JPH0961783A - Liquid crystal display element and liquid crystal display device - Google Patents

Liquid crystal display element and liquid crystal display device

Info

Publication number
JPH0961783A
JPH0961783A JP7217551A JP21755195A JPH0961783A JP H0961783 A JPH0961783 A JP H0961783A JP 7217551 A JP7217551 A JP 7217551A JP 21755195 A JP21755195 A JP 21755195A JP H0961783 A JPH0961783 A JP H0961783A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display element
substrates
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7217551A
Other languages
Japanese (ja)
Inventor
Shoichi Ishihara
將市 石原
Hiroshi Kubota
浩史 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7217551A priority Critical patent/JPH0961783A/en
Publication of JPH0961783A publication Critical patent/JPH0961783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a twisted nematic type liquid crystal display element with which high-speed response is possible and a liquid crystal display device. SOLUTION: Polyimide oriented films are formed on glass substrates 12, 16 having transparent electrodes and are subjected to rubbing in such a manner that their main visual angle direction is downward of the panel; thereafter, these substrates 12, 16 stuck to each other at a spacing of 5μm by using glass spacers 14. The liquid crystal panel 19 is formed by injecting liquid crystals between the glass substrates by using a vacuum injection method. Polarizing plates 11, 17 are stuck to the liquid crystal panel 19 in such a manner that the respective axes of polarization intersect orthogonally with each other. The twist angle of the liquid crystal display element having a phase difference dΔn of 0.35 to <0.50μm is set at >=70 to <=85 deg.. The optical axis of the exit light from the element of the liquid crystal display device is inclined by >=10 to <30 deg. to the counter main visual angle side from the substrate normal of the element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は応答速度の速い液晶
表示素子及び応答速度の速い液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display element having a high response speed and a liquid crystal display device having a high response speed.

【0002】[0002]

【従来の技術】液晶表示素子は、薄型で軽量、かつ低消
費電力のディスプレイ素子であり、テレビやビデオなど
の画像表示装置や、ワープロ、パソコンなどのOA機器
に広く用いられている。液晶表示素子のなかでも、アレ
イ基板上に多数のスイッチング素子を配置したアクティ
ブマトリクス型液晶表示素子の大部分は、液晶の配向方
位がほぼ90゜捻れたツイストネマティック(TN)モ
ードを表示に用いており、高速応答や高精細が可能なデ
ィスプレイとして開発が進んでいる。
2. Description of the Related Art Liquid crystal display devices are thin, lightweight, and low power consumption display devices, and are widely used in image display devices such as televisions and videos and OA equipment such as word processors and personal computers. Among the liquid crystal display elements, most of the active matrix type liquid crystal display elements in which a large number of switching elements are arranged on the array substrate use the twisted nematic (TN) mode in which the orientation of the liquid crystal is twisted by about 90 °. And is being developed as a display capable of high-speed response and high definition.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、表示品
位という点では視野角特性や高速応答性において、陰極
線管(CRT)に比べて充分とはいえない。液晶表示素
子の広視野角化については、既に画素分割法(例えば、
Kalluri R.Sarma et.al.,SID ′91 Digest p555)、配
向分割法(例えば、Y.Koike et.al.,SID ′92 Digest p
798)、電極分割法(例えば、A.Lien et.al., Society
of Information Display 93 digest P.269)などの手法
が開発され前記課題は解決されつつある。また、液晶パ
ネルに垂直に光を入射させる手段と垂直入射光を全方位
に出射する手段を用いることにより、上下左右対称な、
広い視野角特性を得る技術が提案されている(例えば米
国特許第5,396,350号、国際特許出願番号PC
T/US94/07369)。しかしながら、高速応答
化については、1.駆動方法による高速応答化、2.低
粘性液晶材料開発による高速応答化、3.パネル構成に
よる高速応答化、4.捻れネマティック型以外の表示モ
ードによる高速応答化等の複数の取り組みがなされてい
るが、簡便かつコストの低い方法で高速応答化が達成出
来る手法はまだ開発されていない。
However, in terms of display quality, the viewing angle characteristics and the high-speed response are not sufficient as compared with the cathode ray tube (CRT). For widening the viewing angle of a liquid crystal display element, a pixel division method (for example,
Kalluri R. Sarma et.al., SID ′91 Digest p555), orientation splitting method (eg Y.Koike et.al., SID ′92 Digest p555)
798), electrode splitting method (eg A. Lien et.al., Society
The above problems are being solved by the development of methods such as of Information Display 93 digest P.269). Further, by using a means for vertically incident light on the liquid crystal panel and a means for emitting vertically incident light in all directions, the vertical and horizontal symmetry can be achieved.
Techniques for obtaining wide viewing angle characteristics have been proposed (eg, US Pat. No. 5,396,350, International Patent Application No. PC).
T / US94 / 07369). However, regarding high-speed response, 1. High-speed response by drive method, 2. High-speed response by developing low-viscosity liquid crystal materials, 3. High-speed response by panel configuration, 4. Several efforts have been made to achieve high-speed response by using display modes other than the twisted nematic type, but a method that can achieve high-speed response by a simple and low-cost method has not yet been developed.

