JPH0967659A - Method for heat treating aluminum-magnesium-silicon base aluminum alloy - Google Patents

Method for heat treating aluminum-magnesium-silicon base aluminum alloy

Info

Publication number
JPH0967659A
JPH0967659A JP24519595A JP24519595A JPH0967659A JP H0967659 A JPH0967659 A JP H0967659A JP 24519595 A JP24519595 A JP 24519595A JP 24519595 A JP24519595 A JP 24519595A JP H0967659 A JPH0967659 A JP H0967659A
Authority
JP
Japan
Prior art keywords
treatment
time
heat treatment
stage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24519595A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanihata
弘之 谷畑
Hidekazu Kotake
英和 小竹
Michio Azuma
道男 我妻
Yukio Takeshita
幸男 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP24519595A priority Critical patent/JPH0967659A/en
Publication of JPH0967659A publication Critical patent/JPH0967659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently increase the strength of an Al alloy extruded material in a short time and to reduce the energy cost by executing artificial age harden ing treatment for an Al-Mg-Si base Al alloy extruded material by two stage treatment in which the temps. are specified. SOLUTION: At the time of subjecting an extruded material obtd. by subjecting an Al-Mg-Si base Al alloy to extrusion and thereafter executing rapid cooling and modifying to artificial age hardening treatment, the treatment is executed dividedly into two stages. At first, primary preaging treatment is executed in the temp. range of 160 to 180 deg.C to uniformly precipitate Mg2 Si precipitating phases. Next, secondary aging treatment is executed in the temp. range of 195 to 220 deg.C for 1.5 to 8.0 hr to grow Mg2 Si precipitating phases precipitated at the time of the primary preaging treatment. It is preferable that the holding time in the primary treatment is regulated to 0.5 to 1.5 hr and the holding time in the secondary treatment is regulated to 1.5 to 3.0 hr. Furthermore, it is preferable that ΔT, i.e., the difference between the primary preaging treatment time and the secondary aging treatment time satisfies ΔT>=25 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、Al−Mg−Si
系アルミニウム合金、例えば建築用アルミサッシなどと
して広く用いられているAl−Mg−Si系合金である
JIS6000系アルミニウム合金の熱処理方法に関す
るものである。
TECHNICAL FIELD The present invention relates to Al--Mg--Si.
The present invention relates to a heat treatment method for a system aluminum alloy, for example, a JIS6000 system aluminum alloy which is an Al-Mg-Si system alloy widely used as an aluminum sash for buildings and the like.

【0002】[0002]

【従来の技術】Al−Mg−Si系アルミニウム合金の
中でも、建築用アルミサッシに用いられる代表的な60
00系アルミニウム合金押出材は、高温加工から急冷、
矯正された後、人工時効硬化処理(T5 )を施した状態
で使用される。この合金系ではMg2 Si系の析出相が
析出することにより強度が上昇することが知られてお
り、熱処理を施すことにより機械的特性が上昇する。
2. Description of the Related Art Among Al-Mg-Si based aluminum alloys, a typical 60 used for aluminum sashes for construction.
00 series aluminum alloy extruded material is quenched from high temperature processing,
After being straightened, it is used after being subjected to artificial age hardening treatment (T 5 ). It is known that in this alloy system, the strength is increased by the precipitation of the Mg 2 Si-based precipitation phase, and the mechanical properties are increased by the heat treatment.

【0003】[0003]

