JPH0967250A - Therapeutic agent for methicillin resistant staphylococcus aureus infection - Google Patents

Therapeutic agent for methicillin resistant staphylococcus aureus infection

Info

Publication number
JPH0967250A
JPH0967250A JP7224025A JP22402595A JPH0967250A JP H0967250 A JPH0967250 A JP H0967250A JP 7224025 A JP7224025 A JP 7224025A JP 22402595 A JP22402595 A JP 22402595A JP H0967250 A JPH0967250 A JP H0967250A
Authority
JP
Japan
Prior art keywords
therapeutic agent
mrsa
solution
water
active ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7224025A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tobe
広康 戸部
Yoshifumi Muraki
祥文 村木
Kunikazu Sakai
邦和 酒井
Susumu Arai
進 新井
Satoko Nakajima
聡子 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis KK
Original Assignee
Hoechst Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Japan Ltd filed Critical Hoechst Japan Ltd
Priority to JP7224025A priority Critical patent/JPH0967250A/en
Publication of JPH0967250A publication Critical patent/JPH0967250A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high effective therapeutic agent against the infection with methicillin-resistant Staphylococcus aureus(MRSA) with side effects reduced. SOLUTION: This therapeutic agent contains at least one selected from lupulon of formula I, colupulon of formula II and adlupulon of formula III as an active ingredient. The compounds of formulas I, II and III belong to the β-acid as, an extraction component from hop (Humulus lupulus) known as a herb and used in beer brewing. In the treatment of MRSA infection, these compounds are systemically given in the form of a water-soluble injection or a water-soluble dripping solution. As an injection solution, these compounds can be prepared to a powder form for injection and an appropriate water-soluble excipient is added to dissolve in water and the solution is partitioned into vials or ampoules, freeze-dried and tightly sealed to give the objective preparation. In addition, it can be systemically dosed in the form of an aerosol of fine particles transnasally or transpulmonarily. The deily dose is 0.05-2g/kg.adult.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メチシリン耐性黄色ブ
ドウ球菌(Methicillin-resistant Staphylococcus aur
eus: MRSA)感染症治療剤に関する。
This invention relates to methicillin-resistant Staphylococcus aur.
eus: MRSA) Infectious disease therapeutic agent.

【0002】[0002]

【従来の技術およびその問題点】MRSAは、現在、医
療の現場で最も重要視されている菌である。第一、第二
世代セフェム剤は、グラム陽性菌の黄色ブドウ球菌に有
効であったが、第三世代はグラム陰性菌に対する効力を
強化したため逆にグラム陽性菌への効力が落ち、さらに
その大量投与での突然変異でMRSAが急増した。
2. Description of the Related Art MRSA is currently the most important bacterium in the medical field. The first- and second-generation cephem agents were effective against gram-positive bacteria Staphylococcus aureus, but the third-generation drug had enhanced potency against gram-negative bacteria, but on the contrary, decreased in efficacy against gram-positive bacteria. MRSA spiked due to treatment mutations.