【0004】駆動方法による高速化は、次に表示すべき
信号データの値の大きさにより印加する電圧の大きさを
変化させる方式であり、大きな効果が認められるが、前
記信号データを取り込むメモリが必要であるうえ駆動回
路の追加が必要であり、大幅なコストアップが必要であ
る。液晶材料の低粘性化に向けては、2環材料の開発、
アルコキシアルキル基を導入した液晶化合物の開発、減
粘材の開発などが活発に行われているが、1.低粘性液
晶のみでは、必要な液晶温度範囲、駆動電圧、屈折率異
方性などの特性を満足する実用的な液晶組成物が得られ
ない、2.液晶注入プロセスからの制約により蒸気圧の
高い化合物は使用困難である、3.減粘材添加により液
晶物性値が大きく変化してしまう、などの理由で液晶材
料の低粘性化には限界がある。パネル構成による高速応
答化では、液晶層の厚さを小さくする方法が主流である
が、対向ショートや表示の均一性の観点から、現状では
4μm程度が限界である。現行捻れネマティック型液晶
表示モードに対して、大幅な高速応答化を狙ったものに
は強誘電性液晶表示素子や反強誘電性液晶表示素子があ
るが、耐衝撃性や特性の温度依存性の課題がある。
The speeding up by the driving method is a method in which the magnitude of the voltage to be applied is changed according to the magnitude of the value of the signal data to be displayed next, and a great effect is recognized. In addition to being necessary, it is necessary to add a drive circuit, which requires a significant increase in cost. In order to reduce the viscosity of liquid crystal materials, the development of two-ring materials,
The development of liquid crystal compounds containing an alkoxyalkyl group and the development of viscosity reducing materials are being actively conducted. 1. A low-viscosity liquid crystal alone cannot provide a practical liquid crystal composition satisfying the required liquid crystal temperature range, drive voltage, and refractive index anisotropy. 2. It is difficult to use a compound having a high vapor pressure due to the restrictions imposed by the liquid crystal injection process. There is a limit to lowering the viscosity of the liquid crystal material because, for example, the physical properties of the liquid crystal change significantly due to the addition of the viscosity reducing material. In order to achieve high-speed response by a panel structure, a method of reducing the thickness of the liquid crystal layer is mainstream, but from the viewpoint of facing short circuit and display uniformity, the limit is currently about 4 μm. There are ferroelectric liquid crystal display elements and anti-ferroelectric liquid crystal display elements that aim to achieve a significantly faster response to the current twisted nematic liquid crystal display mode, but impact resistance and temperature dependence of characteristics are There are challenges.

【0005】以上示してきたように、液晶表示素子の高
速応答化については、駆動方法による高速応答化を始め
として複数の取り組みが並行して進められているが、効
果が大きくパネル製造プロセスに対する負担の少ない、
安価な方法はまだ提案されていない。
As described above, with respect to the high-speed response of the liquid crystal display element, a number of efforts have been made in parallel, including the high-speed response by the driving method, but the effect is large and the load on the panel manufacturing process is increased. Less,
An inexpensive method has not been proposed yet.

