸化コーティングへの応用を試みた。
[Example] ZrO 2 by MOCVD method or photo CVD method
We synthesized a thin film and tried to apply it to oxidation resistant coating.

【0022】実験方法は次のようである。The experimental method is as follows.

【0023】図1は実験に使用したCVD反応装置の概
略構成を説明する図である。
FIG. 1 is a diagram for explaining the schematic structure of the CVD reactor used in the experiment.

【0024】図の装置において、ガラスチャンバー2の
天井板に重水素ランプ1が取付けられている。ガラスチ
ャンバー2の底板上のサセプター4に2cm角の透明石
英あるいは合金の基板3が載せられている。ガラスチャ
ンバー2の底板に設けた石英窓7の下に赤外ランプ8が
配置されている。ガラスチャンバー2には真空計5と圧
力コントローラ6が取付けられている。圧力コントロー
ラ6を通じて排気される。ヒータ11の中に収容された
気化器9に原料10が入れられている。キャリアガスは
流量コントローラ12を通じて気化器9に流入し、さら
にガラスチャンバー2の中に流入する。また、反応ガス
は流量コントローラ13を通じてガラスチャンバー2の
中に流入する。
In the illustrated apparatus, the deuterium lamp 1 is attached to the ceiling plate of the glass chamber 2. A 2 cm square transparent quartz or alloy substrate 3 is placed on a susceptor 4 on the bottom plate of the glass chamber 2. An infrared lamp 8 is arranged below a quartz window 7 provided on the bottom plate of the glass chamber 2. A vacuum gauge 5 and a pressure controller 6 are attached to the glass chamber 2. The gas is exhausted through the pressure controller 6. A raw material 10 is put in a vaporizer 9 housed in a heater 11. The carrier gas flows into the vaporizer 9 through the flow rate controller 12 and further into the glass chamber 2. Further, the reaction gas flows into the glass chamber 2 through the flow rate controller 13.

【0025】使用されたフェライト系ステンレス鋼は、
重量%で、Cr:17.9%、Ti:0.35%、M
n:0.33%、Si:0.3%、Al:3.6%、F
e:77.52%の成分を有する。
The ferritic stainless steel used is
% By weight, Cr: 17.9%, Ti: 0.35%, M
n: 0.33%, Si: 0.3%, Al: 3.6%, F
e: It has a component of 77.52%.

【0026】被覆原料10には約0.2gのジルコニウ
ムのアセチルアセトネートを用い、真空紫外光の光源に
は、重水素ランプ1を用いた。窓材はMgF2 である。
重水素ランプ1は115nmから400nmまでの幅広
い波長分布と、低波長の高い光子エネルギーを有してい
る。ランプ1の出力は150Wである。
About 0.2 g of zirconium acetylacetonate was used as the coating raw material 10, and the deuterium lamp 1 was used as the light source of vacuum ultraviolet light. The window material is MgF 2 .
The deuterium lamp 1 has a wide wavelength distribution from 115 nm to 400 nm and high photon energy of low wavelength. The output of the lamp 1 is 150W.

【0027】キャリアガスには500sccmN2 を用
い、反応ガスには200sccmのO2 を用いた。基板
3の温度は740Kから800Kまで20Kごとに変化
させ、それぞれ30分成膜した。反応圧力は20Tor
r一定で行った。原料10は油浴により150℃一定に
保持した。
500 sccm N 2 was used as the carrier gas, and 200 sccm O 2 was used as the reaction gas. The temperature of the substrate 3 was changed from 740 K to 800 K in steps of 20 K, and films were formed for 30 minutes each. Reaction pressure is 20 Tor
It was carried out at a constant r. The raw material 10 was kept constant at 150 ° C. by an oil bath.

【0028】上記実験の結果を図2、3に示す。The results of the above experiment are shown in FIGS.

【0029】図2は透明石英基板上に光CVD法で成膜
したZrO2 薄膜の結晶構造断面の電子顕微鏡写真であ
る。
FIG. 2 is an electron micrograph of a crystal structure cross section of a ZrO 2 thin film formed by a photo CVD method on a transparent quartz substrate.

【0030】ZrO2 薄膜の厚さは約0.5μmで、そ
の構造は柱状構造であった。XRD分析によると結晶構
造は単斜晶で、結晶配向はランダムであった。また、光
励起を用いない同一条件のMOCVD法と比較すると、
微細構造、結晶構造には変化がなかったが、薄膜の成長
速度は、光励起によって減少する傾向にあった。これは
成長表面での活性種の再離脱が加速されたためだと考え
られる。膜の屈折率は光照射によって増加した。
The ZrO 2 thin film had a thickness of about 0.5 μm and had a columnar structure. According to XRD analysis, the crystal structure was monoclinic and the crystal orientation was random. Further, when compared with the MOCVD method under the same conditions that does not use photoexcitation,
There was no change in the fine structure and the crystal structure, but the growth rate of the thin film tended to decrease by photoexcitation. It is considered that this is because the re-dissociation of active species on the growth surface was accelerated. The refractive index of the film was increased by light irradiation.