【0003】MRSAはβラクタム系抗生物質の主な作
用標的である細胞壁合成に関与するペニシリン結合タン
パク(PBP)に変異を有する菌で、βラクタム系抗生
物質によって新規の親和性の低いPBP(PBP2′)
が誘導的に産生されることが耐性の本質であり、βラク
タム系抗生物質はこのPBP(PBP2′)に結合親和
性を示さないために、MRSAは細胞壁を繕い、菌は分
裂増殖可能となる。特に最近問題なのは、コアグラーゼ
II型MRSAの増加で、いずれのβラクタム系抗生物質
でも簡単に誘導され、かつショック症状を引き起こすと
言われている。MRSAの病院内伝播力は非常に強力
で、特に問題なのは、未熟児、経管栄養や高カロリー輸
液を受けている患者、寝たきり老人や免疫不全患者、大
手術を受けた患者などが発症する。MRSAは外科手術
後の感染等、医療施設内での重大な感染症であり、いま
や、医学上の問題に止まらず、社会問題となっている。
その治療剤としてはバンコマイシン(vancomycin)等の
ごく少数が使用されているに過ぎず、またバンコマイシ
ンの副作用として聴覚や腎臓機能への障害が報告されて
いる(医学のあゆみ(1993)vol.166, p335)。更に、
現在使用中の治療剤に対する耐性菌の出現する可能性が
常にある。
MRSA is a bacterium having a mutation in a penicillin-binding protein (PBP) involved in cell wall synthesis, which is a main action target of β-lactam antibiotics, and is a novel low-affinity PBP (PBP2) by β-lactam antibiotics. ′)
Is the innate nature of resistance and β-lactam antibiotics do not show binding affinity for this PBP (PBP2 '), so MRSA repairs the cell wall and the fungus is able to divide and grow. . Especially the recent problem is coagulase
It is said that an increase in type II MRSA is easily induced by any β-lactam antibiotic and causes shock symptoms. MRSA has a very strong in-hospital transmission power, and it is particularly problematic in premature babies, patients receiving tube feeding and high-calorie infusion, bedridden elderly and immunocompromised patients, patients undergoing major surgery, and the like. MRSA is a serious infectious disease in a medical facility such as infection after surgery, and is now a social problem as well as a medical problem.
As a therapeutic agent, only a small number of vancomycin and the like are used, and as a side effect of vancomycin, impairment of hearing and renal function has been reported (Medical Ayumi (1993) vol.166, p335). Furthermore,
There is always the possibility of emergence of resistant bacteria to the therapeutic agents currently in use.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の課題
は、MRSA感染症に対して、副作用が少なく、効果の
高い新たな治療薬を提供することである。さらに詳しく
は本発明は、バンコマイシンの如く副作用が強い薬剤で
はなく、より安全で異なる作用機序をもつMRSA感染
症治療剤を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a new therapeutic agent for MRSA infections, which has few side effects and is highly effective. More specifically, it is an object of the present invention to provide a safer therapeutic agent for MRSA infection having a different mechanism of action, rather than a drug having a strong side effect such as vancomycin.

【0005】[0005]

【問題を解決するための手段】本発明者らは、種々検討
の結果、ホップ抽出物に含まれるβ酸がMRSAに対
し、殺菌作用を有することを見い出し、本発明を完成し
た。β酸がグラム陽性菌に有効であることは、文献上
(Agric. Biol. Chem. (1985) vol.49, p399-403)知ら
れているが、MRSAに対する効果については、今まで
全く知られていなかった。ホップは元来、薬草として知
られており、ビールの醸造に長年使用されてきているの
で、ホップに含まれているβ酸は安全性が高いと考えら
れる。このβ酸には主にルプロン(lupulon:式I)、コ
ルプロン(colupulon:式II)およびアドルプロン(adlupu
lon:式III)が含まれていることが知られている。
As a result of various studies, the present inventors have found that the β acid contained in the hop extract has a bactericidal action against MRSA, and completed the present invention. It is known in the literature that β-acid is effective against Gram-positive bacteria (Agric. Biol. Chem. (1985) vol.49, p399-403), but the effect on MRSA has never been known so far. Didn't. Since hops are originally known as medicinal herbs and have been used for brewing beer for many years, the β acid contained in hops is considered to be safe. The β acid is mainly composed of lupulon (formula I), colupulon (formula II) and adolpron (adlupu).
lon: known to contain Formula III).

【0006】[0006]

【化1】 Embedded image

【0007】これらのβ酸の構造は、現在治療に用いら
れているバンコマイシンや臨床試験中のテイコプラニン
(teicoplanin)などのグリコペプチド(glycopeptid
e)構造とは全く異なっている。近い将来、バンコマイ
シンおよびテイコプラニンに対する耐性菌が出現した場
合にも、それらの耐性菌に対してβ酸が有効であると十
分予想される。β酸の持つ6員環構造が抗菌活性発現に
重要な構造と言われている(Hoppe-Seyler's Zeitschri
ft fuer Physiologische Chemie (1974) vol.335 p125
0)。
The structures of these β acids are due to the glycopeptides such as vancomycin currently used for treatment and teicoplanin in clinical trials.
e) It is completely different from the structure. If vancomycin and teicoplanin resistant strains appear in the near future, it is fully expected that β-acids will be effective against these resistant strains. The 6-membered ring structure of β acid is said to be important for the expression of antibacterial activity (Hoppe-Seyler's Zeitschri
ft fuer Physiologische Chemie (1974) vol.335 p125
0).