【0006】本発明は前記従来の課題を解決するため、
簡単なパネル構成で高速応答可能な液晶表示素子及び高
速応答可能な液晶表示装置を提供することを目的とす
る。
In order to solve the above conventional problems, the present invention provides
An object of the present invention is to provide a liquid crystal display element capable of high-speed response and a liquid crystal display device capable of high-speed response with a simple panel structure.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するた
め、本発明の第一の液晶表示素子は、第一の表面に透明
電極および配向膜を有し第二の表面に偏光板を有する透
光性基板である一組の基板間、すなわち二枚の基板間に
液晶層を挟持してなり、前記液晶層の厚さdと前記液晶
層の屈折率異方性Δnとの積dΔnが0.35以上0.
50未満である捻れネマティック型液晶表示素子におい
て、液晶の捻れ角が70度以上85度以下であることを
特徴とする。前記構成においては、一組の基板の少なく
とも一方の外側の表面に少なくとも一枚の拡散板を備え
ることが好ましい。ここで拡散板とは、入射した光を全
方位に拡散出射し、出射光輝度の視角依存性を低減させ
るものである。その形状は通常、平板または片面のみに
凹凸を有する板状である。内部に微粒子が含有されてお
り、それにより入射光が散乱される。
To achieve the above object, a first liquid crystal display device of the present invention has a transparent electrode and an alignment film on a first surface and a polarizing plate on a second surface. A liquid crystal layer is sandwiched between a pair of substrates that are optical substrates, that is, two substrates, and the product dΔn of the thickness d of the liquid crystal layer and the refractive index anisotropy Δn of the liquid crystal layer is 0. .35 or more 0.
In a twisted nematic liquid crystal display element having a twist of less than 50, the twist angle of the liquid crystal is 70 degrees or more and 85 degrees or less. In the above configuration, it is preferable that at least one diffusion plate is provided on the outer surface of at least one of the pair of substrates. Here, the diffuser plate diffuses and emits the incident light in all directions to reduce the viewing angle dependence of the emission light brightness. The shape thereof is usually a flat plate or a plate having unevenness on only one surface. Microparticles are contained inside, which scatters incident light.

【0008】本発明の第二の液晶表示素子は、第一の表
面に透明電極および配向膜を有し第二の表面に偏光板を
有する透光性基板である一組の基板間、すなわち二枚の
基板間に液晶層を挟持してなる捻れネマティック型液晶
表示素子において、前記一方の偏光板の外面に拡散板
を、および前記もう一方の偏光板の外面に前記液晶表示
素子への入射光を前記基板の法線から傾ける働きを有す
る光制御板を備えたことを特徴とする。光制御板とは出
射光輝度の角度分布を制御するものである。ここで、拡
散板は液晶表示素子の観察者側に、光制御板は液晶表示
素子の光源側に配置されるものとする。
The second liquid crystal display element of the present invention comprises a pair of substrates which are transparent substrates having a transparent electrode and an alignment film on the first surface and a polarizing plate on the second surface, that is, two substrates. In a twisted nematic liquid crystal display element having a liquid crystal layer sandwiched between a plurality of substrates, a diffusion plate is provided on the outer surface of the one polarizing plate, and incident light to the liquid crystal display element is provided on the outer surface of the other polarizing plate. Is provided with a light control plate having a function of tilting from the normal line of the substrate. The light control plate is for controlling the angular distribution of the emission light brightness. Here, the diffusion plate is arranged on the observer side of the liquid crystal display element, and the light control plate is arranged on the light source side of the liquid crystal display element.

【0009】次に本発明の液晶表示装置は、第一の表面
に透明電極および配向膜を有し第二の表面に偏光板を有
する透光性基板である一組の基板間、すなわち二枚の基
板間に液晶層を挟持してなる捻れネマティック型液晶表
示素子を備えた液晶表示装置において、前記液晶表示素
子からの出射光の光軸が前記基板の法線と10度以上3
0度未満の傾斜角をなすことを特徴とする。
Next, the liquid crystal display device of the present invention comprises a pair of substrates, that is, two substrates, which are transparent substrates having a transparent electrode and an alignment film on the first surface and a polarizing plate on the second surface. In a liquid crystal display device provided with a twisted nematic liquid crystal display element in which a liquid crystal layer is sandwiched between the substrates, the optical axis of light emitted from the liquid crystal display element is 10 degrees or more with the normal line of the substrate.
It is characterized by forming an inclination angle of less than 0 degree.