【発明が解決しようとする課題】上記合金を工業生産す
る上で、人工時効硬化処理は各社各様の処理条件で行わ
れているのが実情である。一般的に所定の強度を得るた
めには、低温の場合は長時間熱処理する必要があり、高
温の場合は処理時間が短縮されるものの、Mg2 Siの
析出相の不均一析出を起こし、強度のバラツキが大き
く、ピーク強度も低くなる傾向が見られる。またこの場
合、熱処理時間が長くなると過時効状態となり、強度が
さらに低下していくことが知られている(図2参照)。
そこで、効率よく熱処理するためには、最適な熱処理条
件を改善、開発する必要がある。従って、本発明の目的
は、Al−Mg−Si系アルミニウム合金押出材の強度
を比較的短時間に効率よく高めることができ、従ってエ
ネルギー費削減に伴なうコストダウン及び生産性向上を
図れる熱処理方法を提供することにある。
In the industrial production of the above alloy, the artificial age hardening treatment is actually carried out under the treatment conditions of each company. Generally, in order to obtain a predetermined strength, it is necessary to heat-treat for a long time at a low temperature, and the processing time is shortened at a high temperature, but the Mg 2 Si precipitation phase causes non-uniform precipitation and Shows a large variation and the peak intensity tends to be low. Further, in this case, it is known that when the heat treatment time becomes long, the state becomes overaged and the strength further decreases (see FIG. 2).
Therefore, in order to perform heat treatment efficiently, it is necessary to improve and develop optimum heat treatment conditions. Therefore, an object of the present invention is to improve the strength of an Al-Mg-Si-based aluminum alloy extruded material efficiently in a relatively short time, and thus to reduce the cost associated with the reduction of energy cost and improve the productivity. To provide a method.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、Mg2 Si析出相を均一に析出させ、A
l−Mg−Si系アルミニウム押出合金における所定の
強度を短時間で得る方法を開発したものである。すなわ
ち、本発明のAl−Mg−Si系アルミニウム合金の熱
処理方法は、押出加工後、急冷・矯正した押出材を人工
時効硬化処理するに当って、温度160〜180℃の範
囲で第1段予備時効処理を施すことによりMg2 Si析
出相を均一に析出させ、次いで温度195〜220℃の
範囲で1.5〜8.0時間第2段時効処理を施すことに
より第1段予備時効時に析出させたMg2 Si析出相を
成長させることを特徴としている。
In order to solve the above-mentioned problems, the present invention is to uniformly precipitate the Mg 2 Si precipitation phase,
This is a method for obtaining a predetermined strength in an l-Mg-Si based aluminum extruded alloy in a short time. That is, the heat treatment method of the Al-Mg-Si-based aluminum alloy of the present invention, after the extrusion processing, in the artificial age hardening treatment of the rapidly cooled and straightened extruded material, the first stage preliminary in the temperature range of 160 to 180 ° C. The Mg 2 Si precipitation phase is uniformly precipitated by performing the aging treatment, and then the second stage aging treatment is performed in the temperature range of 195 to 220 ° C. for 1.5 to 8.0 hours to precipitate during the first stage preliminary aging. It is characterized in that the Mg 2 Si precipitation phase thus grown is grown.

【0005】好適な態様においては、第1段予備時効処
理は160〜180℃の温度範囲で保持時間が0.5〜
1.5時間、より好ましくは170℃±5℃の温度で保
持時間が0.5〜1.5時間、第2段時効処理は195
〜220℃の温度範囲で保持時間が1.5〜3.0時
間、より好ましくは205℃±5℃の温度で保持時間が
1.5〜3.0時間の条件で熱処理を行う。なお、押出
加工直後から第1段予備時効処理前までは長時間放置し
て自然時効させても差支えない。
In a preferred embodiment, the first stage pre-aging treatment has a holding time of 0.5 to 160 ° C. in a temperature range of 160 to 180 ° C.
1.5 hours, more preferably at a temperature of 170 ° C. ± 5 ° C., holding time of 0.5 to 1.5 hours, second stage aging treatment is 195
The heat treatment is performed in the temperature range of 220 ° C to 220 ° C for 1.5 to 3.0 hours, and more preferably at 205 ° C ± 5 ° C for 1.5 to 3.0 hours. It should be noted that there is no problem even if it is left for a long time to be naturally aged immediately after the extrusion process and before the first stage preliminary aging treatment.

【0006】[0006]

【発明の実施の形態】本発明で対象とするAl−Mg−
Si系アルミニウム合金押出材としては、JIS600
0系アルミニウム合金、例えば表1に示すようなJIS
6063合金などが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Al-Mg- which is the object of the present invention
JIS600 is an extruded material of Si-based aluminum alloy.
0 series aluminum alloy, for example JIS as shown in Table 1
6063 alloy etc. are mentioned.