【0008】β酸は天然原料のホップからの精製によ
り、また知られている化学構造式より有機合成すること
により産生できる。今回、有機合成したルプロンをろ紙
に吸収させ、黄色ブドウ球菌をシート状に増殖させた寒
天培地に乗せた。その結果、ろ紙の周囲に溶菌ゾーンが
形成されることを見い出し、本発明を完成した。β酸は
MRSA感染症の治療剤として使用できる。MRSA感
染症の治療には水溶性注射液又は水溶性点滴液として全
身性投与することができる。
The β-acid can be produced by purification from hop which is a natural raw material, or by organic synthesis according to a known chemical structural formula. This time, organically synthesized lupron was absorbed on filter paper and placed on an agar medium in which Staphylococcus aureus was grown in a sheet form. As a result, they found that a lysis zone was formed around the filter paper, and completed the present invention. β-acid can be used as a therapeutic agent for MRSA infection. For the treatment of MRSA infection, it can be systemically administered as a water-soluble injection solution or a water-soluble infusion solution.

【0009】注射用製剤としては、例えば注射用粉末製
剤とすることが出来る。その場合は適当な水溶性賦形剤
例えばマンニトール、ショ糖、乳糖、マルトース、ブド
ウ糖、フルクトース糖の1種又は2種以上を加えて水で
溶解し、バイアル又はアンプルに分注した後、凍結乾燥
し、密封して製剤とすることができる。その他にも全身
性投与として、微粒子のエアロゾル製剤として、経鼻ま
たは経肺的に投与することができる。
The injection preparation may be, for example, an injection powder preparation. In that case, add one or more appropriate water-soluble excipients such as mannitol, sucrose, lactose, maltose, glucose, fructose sugar, dissolve in water, dispense into vials or ampoules, and freeze-dry. It can be sealed and made into a formulation. In addition, systemic administration can be performed nasally or pulmonary as a fine particle aerosol formulation.

【0010】本発明の医薬の投与量としては、投与法、
患者の年齢、体重、症状等によって異なるが、通常は成
人一日当たり0.05g〜2g(約0.75mg〜30mg/
kg/日)の範囲が好ましい。以下に実施例により本発明
を詳述する。なお、本発明はこれらの実施例により限定
されるものではない。
The dose of the pharmaceutical agent of the present invention is as follows:
It depends on the patient's age, weight, symptom, etc., but usually 0.05 g to 2 g per day for an adult (about 0.75 mg to 30 mg /
The range of (kg / day) is preferable. The present invention will be described in detail below with reference to examples. The present invention is not limited to these examples.

【0011】[0011]