【0010】[0010]

【発明の実施の形態】前記第一の液晶表示素子は捻れネ
マティック型液晶表示素子における液晶捻れ角を70度
以上85度以下にすることにより高速応答化を達成した
ものである。液晶表示素子の電圧−透過率特性は液晶の
捻れ角に大きく依存し、液晶の捻り角を大きくすると電
圧−透過率特性はより急峻になり、駆動時の各信号電圧
の差は小さくなる。一方、液晶の捻り角を小さくすると
液晶表示素子の電圧−透過率特性は鈍くなり、駆動時の
各信号電圧の差は大きくなる。即ち、液晶表示素子の輝
度レベルを輝度レベルAから、他の輝度レベルBへと変
化させる場合、それらの輝度レベルに対応する駆動電圧
VA、VBの差は、液晶捻れ角が小さいほうがより大き
い。換言すれば、液晶捻れ角が小さいほうが駆動電圧差
VA−VBが大きく、液晶分子の変位も大きくなるものと
思われる(効果1)。一方、液晶配列の変形に伴う液晶
表示素子の透過率変化は、捻り角が大きくなるにつれて
大きくなる傾向にある(効果2)。この2つの効果によ
り液晶表示素子の応答は決められるが、本発明が何故高
速応答性を示すか明確ではないが、応答性に対しては効
果1のほうの寄与が大きいためと思われる。一組の基板
の少なくとも一方の外側の表面に少なくとも一枚の拡散
板を備えたという本発明の好ましい例によれば、液晶層
内を光線が液晶表示素子の基板にほぼ垂直に透過する液
晶表示素子での高速応答化を達成できる。すなわち、液
晶捻れ角を小さくしていくと液晶表示素子は高速応答す
るようになるが、表示の視角特性が劣化してしまう。本
構成では、基板法線方向に出射した光は偏光板を出射後
拡散板により全方位に拡散されるため、広視角の素子が
得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The first liquid crystal display device achieves high-speed response by setting the liquid crystal twist angle in the twisted nematic liquid crystal display device to 70 degrees or more and 85 degrees or less. The voltage-transmittance characteristic of the liquid crystal display element largely depends on the twist angle of the liquid crystal. When the twist angle of the liquid crystal is increased, the voltage-transmittance characteristic becomes steeper and the difference between the signal voltages during driving becomes smaller. On the other hand, when the twist angle of the liquid crystal is reduced, the voltage-transmittance characteristic of the liquid crystal display element becomes dull, and the difference between the signal voltages during driving increases. That is, when the brightness level of the liquid crystal display element is changed from the brightness level A to another brightness level B, the difference between the drive voltages VA and VB corresponding to those brightness levels is larger when the liquid crystal twist angle is smaller. In other words, the smaller the liquid crystal twist angle, the larger the drive voltage difference VA-VB and the larger the displacement of the liquid crystal molecules (effect 1). On the other hand, the change in the transmittance of the liquid crystal display element due to the deformation of the liquid crystal array tends to increase as the twist angle increases (effect 2). Although the response of the liquid crystal display device is determined by these two effects, it is not clear why the present invention exhibits high-speed response, but it is considered that the effect 1 has a larger contribution to the response. According to a preferred embodiment of the present invention in which at least one diffuser plate is provided on the outer surface of at least one of the pair of substrates, a liquid crystal display in which light rays pass through the liquid crystal layer almost perpendicularly to the substrate of the liquid crystal display element. It is possible to achieve high-speed response in the element. That is, as the liquid crystal twist angle is reduced, the liquid crystal display element responds at high speed, but the viewing angle characteristics of display deteriorate. In this configuration, light emitted in the normal direction of the substrate is diffused in all directions by the diffusion plate after being emitted from the polarizing plate, so that a device with a wide viewing angle can be obtained.

【0011】前記第二の液晶表示素子によれば、一方の
液晶表示素子基板の外側に、液晶表示素子への入射光を
前記基板法線から傾ける働きを有する、少なくとも1枚
の光制御板と他方の液晶表示素子基板の外側に拡散板を
設けたことにより、液晶表示素子中を応答特性の良好な
方向に光を通過させ、出射する光を拡散板により全方位
に導くことができる。
According to the second liquid crystal display element, at least one light control plate having a function of tilting the light incident on the liquid crystal display element from the normal line to the substrate is provided outside one of the liquid crystal display element substrates. By providing the diffusion plate on the outer side of the other liquid crystal display element substrate, it is possible to allow light to pass through the liquid crystal display element in the direction of good response characteristics and to guide the emitted light in all directions by the diffusion plate.