【表1】 [Table 1]

【0007】上記のAl−Mg−Si系アルミニウム合
金はMg2 Si析出相による時効硬化を示すが、606
3合金の他にも6061、6N01合金など他の600
0系アルミニウム合金についても同様の析出相による時
効硬化過程を示すことが知られている。すなわち、この
合金系の時効析出過程は次に示すとおりである。 過飽和固溶体→クラスター→GPゾーン〔(I)→(I
I)〕→中間相(β’)→安定相(β) この中でも機械的性質に大きく影響を与えるのはGPゾ
ーンと中間相である。すなわち、その前段階である析出
核を均一に析出させて、その後の析出相の変態、成長を
いかに効率良く促進させるかがポイントとなる。本発明
の熱処理方法は、第1段予備時効処理においてクラスタ
ー等の均一な析出核を生成させ、第2段の時効処理にお
いて、その析出核からGPゾーン、中間相などの析出物
への変態及び成長を促進させる方法と言える。したがっ
て、本発明による熱処理方法は、この時効析出過程をと
るAl−Mg−Si系アルミニウム合金の全てに対し有
効である。
The Al--Mg--Si system aluminum alloy described above shows age hardening due to the Mg 2 Si precipitation phase.
In addition to 3 alloys, 6001, such as 6061 and 6N01 alloys
It is known that 0 series aluminum alloys also show a similar age hardening process due to a precipitation phase. That is, the aging precipitation process of this alloy system is as follows. Supersaturated solid solution → cluster → GP zone [(I) → (I
I)] → Intermediate phase (β ′) → Stable phase (β) Among these, the GP zone and the intermediate phase have a great influence on the mechanical properties. That is, the point is to uniformly precipitate the precipitation nuclei, which is the previous stage, and efficiently promote the subsequent transformation and growth of the precipitation phase. The heat treatment method of the present invention produces uniform precipitation nuclei such as clusters in the first stage preliminary aging treatment, and transforms the precipitation nuclei into precipitates such as GP zone and intermediate phase in the second stage aging treatment and It can be said to be a method of promoting growth. Therefore, the heat treatment method according to the present invention is effective for all Al-Mg-Si-based aluminum alloys that undergo this aging precipitation process.

【0008】本発明の熱処理方法において、第1段予備
時効処理温度を160〜180℃の温度範囲に設定する
のは、160℃未満では機械的性質に有効な析出相とし
て成長するだけの析出核が生成せず、一方、180℃を
超えると、析出核は生成するものの均一ではなく、第2
段時効処理を施しても効率の良い析出相とはならないた
めである。また、第2段時効処理温度を195〜220
℃の温度範囲に設定するのは、195℃未満では析出相
は期待した成長速度が得られず、逆に220℃を超える
と析出相が成長しすぎ、いわゆる過時効状態となるため
である。
In the heat treatment method of the present invention, the first stage pre-aging treatment temperature is set to a temperature range of 160 to 180 ° C. The precipitation nuclei are simply grown as a precipitation phase effective for mechanical properties at temperatures lower than 160 ° C. On the other hand, when the temperature exceeds 180 ° C., precipitation nuclei are formed but are not uniform,
This is because even if the step aging treatment is applied, an efficient precipitation phase cannot be obtained. Further, the second stage aging treatment temperature is 195 to 220.
The reason why the temperature range is set to ℃ is that the precipitation phase does not achieve the expected growth rate below 195 ° C, and conversely, if it exceeds 220 ° C, the precipitation phase grows too much and becomes a so-called overaged state.

【0009】上記熱処理温度条件では、第1段予備時効
処理温度と第2段時効処理温度の差△Tが△T≧15℃
を満たしているが、さらに好ましくは△T≧25℃を満
たしていると効果的である。△T<15℃の場合、析出
相の生成と成長が同時に起こり、結果的に不均一な組織
となり、従来法の熱処理と何ら変わらなくなり、期待し
た効果が得られない。また、△T≧25℃の場合、析出
核の生成及び成長の各段階の役割を分割し、析出を効率
よく促すため、より効果的である。
Under the above heat treatment temperature conditions, the difference ΔT between the first stage preliminary aging temperature and the second stage aging temperature is ΔT ≧ 15 ° C.
However, it is more effective if ΔT ≧ 25 ° C. is satisfied. When ΔT <15 ° C., the precipitation phase is generated and grown at the same time, resulting in a non-uniform structure, which is no different from the heat treatment of the conventional method, and the expected effect cannot be obtained. Further, when ΔT ≧ 25 ° C., the role of each stage of generation and growth of precipitation nuclei is divided and the precipitation is efficiently promoted, which is more effective.