【実施例】【Example】

実施例1 ルプロンの合成及び確認 (1) ルプロンの有機合成 60%NaH油拡散物441mg(11.1mmol, 2.06
当量)を窒素雰囲気下に石油エーテル(5mL×3回)で
油分を除去した。これに氷冷撹拌下に無水メタノール1
0mLを加えた。氷冷下にイソバレロイルフロログルシノ
ール1.135g(5.400mmol)のメタノール(6.
0mL)溶液を5分間で加えた。さらに10分間撹拌の
後、3−メチル−1−クロロ−2−ブテン1.205g
(11.52mmol,2.13当量)のメタノール(7.0m
L)溶液を20分間で加え、さらに1時間撹拌を続け
た。飽和塩化アンモニウム水溶液50mLを加え、エーテ
ルで抽出した。エーテル層を飽和食塩水て洗浄し、硫酸
ナトリウム上で乾燥後、溶媒を除去し粗生成物として赤
色油状物1.752gを得た。これをシリカゲルカラム
クロマト(石油エーテル/エーテル)で分離精製し黄色
結晶としてルプロン549mgを得た(収率24.5
%)。
Example 1 Synthesis and confirmation of lupron (1) Organic synthesis of lupron 60% NaH oil diffusion product 441 mg (11.1 mmol, 2.06)
(Equivalent weight) was removed with petroleum ether (5 mL × 3 times) under a nitrogen atmosphere. Anhydrous methanol 1 with stirring under ice cooling
0 mL was added. Isovaleroyl phloroglucinol (1.135 g, 5.400 mmol) of methanol (6.
0 mL) solution was added over 5 minutes. After stirring for another 10 minutes, 1.205 g of 3-methyl-1-chloro-2-butene
(11.52mmol, 2.13eq) methanol (7.0m
L) solution was added over 20 minutes and stirring was continued for another hour. 50 mL of saturated aqueous ammonium chloride solution was added, and the mixture was extracted with ether. The ether layer was washed with saturated saline and dried over sodium sulfate, and then the solvent was removed to obtain 1.752 g of a red oily substance as a crude product. This was separated and purified by silica gel column chromatography (petroleum ether / ether) to obtain 549 mg of lupron as yellow crystals (yield 24.5).
%).

【0012】[0012]

【化2】 Embedded image

【0013】(2) ルプロンの1H−NMRスペクトル1 H−NMRδ(CDCl3)0.96(6H,d,J=
6.6Hz),1.56(12H,s),1.78(6
H,s),2.11(1H,m),2.60(4H,b
m),2.92(2H,d,J=6.9Hz),3.19
(2H,d,J=7.3Hz),4.79(2H,b
t),5.11(1H,bt)。
(2) 1 H-NMR spectrum of lupron 1 H-NMRδ (CDCl 3 ) 0.96 (6H, d, J =
6.6 Hz), 1.56 (12 H, s), 1.78 (6
H, s), 2.11 (1H, m), 2.60 (4H, b
m), 2.92 (2H, d, J = 6.9Hz), 3.19
(2H, d, J = 7.3Hz), 4.79 (2H, b
t), 5.11 (1H, bt).

【0014】実施例2 ルプロンの各種細菌に対する最小発育阻止濃度(MI
C)測定 MICの測定は、日本化学療法学会標準法(Chemothera
py (1981) vol.29, p.76)に従った薬剤2倍希釈系列の
寒天平板希釈法で測定した。すなわち、使用培地は、例
えば感受性測定用寒天培地である変法ミュラー・ヒント
ン培地(日水製薬株式会社より購入)を用いた。
Example 2 Lupron's minimum inhibitory concentration (MI) against various bacteria
C) Measurement The MIC is measured by the standard method (Chemothera
py (1981) vol.29, p.76) and measured by the agar plate dilution method of a 2-fold dilution series of the drug. That is, as the medium used, for example, a modified Mueller Hinton medium (purchased from Nissui Pharmaceutical Co., Ltd.), which is an agar medium for sensitivity measurement, was used.

【0015】ルプロンをエタノールに溶解させて10mg
/mlの溶液を作製し、これを用いて2倍段階希釈系列を
作製した。このルプロンの2倍段階希釈系列を直径90
mm×高さ15mmシャーレーに0.4mlと、オートクレー
ブ滅菌後、50℃で保温した感受性測定用寒天培地の1
0mlをそれぞれ分注し、混合固化した(ルプロンの最終
薬剤濃度は400、200、100、50、25、1
2.5、6.25、3.13μg/mlの薬剤添加培地を作製
した)。
10 mg of lupron dissolved in ethanol
/ Ml solution was made and used to make a 2-fold serial dilution series. This 2-fold serial dilution of Lupron has a diameter of 90
mm ml × 15 mm height Petri dish with 0.4 ml of 1 agar medium for sensitivity measurement which was kept at 50 ° C after autoclave sterilization
0 ml each was dispensed and mixed and solidified (Lupron's final drug concentration was 400, 200, 100, 50, 25, 1,
2.5, 6.25, 3.13 μg / ml drug-added medium was prepared).