【0012】前記本発明の液晶表示装置によれば、前記
液晶表示素子からの出射光の光軸が前記基板の法線と1
0度以上30度未満の傾斜角をなす、すなわち光軸を液
晶表示素子基板法線から反主視角方向に10度以上30
度未満傾けた液晶表示素子を含むことにより、高速応答
が可能な液晶表示装置を提供することが出来る。通常の
液晶捻れ角90°でもこの構成により高速化が可能であ
る。主視角方位は、液晶分子が電界印加により立ち上が
ろうとするとき偏光板クロスの状態で最も暗くなる方位
であり、ラビング方向により一義的に決まる方位であ
る。したがって反主視角方位は主視角方位の180°正
反対の方位である。本構成は、特に投射型液晶表示装置
やビデオカメラ用電子ビューファインダーなどのような
広い視角特性を要求しない液晶表示装置に適する。
According to the liquid crystal display device of the present invention, the optical axis of the light emitted from the liquid crystal display element is 1 with respect to the normal line of the substrate.
An inclination angle of 0 degrees or more and less than 30 degrees is formed, that is, the optical axis is 10 degrees or more and 30 degrees in the direction of the anti-primary viewing angle from the liquid crystal display element substrate normal.
A liquid crystal display device capable of high-speed response can be provided by including a liquid crystal display element tilted by less than 1 degree. Even with a normal liquid crystal twist angle of 90 °, the speed can be increased by this configuration. The main viewing angle azimuth is the azimuth in which the liquid crystal molecules are darkest in the state of the polarizing plate cloth when trying to rise by the application of an electric field, and is the azimuth uniquely determined by the rubbing direction. Therefore, the anti-principal viewing angle azimuth is an azimuth opposite to the main viewing angle azimuth by 180 °. This configuration is particularly suitable for a liquid crystal display device that does not require wide viewing angle characteristics, such as a projection type liquid crystal display device or an electronic viewfinder for a video camera.

【0013】捻れネマティック型液晶表示素子において
は、液晶層に入射した直線偏光は液晶層中を楕円偏光で
伝搬し、出射側偏光板によってその一部の光が出射す
る。液晶の応答は2枚の偏光板の間に挟持された2つの
液晶配位構造間の遷移、即ち2つの屈折率楕円体間の遷
移を光学的に見たものである。従って、観察する方向に
よっては実効屈折率の大きさ、変化の程度が異なるた
め、液晶表示素子を固定して使う液晶表示素子において
は、応答特性の良好な方向と同装置の光軸を合致させる
ことにより、高速応答が可能な液晶表示装置を提供する
ことが出来る。
In the twisted nematic liquid crystal display element, the linearly polarized light incident on the liquid crystal layer propagates as elliptically polarized light in the liquid crystal layer, and a part of the light is emitted by the emission side polarization plate. The response of the liquid crystal is an optical view of a transition between two liquid crystal coordination structures sandwiched between two polarizing plates, that is, a transition between two refractive index ellipsoids. Therefore, since the magnitude and degree of change of the effective refractive index differ depending on the direction of observation, in a liquid crystal display element that is used with the liquid crystal display element fixed, the direction in which the response characteristics are good is aligned with the optical axis of the device. As a result, a liquid crystal display device capable of high-speed response can be provided.