【0010】同様に、第1段予備時効時間についても保
持時間を0.5〜1.5時間に設定するのは、0.5時
間より少ないと有効な析出核が得られず、強度発現が不
安定になるためである。また保持時間が1.5時間を超
えると、第2段時効時間と合わせて一般的な時効処理時
間を超え、経済的ではなくなる。さらに、第2段時効時
間が1.5〜8.0時間で好ましくは1.5〜3.0時
間の保持時間で処理するのは、1.5時間未満では析出
相の成長が期待できないためである。逆に、8時間を超
えると過時効状態になり、強度の低下を招くため、上限
を8時間とする必要がある。さらに、8時間を超えた場
合、経済的にも効果がない。
Similarly, with respect to the first stage preliminary aging time, the holding time is set to 0.5 to 1.5 hours. If the holding time is less than 0.5 hours, effective precipitation nuclei cannot be obtained and strength development is not achieved. This is because it becomes unstable. Further, if the holding time exceeds 1.5 hours, it exceeds the general aging treatment time together with the second stage aging time, which is not economical. Further, the second stage aging time is 1.5 to 8.0 hours, preferably 1.5 to 3.0 hours, so that the growth of the precipitation phase cannot be expected in less than 1.5 hours. Is. On the other hand, if it exceeds 8 hours, the steel will be overaged and the strength will be lowered. Therefore, it is necessary to set the upper limit to 8 hours. Further, if it exceeds 8 hours, it is economically ineffective.

【0011】[0011]

【実施例】以下、実施例を示して本発明の効果について
具体的に説明するが、本発明が下記実施例に限定される
ものでないことはもとよりである。
EXAMPLES The effects of the present invention will be specifically described below by showing Examples, but it goes without saying that the present invention is not limited to the following Examples.

【0012】実施例1〜3及び比較例1〜12 表2に示す合金組成のアルミニウム合金を通常の方法で
溶解鋳造を行い、6インチビレットとし、このビレット
に570℃×4hrの均質化処理を施し、押出された3
mm厚の平板状の形材を用いた。これらのサンプルに表
3に示す各種熱処理を施し、硬度測定を中心に機械的性
質を調べた。その結果を以下に示す。
Examples 1 to 3 and Comparative Examples 1 to 12 Aluminum alloys having the alloy compositions shown in Table 2 were melt-cast by a usual method to form a 6-inch billet, and this billet was homogenized at 570 ° C. for 4 hours. Delivered and extruded 3
A plate-shaped material having a thickness of mm was used. Various heat treatments shown in Table 3 were applied to these samples, and the mechanical properties were examined centering on hardness measurement. The results are shown below.

【表2】 [Table 2]

【0013】[0013]

【表3】 [Table 3]

【0014】表3中、実施例1〜3は、本発明の条件に
よる二段階熱処理を、比較例1〜7は従来法による一段
階熱処理を、比較例8〜12は本発明の範囲外の条件に
よる二段階熱処理を行った例である。なお、熱処理は、
実ラインの昇温過程に即して一段階目の所定の熱処理温
度に達するまでの時間を0.5hrとした。
In Table 3, Examples 1 to 3 are two-step heat treatments under the conditions of the present invention, Comparative Examples 1 to 7 are conventional one-step heat treatments, and Comparative Examples 8 to 12 are outside the scope of the present invention. This is an example of performing the two-step heat treatment under the conditions. The heat treatment is
The time required to reach the predetermined heat treatment temperature in the first step was set to 0.5 hr in accordance with the temperature rising process of the actual line.