【0016】被検菌は、例えば、感受性測定用ブイヨン
(日水製薬株式会社より購入)を用い、37℃、一夜培
養後、感受性測定用ブイヨンで約106コロニーフォー
ミングユニット(Colony-forming unit:以下CFUと
略す)/mlに希釈し、菌接種装置(ミクロプランター、
佐久間製作所製)で薬剤2倍希釈系列の薬剤添加培地に
5μl(約104CFU/spot)接種した。MICは
37℃、20時間培養後、肉眼的に菌の発育が認められ
なかった最小薬剤濃度をMICとした。
As the test bacterium, for example, a broth for sensitivity measurement (purchased from Nissui Pharmaceutical Co., Ltd.) was used, and after overnight culture at 37 ° C., about 10 6 colony-forming units (colony-forming unit) were used for the broth for sensitivity measurement. It is diluted to CFU) / ml, and a fungus inoculation device (microplanter,
5 μl (about 10 4 CFU / spot) was inoculated into the drug-added medium of 2-fold drug series at Sakuma Seisakusho. After culturing at 37 ° C. for 20 hours, the MIC was defined as the minimum drug concentration at which no bacterial growth was visually observed.

【0017】使用菌株としては、日本各地の病院から分
離されたMRSA25株、メチシリン感受性黄色ブドウ
球菌(Methicillin-susceptible Staphylococcus aureu
s:MSSA)25株および標準菌株18株を用いた。ル
プロンのMRSAに対するMICは3.13〜6.25μ
g/mlの抗菌活性を示した。結果は表1に示す。
The strains used are MRSA 25 strains isolated from hospitals in Japan, and methicillin-susceptible Staphylococcus aureu.
s: MSSA) 25 strains and 18 standard strains were used. Lupron's MIC for MRSA is 3.13-6.25μ
It showed an antibacterial activity of g / ml. The results are shown in Table 1.

【0018】[0018]

【表1】 被検菌株名 MIC(μg/ml) MRSA HL 1163 6.25 HL 1165 6.25 HL 1168 6.25 HL 1169 3.13 HL 1173 3.13 HL 1174 6.25 HL 1176 6.25 HL 1177 6.25 HL 1178 6.25 HL 1182 3.13 HL 1183 6.25 HL 1184 6.25 HL 1185 3.13 HL 1187 6.25 HL 1192 3.13 HL 1194 3.13 HL 1195 3.13 HL 1197 3.13 HL 1198 6.25 HL 1201 6.25 HL 1207 3.13 HL 1216 3.13 HL 1217 3.13 HL 1218 3.13 HL 1222 3.13[Table 1] Test strain name MIC (μg / ml) MRSA HL 1163 6.25 HL 1165 6.25 HL 1168 6.25 HL 1169 3.13 HL 1173 3.13 HL 1174 6.25 HL 1176 625 HL 1177 6.25 HL 1178 6.25 HL 1182 3.13 HL 1183 6.25 HL 1184 6.25 HL 1185 3.13 HL 1187 6.25 HL 1192 3.13 HL 1194 3.13 HL 1195 3.13 HL 1197 3.13 HL 1198 6.25 HL 1201 6.25 HL 1207 3.13 HL 1216 3.13 HL 1217 3.13 HL 1218 3.13 HL 1222 3.13

【0019】β酸のMSSAに対するMICは3.13
〜6.25μg/mlの抗菌活性を示した。結果を表2に示
す。
The MIC of β acid to MSSA is 3.13.
It showed an antibacterial activity of ˜6.25 μg / ml. Table 2 shows the results.