【0031】図3はZrO2 被膜がFe−18Cr基合
金の1000℃での酸化に及ぼす影響を示すグラフであ
る。
FIG. 3 is a graph showing the effect of the ZrO 2 coating on the oxidation of the Fe-18Cr based alloy at 1000 ° C.

【0032】図3において、Fe−18Cr基合金につ
いて、1000℃での酸化に及ぼす影響が、被膜のない
場合(A曲線)、光励起を用いたPhoto−MOCV
D(Metal Organic Chemical Vapor Deposition )
法により被膜した場合(B曲線)および光励起を用いな
いMOCVD法により被膜した場合(C曲線)について
の結果が示されている。このグラフの縦軸に酸化増量変
化(単位:mg/cm2 )を示し、横軸に酸化時間を示
す。このグラフによると真空紫外光照射による光励起の
効果は明らかでないが、ZrO2 被膜による酸化速度の
減少が明瞭に見られた。
In FIG. 3, for the Fe-18Cr-based alloy, the effect on the oxidation at 1000 ° C. when there was no coating (A curve), Photo-MOCV using photoexcitation.
D (Metal Organic Chemical Vapor Deposition)
The results are shown for the case of coating by the method (B curve) and the case of coating by the MOCVD method without photoexcitation (C curve). The vertical axis of this graph shows the increase in oxidation amount (unit: mg / cm 2 ) and the horizontal axis shows the oxidation time. According to this graph, the effect of photoexcitation by vacuum ultraviolet light irradiation is not clear, but a decrease in the oxidation rate due to the ZrO 2 coating was clearly seen.

【0033】[0033]

【発明の効果】フェライト系ステンレス鋼がAlを含ん
でいることにより、酸化アルミの保護層が形成され、耐
熱性が向上する。
As the ferritic stainless steel contains Al, a protective layer of aluminum oxide is formed and heat resistance is improved.

【0034】ZrO2 の被膜をCVD法で行うことで緻
密な膜を生成し、高温での酸化速度が減少した。
By applying the ZrO 2 film by the CVD method, a dense film was formed and the oxidation rate at high temperature was reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】実験に使用したCVD反応装置の概略構成を説
明する図である。
FIG. 1 is a diagram illustrating a schematic configuration of a CVD reactor used in an experiment.

【図2】透明石英基板上に光CVD法で成膜したZrO
2 薄膜の結晶構造断面の電子顕微鏡写真である。
FIG. 2 ZrO film formed on a transparent quartz substrate by a photo CVD method.
2 is an electron micrograph of a crystal structure cross section of two thin films.

【図3】ZrO2 被膜がFe−18Cr基合金の100
0℃での酸化に及ぼす影響を示すグラフである。
FIG. 3: ZrO 2 coating of Fe-18Cr-based alloy 100
It is a graph which shows the influence which it has on oxidation at 0 degreeC.

【符号の説明】[Explanation of symbols]

1 重水素ランプ 2 ガラスチャンバー 3 基板 4 サセプター 5 真空計 6 圧力コントローラ 7 石英窓 8 赤外ランプ 9 気化器 10 原料 11 ヒータ 12 流量コントローラ 13 流量コントローラ 1 Deuterium Lamp 2 Glass Chamber 3 Substrate 4 Susceptor 5 Vacuum Meter 6 Pressure Controller 7 Quartz Window 8 Infrared Lamp 9 Vaporizer 10 Raw Material 11 Heater 12 Flow Controller 13 Flow Controller

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 表面にZrO2 を被覆したことを特徴と
するフェライト系ステンレス鋼。
1. A ferritic stainless steel whose surface is coated with ZrO 2 .
【請求項2】 重量%でCr:15%以上、Al:3%
以上を含有することを特徴とする請求項1に記載のフェ
ライト系ステンレス鋼。
2. Cr: 15% or more by weight%, Al: 3%
The ferritic stainless steel according to claim 1, containing the above.
【請求項3】 請求項1または2に記載のフェライト系
ステンレス鋼をガスケットの材料として用いたことを特
徴とする固体電解質燃料電池。
3. A solid electrolyte fuel cell comprising the ferritic stainless steel according to claim 1 or 2 as a gasket material.
【請求項4】 フェライト系ステンレス鋼の表面にZr
2 を被覆することを特徴とするフェライト系ステンレ
ス鋼の製造方法。
4. Zr on the surface of ferritic stainless steel
A method for producing a ferritic stainless steel, which comprises coating with O 2 .
【請求項5】 前記フェライト系ステンレス鋼が重量%
でCr:15%以上、Al:3%以上を含有することを
特徴とする請求項4に記載のフェライト系ステンレス鋼
の製造方法。
5. The ferritic stainless steel is wt%
5. The method for producing a ferritic stainless steel according to claim 4, wherein Cr: 15% or more and Al: 3% or more are contained.
【請求項6】 CVD法によりZrO2 を被覆すること
を特徴とする請求項4に記載のフェライト系ステンレス
鋼の製造方法。
6. The method for producing a ferritic stainless steel according to claim 4, wherein ZrO 2 is coated by the CVD method.
JP7220345A 1995-08-29 1995-08-29 Ferritic stainless steel, solid electrolytic fuel cell and production of the same ferritic stainless steel Withdrawn JPH0967672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7220345A JPH0967672A (en) 1995-08-29 1995-08-29 Ferritic stainless steel, solid electrolytic fuel cell and production of the same ferritic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7220345A JPH0967672A (en) 1995-08-29 1995-08-29 Ferritic stainless steel, solid electrolytic fuel cell and production of the same ferritic stainless steel