【0015】試験例1(硬度測定) 実施例1〜3、比較例1〜7及び比較例8〜12につい
て、その硬度測定結果をそれぞれ図1〜3に示す。な
お、所定の硬度の目安は、これまでの実績から硬度値6
8とする。また、図1〜3は0.5hrの昇温時間を含
んでいる(以下、図4〜8についても同様である)。
Test Example 1 (Hardness Measurement) The hardness measurement results of Examples 1 to 3, Comparative Examples 1 to 7 and Comparative Examples 8 to 12 are shown in FIGS. In addition, the standard of the predetermined hardness is the hardness value 6 from the actual results so far.
8 is assumed. Further, FIGS. 1 to 3 include a temperature rising time of 0.5 hr (hereinafter, the same applies to FIGS. 4 to 8).

【0016】図2は従来法による一段階熱処理を行った
場合で、所定の硬度を得るためには、低温の場合は長時
間熱処理する必要があり、高温の場合は処理時間が短縮
されるものの、強度のバラツキが大きく、ピーク強度も
低くなる傾向が見られる。またこの場合、熱処理時間が
長くなると過時効状態となり、強度がさらに低下してい
くことがわかる。これに対し、図1に示す本発明の方法
では、所定の硬度に達する時間が短く、最高硬度に達し
た後も直ちに過時効状態とはならない。図3は、二段階
熱処理法における本発明の範囲外の例であるが、図1と
比較すると第1段熱処理の時間が短い場合(比較例
8)、第2段熱処理の温度が低い場合(比較例9)、第
2段熱処理の時間が短い場合(比較例10)、第1段熱
処理の時間が長い場合(比較例11)、第1段熱処理の
温度が高い場合(比較例12)、いずれも所定の硬度に
達する時間がかかることがわかる。このように、本発明
の熱処理方法では、短時間で所定の硬度に達することが
わかる。
FIG. 2 shows the case where the conventional one-step heat treatment is carried out. In order to obtain a predetermined hardness, it is necessary to perform the heat treatment for a long time at a low temperature, and the treatment time is shortened at a high temperature. There is a tendency for the strength to vary greatly and the peak strength to decrease. Further, in this case, it can be seen that when the heat treatment time becomes long, the state becomes overaged and the strength further decreases. On the other hand, in the method of the present invention shown in FIG. 1, it takes a short time to reach a predetermined hardness, and the overaging state does not occur immediately after the maximum hardness is reached. FIG. 3 shows an example of the two-step heat treatment method outside the scope of the present invention, but when the time of the first-step heat treatment is shorter than that of FIG. 1 (Comparative Example 8), and when the temperature of the second-step heat treatment is low ( Comparative Example 9), when the second stage heat treatment time is short (Comparative Example 10), when the first stage heat treatment time is long (Comparative Example 11), when the first stage heat treatment temperature is high (Comparative Example 12), It can be seen that it takes time to reach a predetermined hardness. Thus, it can be seen that the heat treatment method of the present invention reaches a predetermined hardness in a short time.

【0017】試験例2(機械的性質の測定) 次に、上記実施例1、比較例3及び4について、機械的
性質(引張強度及び耐力)を調べた結果を図4及び図5
に示す。図4及び図5から明らかなように、本発明の実
施例1では比較例に比べて引張強度、耐力共に短時間で
所定の強度に達したことがわかる。
Test Example 2 (Measurement of Mechanical Properties) Next, the results of examining the mechanical properties (tensile strength and proof stress) of Example 1 and Comparative Examples 3 and 4 are shown in FIGS. 4 and 5.
Shown in As is clear from FIGS. 4 and 5, it can be seen that in Example 1 of the present invention, both the tensile strength and the proof stress reached predetermined strengths in a short time as compared with the comparative example.

【0018】試験例3(室温時効の影響) 室温時効の影響を調べるため、実施例1の試料につい
て、室温で2週間放置し、その後本発明の方法による熱
処理(実施例1の方法)を行い、その機械的性質(硬
度、引張強度、耐力)を調べた。その硬度測定の結果を
図6に示し、図7及び図8には引張り強度及び耐力の結
果をそれぞれ示す。図6〜8から明らかなように、硬
度、引張強度及び耐力のいずれの特性も室温放置しない
ものと同等であることがわかる。従って、本発明の方法
に従って室温放置したものを二段階時効しても構わない
ことがわかる。
Test Example 3 (Effect of Room Temperature Aging) In order to investigate the effect of room temperature aging, the sample of Example 1 was left at room temperature for 2 weeks, and then heat treated by the method of the present invention (method of Example 1). , Its mechanical properties (hardness, tensile strength, proof stress) were examined. The result of the hardness measurement is shown in FIG. 6, and the results of tensile strength and proof stress are shown in FIGS. 7 and 8, respectively. As is clear from FIGS. 6 to 8, it can be seen that all of the properties of hardness, tensile strength and proof stress are equivalent to those not left at room temperature. Therefore, it is understood that the one left at room temperature according to the method of the present invention may be aged in two steps.