【0020】[0020]

【表2】 被検菌株名 MIC(μg/ml) MSSA HL 1159 6.25 HL 1160 6.25 HL 1161 6.25 HL 1162 3.13 HL 1164 6.25 HL 1166 6.25 HL 1167 6.25 HL 1170 6.25 HL 1171 6.25 HL 1172 6.25 HL 1175 6.25 HL 1179 6.25 HL 1180 6.25 HL 1181 6.25 HL 1186 3.13 HL 1188 6.25 HL 1189 6.25 HL 1190 6.25 HL 1191 6.25 HL 1193 6.25 HL 1196 6.25 HL 1199 6.25 HL 1200 6.25 HL 1202 6.25 HL 1203 6.25[Table 2] Test strain name MIC (μg / ml) MSSA HL 1159 6.25 HL 1160 6.25 HL 1161 6.25 HL 1162 3.13 HL 1164 6.25 HL 1166 6.25 HL 1167 625 HL 1170 6.25 HL 1171 6.25 HL 1172 6.25 HL 1175 6.25 HL 1179 6.25 HL 1180 6.25 HL 1181 6.25 HL 1186 3.13 HL 1188 6.25 HL 1189 6.25 HL 1190 6.25 HL 1191 6.25 HL 1193 6.25 HL 1196 6.25 HL 1199 6.25 HL 1200 6.25 HL 1202 6.25 HL 1203 6.25

【0021】以上のようにルプロンはMRSAとMSS
Aで感受性に差はなく、耐性株も全く認められなかっ
た。
As mentioned above, Lupron is MRSA and MSS.
In A, there was no difference in sensitivity, and no resistant strain was observed.

【0022】ルプロンの標準菌株における抗菌スペクト
ルは、グラム陽性菌のみに抗菌活性を示し、ルプロンの
黄色ブドウ球菌、表皮ブドウ球菌、ミクロコッカス・ル
テウス、および枯草菌のMICは3.13〜6.25μg
/mlであった。また、グラム陰性菌およびカンジダ・ア
ルビカンス(真菌)とサッカロマイセス・セレビシエ
(酵母)のMICは400μg/ml以上と抗菌活性を示
さなかった。結果を表3に示す。
The antibacterial spectrum of the standard strain of Lupron showed antibacterial activity only to Gram-positive bacteria, and the MIC of Lupron, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, and Bacillus subtilis was 3.13 to 6.25 μg.
/ Ml. The MICs of Gram-negative bacteria, Candida albicans (fungus) and Saccharomyces cerevisiae (yeast) were 400 μg / ml or more, which showed no antibacterial activity. The results are shown in Table 3.

【0023】[0023]

【表3】 被 検 菌 株 名 MIC(μg/ml) 黄色ブドウ球菌 FDA 209PJC−1 3.13 黄色ブドウ球菌 ATCC 25923 3.13 表皮ブドウ球菌 ATCC 12228 6.25 表皮ブドウ球菌 IAM 12013 3.13 ミクロコッカス・ルテウス ATCC 9341 6.25 枯草菌 ATCC 6633 3.13 大腸菌 NIHJ JC−2 >400 肺炎桿菌 ATCC 10031 >400 ネズミチフス菌 ATCC 14028 >400 セラチア・マルセッセンス ATCC 8100 >400 緑膿菌 ATCC 9027 >400 エンテロバクター・エロゲネス ATCC 13048 >400 エンテロバクター・クロアカエ ATCC 23355 >400 シトロバクター・フロインディイ ATCC 8090 >400 ハフニア・アルベイ ATCC 11604 >400 カンジタ・アルビカンス C−a−21 >400 カンジタ・アルビカンス C−a−30 >400 サッカロマイセス・セレビシエ ATCC 9763 >400[Table 3] Test strain Name MIC (μg / ml) Staphylococcus aureus FDA 209PJC-1 3.13 Staphylococcus aureus ATCC 25923 3.13 Staphylococcus epidermidis ATCC 12228 6.25 Staphylococcus epidermidis IAM 12013 3.13 micro Coccus luteus ATCC 9341 6.25 Bacillus subtilis ATCC 6633 3.13 E. coli NIHJ JC-2> 400 Klebsiella pneumoniae ATCC 10031> 400 Salmonella typhimurium ATCC 14028> 400 Serratia marcescens ATCC 8100 ATCC 8100> Pseudomonas aeruginosa・ Erogenes ATCC 13048> 400 Enterobacter cloacae ATCC 23355> 400 Citrobacter Freundii ATCC 8090> 400 Hafnia Arbe ATCC 11604> 400 Candida albicans C-a-21> 400 Candida albicans C-a-30> 400 Saccharomyces cerevisiae ATCC 9763> 400

【0024】[0024]

【発明の効果】本発明によって提供されるβ酸、特にル
プロンは、MRSA感染症治療剤として有用である。
INDUSTRIAL APPLICABILITY The β acid provided by the present invention, especially lupron, is useful as a therapeutic agent for MRSA infection.