Publications (1)

Publication Number Publication Date
JPH0967672A true JPH0967672A (en) 1997-03-11

Family

ID=16749694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7220345A Withdrawn JPH0967672A (en) 1995-08-29 1995-08-29 Ferritic stainless steel, solid electrolytic fuel cell and production of the same ferritic stainless steel

Country Status (1)

Country Link
JP (1) JPH0967672A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106999A1 (en) * 2004-04-27 2005-11-10 Battelle Memorial Institute Improved joint with application in electrochemical devices
JP2007523997A (en) * 2003-12-05 2007-08-23 サンドビック インテレクチュアル プロパティー アクティエボラーグ New metal strip material
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
JP2010003689A (en) * 2008-06-20 2010-01-07 General Electric Co <Ge> Fuel cell interconnecting structure and related method as well as data
US7794170B2 (en) 2005-04-22 2010-09-14 Battelle Memorial Institute Joint with application in electrochemical devices
WO2024004361A1 (en) * 2022-06-30 2024-01-04 京セラ株式会社 Electroconductive member, electrochemical cell, electrochemical cell device, module, and module storage device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
JP2007523997A (en) * 2003-12-05 2007-08-23 サンドビック インテレクチュアル プロパティー アクティエボラーグ New metal strip material
WO2005106999A1 (en) * 2004-04-27 2005-11-10 Battelle Memorial Institute Improved joint with application in electrochemical devices
US7794170B2 (en) 2005-04-22 2010-09-14 Battelle Memorial Institute Joint with application in electrochemical devices
JP2010003689A (en) * 2008-06-20 2010-01-07 General Electric Co <Ge> Fuel cell interconnecting structure and related method as well as data
WO2024004361A1 (en) * 2022-06-30 2024-01-04 京セラ株式会社 Electroconductive member, electrochemical cell, electrochemical cell device, module, and module storage device

Similar Documents

Publication Publication Date Title
Will et al. Fabrication of thin electrolytes for second-generation solid oxide fuel cells
US10541429B2 (en) SOFC interconnect barriers and methods of making same using masks
CN109244547A (en) A kind of composite solid electrolyte diaphragm and preparation method thereof and lithium ion battery
US6139985A (en) Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells
CA2204632A1 (en) Protective interlayer for high temperature solid electrolyte electrochemical cells
JPH0558235B2 (en)
US20090011315A1 (en) Thin-Film Composite and a Glass Ceramic Substrate Used in a Miniaturized Electrochemical Device
ES2912750T3 (en) A method for producing an SOFC cathode diffusion barrier layer and an SOFC
Wang et al. Deposition, Structure, and Properties of Cermet Thin Films Composed of Ag and Y‐Stabilized Zirconia
JPH0967672A (en) Ferritic stainless steel, solid electrolytic fuel cell and production of the same ferritic stainless steel
NO960616D0 (en) Process for Preparing an Electrode Layer on a Solid Oxidic Electrolyte in a Solid Fuel Cell
Ogumi et al. Novel Method for Preparing Nickel/YSZ Cermet by a Vapor‐Phase Process
JP2016524282A (en) Multi-layer arrangement for solid electrolyte
Mineshige et al. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique
Mineshige et al. Preparation of Yttria‐Stabilized Zirconia Microtube by Electrochemical Vapor Deposition
Williams et al. Photoelectrochemical properties of plasma-deposited TiO2 thin films
US11489188B2 (en) Method for manufacturing an electrolyte for solid oxide cells by magnetron cathode sputtering
US6093297A (en) Method for depositing solid electrolyte layer
JPH0696791A (en) Solid electrolytic fuel cell and its manufacture
JPS62268063A (en) Manufacture of solid electrolyte
Mineshinge et al. Preparation of hollow YSZ fibre by electrochemical vapour deposition
KR102654253B1 (en) Manufacturing method of tantalum nitride based photoelctrode and tantalum nitride menufactured thereby
JP2932617B2 (en) Solid oxide fuel cell
CN113136601B (en) Titanium dioxide semiconductor film, preparation method and application thereof in photoelectrocatalysis
JP3965623B2 (en) Oxygen permeable structure and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105