【0019】[0019]

【発明の効果】以上のように、本発明のAl−Mg−S
i系アルミニウム合金の熱処理方法は、従来の熱処理方
法に比べ、上記合金の強度を短時間に高めることがで
き、従ってエネルギー費削減によるコストダウン及び生
産性向上を図ることができ、経済的に大きな効果が望め
る有利な熱処理方法である。
As described above, the Al-Mg-S of the present invention is used.
Compared with conventional heat treatment methods, the heat treatment method for i-type aluminum alloys can increase the strength of the above alloys in a short time, and therefore can reduce the cost and improve the productivity by reducing the energy cost, which is economically large. This is an advantageous heat treatment method that can be expected to be effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による二段階時効硬化処理により処理し
たAl−Mg−Si系アルミニウム合金の硬度と熱処理
時間との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between hardness and heat treatment time of an Al—Mg—Si based aluminum alloy treated by a two-step age hardening treatment according to the present invention.

【図2】従来の一段階時効硬化処理により処理したAl
−Mg−Si系アルミニウム合金の硬度と熱処理時間と
の関係を示すグラフである。
FIG. 2 Al treated by a conventional one-step age hardening treatment
4 is a graph showing the relationship between hardness of Mg—Si based aluminum alloy and heat treatment time.

【図3】本発明の範囲外の二段階時効硬化処理により処
理したAl−Mg−Si系アルミニウム合金の硬度と熱
処理時間との関係を示すグラフである。
FIG. 3 is a graph showing a relationship between hardness and heat treatment time of an Al—Mg—Si based aluminum alloy treated by a two-step age hardening treatment outside the scope of the present invention.

【図4】本発明による二段階時効硬化処理又は従来の一
段階時効硬化処理により処理したAl−Mg−Si系ア
ルミニウム合金の引張強度と熱処理時間との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between tensile strength and heat treatment time of an Al—Mg—Si based aluminum alloy treated by the two-step age hardening treatment according to the present invention or the conventional one-step age hardening treatment.

【図5】本発明による二段階時効硬化処理又は従来の一
段階時効硬化処理により処理したAl−Mg−Si系ア
ルミニウム合金の耐力と熱処理時間との関係を示すグラ
フである。
FIG. 5 is a graph showing a relationship between proof stress and heat treatment time of an Al—Mg—Si based aluminum alloy treated by the two-step age hardening treatment according to the present invention or the conventional one-step age hardening treatment.

【図6】室温で2週間放置し又はしないAl−Mg−S
i系アルミニウム合金に対して本発明の二段階時効硬化
処理を施した後の硬度と熱処理時間との関係を示すグラ
フである。
FIG. 6 Al-Mg-S left or not left at room temperature for 2 weeks
3 is a graph showing the relationship between the hardness and the heat treatment time after the i-type aluminum alloy is subjected to the two-step age hardening treatment of the present invention.

【図7】室温で2週間放置し又はしないAl−Mg−S
i系アルミニウム合金に対して本発明の二段階時効硬化
処理を施した後の引張強度と熱処理時間との関係を示す
グラフである。
FIG. 7: Al-Mg-S left or not left at room temperature for 2 weeks
3 is a graph showing the relationship between tensile strength and heat treatment time after the i-type aluminum alloy is subjected to the two-step age hardening treatment of the present invention.