フロントページの続き (72)発明者 新井 進 埼玉県川越市南台1丁目3番地2 ヘキス トジャパン株式会社医薬研究開発本部内 (72)発明者 中嶋 聡子 埼玉県川越市南台1丁目3番地2 ヘキス トジャパン株式会社医薬研究開発本部内Front page continuation (72) Inventor Susumu Arai 1-3-3 Minamidai, Kawagoe-city, Saitama Hext Japan Co., Ltd. Pharmaceutical Research and Development Headquarters (72) Satoko Nakajima 1-3-3 Minamidai, Kawagoe-city, Saitama Hext Japan Co., Ltd. Company Pharmaceutical Research and Development Division

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ルプロン、コルプロンおよびアドルプロ
ンより成る群から選ばれた1種または2種以上の化合物
を有効成分として含有するメチシリン耐性黄色ブドウ球
菌(MRSA)感染症治療剤。
1. A therapeutic agent for methicillin-resistant Staphylococcus aureus (MRSA) infection, which comprises, as an active ingredient, one or more compounds selected from the group consisting of lupron, colpron and adolpron.
【請求項2】 ルプロンを有効成分として含有する請求
項1のMRSA感染症治療剤。
2. The therapeutic agent for MRSA infection according to claim 1, which contains lupron as an active ingredient.
【請求項3】 コルプロンを有効成分として含有する請
求項1のMRSA感染症治療剤。
3. The therapeutic agent for MRSA infection according to claim 1, which contains colprone as an active ingredient.
【請求項4】 アドルプロンを有効成分として含有する
請求項1のMRSA感染症治療剤。
4. The therapeutic agent for MRSA infection according to claim 1, which contains adolpron as an active ingredient.
【請求項5】 ルプロン、コルプロンおよびアドルプロ
ンの混合物を有効成分として含有する請求項1のMRS
A感染症治療剤。
5. The MRS according to claim 1, which contains a mixture of lupron, colpron and adolpron as an active ingredient.
A infectious disease therapeutic agent.
【請求項6】 ホップを抽出して得られたルプロン、コ
ルプロンおよびアドルプロンの混合物を有効成分として
含有する請求項1のMRSA感染症治療剤。
6. The therapeutic agent for MRSA infection according to claim 1, which contains a mixture of lupron, colpron and adolpron obtained by extracting hops as an active ingredient.
【請求項7】 ホップを抽出して得られたβ酸を有効成
分として含有する請求項1のMRSA感染症治療剤。
7. The therapeutic agent for MRSA infection according to claim 1, which contains β-acid obtained by extracting hops as an active ingredient.
JP7224025A 1995-08-31 1995-08-31 Therapeutic agent for methicillin resistant staphylococcus aureus infection Pending JPH0967250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7224025A JPH0967250A (en) 1995-08-31 1995-08-31 Therapeutic agent for methicillin resistant staphylococcus aureus infection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7224025A JPH0967250A (en) 1995-08-31 1995-08-31 Therapeutic agent for methicillin resistant staphylococcus aureus infection

Publications (1)

Publication Number Publication Date
JPH0967250A true JPH0967250A (en) 1997-03-11

Family

ID=16807415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7224025A Pending JPH0967250A (en) 1995-08-31 1995-08-31 Therapeutic agent for methicillin resistant staphylococcus aureus infection

Country Status (1)

Country Link
JP (1) JPH0967250A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017625A1 (en) * 1996-10-22 1998-04-30 Daiichi Pharmaceutical Co., Ltd. Novel remedies for infectious diseases
US6547971B2 (en) 2000-03-08 2003-04-15 Hercules Incorporated Methods of using hop acids to control organisms
JP2006512184A (en) * 2002-05-07 2006-04-13 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Methods, devices, and formulations for targeted endobronchial therapy
EP1920777A1 (en) * 2006-11-13 2008-05-14 Aslieh Dr. Nookandeh-Baumgärtner Extraction method for the fractioned preparation and separation of plant ingredients and use thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998017625A1 (en) * 1996-10-22 1998-04-30 Daiichi Pharmaceutical Co., Ltd. Novel remedies for infectious diseases
US6547971B2 (en) 2000-03-08 2003-04-15 Hercules Incorporated Methods of using hop acids to control organisms
JP2006512184A (en) * 2002-05-07 2006-04-13 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Methods, devices, and formulations for targeted endobronchial therapy
JP4898223B2 (en) * 2002-05-07 2012-03-14 ザ リサーチ ファウンデーション オブ ステイト ユニバーシティ オブ ニューヨーク Devices and formulations for targeted endobronchial therapy
EP1920777A1 (en) * 2006-11-13 2008-05-14 Aslieh Dr. Nookandeh-Baumgärtner Extraction method for the fractioned preparation and separation of plant ingredients and use thereof
WO2008058694A1 (en) * 2006-11-13 2008-05-22 Aslieh Nookandeh-Baumgaertner Extraction method for the classified extraction and separation of vegetable component materials, and the application thereof

Similar Documents

Publication Publication Date Title
KR101899552B1 (en) Antimicrobial Peptide Analogues Derived From The Abalone, Haliotis Discus, And Antimicrobial Pharmaceutical Composition Containing The Same
KR101401658B1 (en) Antibiotic consisting of ginsenoside compound K or derivatives thereof
JPH09241173A (en) Anti-gastritis agent, antiulcer agent and fermented food containing lactobacillus as active ingredient
KR101747702B1 (en) Novel antimicrobial compound and use thereof
KR101957211B1 (en) Lactobacillus sp. strain having antimicrobial activity against microorganisms causing premature birth and vaginosis, antiviral activity againt HSV and improved vagina adhesion ability and uses thereof
CN112341522A (en) Antibacterial peptide and application thereof
CN114209808B (en) Application of polypeptide RK12 in preparation of medicines for treating acne
EP2303271B1 (en) Treatment of antibiotic-resistant bacteria infection
KR102053744B1 (en) Lactobacillus sp. strain having antimicrobial activity against microorganisms causing vaginosis and improved vagina adhesion ability and uses thereof
CN101443352A (en) Novel analogues of antimicrobial and anticancer peptide synthesized and produced from Gaegurin 5
EP3583934B1 (en) Biocidal agent
JPH0967250A (en) Therapeutic agent for methicillin resistant staphylococcus aureus infection
WO2017020861A1 (en) Application of polygonum capitatum composition in resisting helicobacter pylori
JPH07228527A (en) Therapeutic agent for infectious disease with methicillin-resistant staphylococcus aureus
WO2010107793A1 (en) Methicillin-resistant staphylococcus aureus active metabolites
US6821959B1 (en) Antibiotic-natural polysaccharide polymer adducts
JP2005509615A (en) Production and use of carbohydrate-based bicyclic ring structures with antibacterial and cytostatic activity
KR102540598B1 (en) Antibacterial peptide derived from Crassostrea gigas and its use
Lenza et al. Antimicrobial activities of ethanol extract and coumestans from Eclipta alba (L.) Hassk.(Asteraceae)
WO1998051306A1 (en) Medicinal compositions against helicobacter pylori
KR102608336B1 (en) Novel peptide derived from pep27 peptide and uses thereof
KR102603281B1 (en) Novel peptide derived from Hylin a1 peptide and uses thereof
RU2735829C1 (en) Antimicrobial agent based on lichen of clover species of cladonia rangiferina and method for production thereof
JP3718521B2 (en) Purified form of streptogramins
KR20230085579A (en) Novel use of compound having anti-virulence activity and anti-biofilm formation activity