【図8】室温で2週間放置し又はしないAl−Mg−S
i系アルミニウム合金に対して本発明の二段階時効硬化
処理を施した後の耐力と熱処理時間との関係を示すグラ
フである。
FIG. 8: Al-Mg-S left or not left at room temperature for 2 weeks
It is a graph which shows the relationship between the yield strength and the heat treatment time after carrying out the two-step age hardening treatment of the present invention on an i-based aluminum alloy.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Al−Mg−Si系アルミニウム合金押
出材を人工時効硬化処理するに当って、温度160〜1
80℃で第1段予備時効処理を施すことによりMg2
i析出相を均一に析出させ、次いで温度195〜220
℃の範囲で1.5〜8.0時間の第2段時効処理を施す
ことにより第1段予備時効時に析出させたMg2 Si析
出相を成長させることを特徴とするAl−Mg−Si系
アルミニウム合金の熱処理方法。
1. A temperature of 160 to 1 for artificial age hardening treatment of an Al-Mg-Si-based aluminum alloy extruded material.
Mg 2 S by performing the first stage preliminary aging treatment at 80 ° C
i precipitate the precipitation phase uniformly and then the temperature is 195-220
Al-Mg-Si system characterized by growing the Mg 2 Si precipitation phase precipitated during the first stage preliminary aging by performing the second stage aging treatment for 1.5 to 8.0 hours in the range of ° C. Aluminum alloy heat treatment method.
【請求項2】 第1段予備時効処理の際の保持時間を
0.5〜1.5時間、第2段時効処理の際の保持時間を
1.5〜3.0時間として処理することを特徴とする請
求項1記載の熱処理方法。
2. The treatment is performed by setting the holding time in the first stage preliminary aging treatment to 0.5 to 1.5 hours and the holding time in the second stage aging treatment to 1.5 to 3.0 hours. The heat treatment method according to claim 1, which is characterized in that.
【請求項3】 第1段予備時効処理温度と第2段時効処
理温度の差△Tが△T≧25℃を満たしている請求項1
又は2に記載の熱処理方法。
3. The difference ΔT between the first stage preliminary aging treatment temperature and the second stage aging treatment temperature satisfies ΔT ≧ 25 ° C.
Or the heat treatment method according to 2.
【請求項4】 第1段予備時効処理の処理温度が170
℃±5℃、保持時間が0.5〜1.5時間、第2段時効
処理の処理温度が205℃±5℃、保持時間が1.5〜
3.0時間である請求項1記載の熱処理方法。
4. The treatment temperature of the first stage preliminary aging treatment is 170.
℃ ± 5 ℃, holding time 0.5 ~ 1.5 hours, the second stage aging treatment temperature is 205 ℃ ± 5 ℃, holding time 1.5 ~
The heat treatment method according to claim 1, which is for 3.0 hours.
【請求項5】 対象合金がJIS6000系アルミニウ
ム合金である請求項1乃至4のいずれか一項に記載の熱
処理方法。
5. The heat treatment method according to claim 1, wherein the target alloy is a JIS 6000 series aluminum alloy.
JP24519595A 1995-08-31 1995-08-31 Method for heat treating aluminum-magnesium-silicon base aluminum alloy Pending JPH0967659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24519595A JPH0967659A (en) 1995-08-31 1995-08-31 Method for heat treating aluminum-magnesium-silicon base aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24519595A JPH0967659A (en) 1995-08-31 1995-08-31 Method for heat treating aluminum-magnesium-silicon base aluminum alloy

Publications (1)

Publication Number Publication Date
JPH0967659A true JPH0967659A (en) 1997-03-11

Family

ID=17130043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24519595A Pending JPH0967659A (en) 1995-08-31 1995-08-31 Method for heat treating aluminum-magnesium-silicon base aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0967659A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536552A (en) * 1999-02-12 2002-10-29 ノルスク・ヒドロ・アーエスアー Aluminum alloy containing magnesium and silicon
JP2009149991A (en) * 2009-01-09 2009-07-09 Norsk Hydro Asa Method for treating aluminum alloy comprising aluminum and silicon
US20100201155A1 (en) * 2003-11-20 2010-08-12 Novelis, Inc. Automobile Body Part
US9193134B2 (en) 2008-08-13 2015-11-24 Novelis Inc. Automobile body part
CN105112825A (en) * 2015-09-23 2015-12-02 辽宁工程技术大学 Thermal treatment method of liquid-forged Al-Mg-Si alloy
JP2016040414A (en) * 2010-11-01 2016-03-24 日本碍子株式会社 Heat treatment method, and heat treatment apparatus
CN105838943A (en) * 2016-05-31 2016-08-10 广西南南铝加工有限公司 Al-Mg-Si aluminum alloy and extrusion method for sectional bar of Al-Mg-Si aluminum alloy
EP3187604A1 (en) 2015-12-14 2017-07-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Forged aluminum alloy for automobiles
CN111455197A (en) * 2020-04-07 2020-07-28 台山市金桥铝型材厂有限公司 Preparation method of Al-Zn-Mg alloy

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002536552A (en) * 1999-02-12 2002-10-29 ノルスク・ヒドロ・アーエスアー Aluminum alloy containing magnesium and silicon
US9731772B2 (en) 2003-11-20 2017-08-15 Novelis Inc. Automobile body part
US20100201155A1 (en) * 2003-11-20 2010-08-12 Novelis, Inc. Automobile Body Part
KR101130656B1 (en) * 2003-11-20 2012-04-02 노벨리스 인코퍼레이티드 Automobile body part
US9085328B2 (en) 2003-11-20 2015-07-21 Novelis Inc. Automobile body part
US9242678B2 (en) 2003-11-20 2016-01-26 Novelis Inc. Automobile body part
US9193134B2 (en) 2008-08-13 2015-11-24 Novelis Inc. Automobile body part
JP2009149991A (en) * 2009-01-09 2009-07-09 Norsk Hydro Asa Method for treating aluminum alloy comprising aluminum and silicon
JP2016040414A (en) * 2010-11-01 2016-03-24 日本碍子株式会社 Heat treatment method, and heat treatment apparatus
CN105112825A (en) * 2015-09-23 2015-12-02 辽宁工程技术大学 Thermal treatment method of liquid-forged Al-Mg-Si alloy
EP3187604A1 (en) 2015-12-14 2017-07-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Forged aluminum alloy for automobiles
CN105838943A (en) * 2016-05-31 2016-08-10 广西南南铝加工有限公司 Al-Mg-Si aluminum alloy and extrusion method for sectional bar of Al-Mg-Si aluminum alloy
CN111455197A (en) * 2020-04-07 2020-07-28 台山市金桥铝型材厂有限公司 Preparation method of Al-Zn-Mg alloy
CN111455197B (en) * 2020-04-07 2021-09-07 台山市金桥铝型材厂有限公司 Preparation method of Al-Zn-Mg alloy

Similar Documents

Publication Publication Date Title
KR100374104B1 (en) Heat treatment process for aluminum alloy sheet
JPH0967659A (en) Method for heat treating aluminum-magnesium-silicon base aluminum alloy
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
EP1190109B1 (en) Heat treatment of formed aluminum alloy products
CN115852128B (en) Method for eliminating mixed crystals at head of bolt made of cold-drawn GH4738 alloy
US4358324A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
US4486242A (en) Method for producing superplastic aluminum alloys
US4528042A (en) Method for producing superplastic aluminum alloys
JPH0517857A (en) Method for treating metal matrix composite material
JP2000017413A (en) Method for heat treating aluminum alloy
JPH06212378A (en) Treatment of beta type titanium alloy hot formed product
US4596609A (en) Thermomechanical forging of aluminum alloys
SU933789A1 (en) Process for treating aluminium-based alloys
JPH08269656A (en) Production of titanium alloy
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPS59208066A (en) Method for working internally nitrided molybdenum-zirconium alloy
CN112853180B (en) Heat treatment method of aluminum alloy material, aluminum alloy and automobile part
CN114657489B (en) Double-temperature heat treatment process for homogenizing microstructure of titanium-aluminum alloy extruded bar
JPH06287725A (en) Method for heat-treating al-mg-si aluminum alloy extruded material
JPH04263051A (en) Method for working heat treatment for beta type titanium alloy
JPH101758A (en) Production of formed part made of aluminum alloy
RU2009754C1 (en) Method of getting stamped semi-finished products from titanic alloys
RU1762572C (en) Method of making of welded joint made of alloys of system aluminium- magnesium-lithium
JPS63105954A (en) Hot-working method for near beta-type titanium alloy
JPS6369954A (en) Stretcher leveling method for high-tensile aluminum alloy plate