【0014】[0014]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。 (実施例1)図1は本実施例の液晶表示素子の構成を示
す概略断面図である。ITOからなる透明電極(図示せ
ず)を有する縦30mm×横40mm×厚さ1.1mm
の2枚のガラス基板12、16上に日本合成ゴム株式会
社製ポリイミド配向膜塗料AL−1057(4.0重量
%、γ−ブチロラクトン溶液)をスピンコート法にて塗
布し、200℃、30分の硬化条件にて硬化させて乾燥
膜厚60nmの配向膜13、15を形成した。その後、
主視角方向がパネル下方になるように、図2の如く、種
々の捻れ角ω25でラビング21、24を施した。この
ラビング処理を施した2枚のガラス基板12、16を、
ガラススペーサー14であるミクロパール(積水ファイ
ンケミカル株式会社製)を用いて5μmの間隔に貼り合
わせた。次に、液晶18としてメルク社製液晶ZLI−
4792(屈折率異方性Δn=0.094)を真空注入
法を用いてガラス基板間に注入し、液晶パネル19を作
成した。その後、ポリエステルフィルムをベースとし、
セルロースを張り合わせた偏光板11、17(厚さ20
0μm)をお互いの偏光軸が直交するように液晶パネル
19に貼合して、それぞれの捻れ角ω25の異なる液晶
表示素子A〜Eを作成した。なお液晶表示素子D、Eは
比較例である。この時、液晶層の厚さdと液晶の屈折率
異方性Δnとの積dΔnは0.47μmであった。次
に、常法に従い本実施例の液晶表示素子の電圧−透過率
特性、及び応答特性を30Hz矩形波を印加しながら測
定した。表1に各液晶表示素子の捻れ角と20℃におけ
る閾値電圧と、飽和電圧を示す。
The present invention will be described more specifically with reference to the following examples. (Embodiment 1) FIG. 1 is a schematic sectional view showing the structure of a liquid crystal display device of this embodiment. 30 mm long × 40 mm wide × 1.1 mm thick with a transparent electrode (not shown) made of ITO
The polyimide alignment film paint AL-1057 (4.0 wt%, γ-butyrolactone solution) manufactured by Japan Synthetic Rubber Co., Ltd. was applied onto the two glass substrates 12 and 16 of No. 2 by the spin coating method, and the temperature was 200 ° C. for 30 minutes. The alignment films 13 and 15 having a dry film thickness of 60 nm were formed by curing under the above curing conditions. afterwards,
As shown in FIG. 2, rubbing 21 and 24 were performed at various twist angles ω25 so that the main viewing angle direction was on the lower side of the panel. The two glass substrates 12 and 16 that have been subjected to this rubbing treatment are
The glass spacers 14 were bonded to each other at intervals of 5 μm using Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.). Next, as the liquid crystal 18, a Merck liquid crystal ZLI-
Liquid crystal panel 19 was prepared by injecting 4792 (refractive index anisotropy Δn = 0.094) between glass substrates using a vacuum injection method. After that, based on the polyester film,
Polarizing plates 11 and 17 (thickness 20
0 μm) was attached to the liquid crystal panel 19 so that their polarization axes were orthogonal to each other, and liquid crystal display elements A to E having different twist angles ω25 were produced. The liquid crystal display elements D and E are comparative examples. At this time, the product dΔn of the thickness d of the liquid crystal layer and the refractive index anisotropy Δn of the liquid crystal was 0.47 μm. Next, the voltage-transmittance characteristic and the response characteristic of the liquid crystal display device of this example were measured according to a conventional method while applying a 30 Hz rectangular wave. Table 1 shows the twist angle of each liquid crystal display element, the threshold voltage at 20 ° C., and the saturation voltage.

【0015】[0015]

【表1】 [Table 1]

【0016】表1の結果をもとに各液晶表示素子の応答
特性を測定した。結果を表2に示す。ここで、立ち上が
り時間τriseとは駆動電圧の値を閾値電圧の値から飽和
電圧の値に変化させた時に、電圧値切り替え後、90%
の輝度変化に要する時間とした。立ち下がり時間τdeca
yとは、駆動電圧の値を飽和電圧の値から閾値電圧の値
に変化させた時に、電圧値切り替え後、90%の輝度変
化に要する時間とした。
Based on the results shown in Table 1, the response characteristics of each liquid crystal display device were measured. Table 2 shows the results. Here, the rise time τrise is 90% after switching the voltage value when the value of the drive voltage is changed from the value of the threshold voltage to the value of the saturation voltage.
The time required to change the luminance of Fall time τdeca
The y was the time required for 90% luminance change after switching the voltage value when the drive voltage value was changed from the saturation voltage value to the threshold voltage value.

【0017】[0017]

【表2】 [Table 2]

【0018】表1および表2より明らかなように、液晶
捻れ角を小さくすることにより液晶表示素子の応答時間
が短くなることが分かる。一方、液晶表示素子において
は明るさ(輝度特性)も重要な因子である。表3は作成
した各液晶表示素子の透過率特性を液晶表示素子Dを基
準として比較したものである。
As is clear from Tables 1 and 2, it is understood that the response time of the liquid crystal display element is shortened by reducing the twist angle of the liquid crystal. On the other hand, brightness (luminance characteristics) is also an important factor in a liquid crystal display device. Table 3 is a comparison of the transmittance characteristics of the liquid crystal display elements thus prepared with the liquid crystal display element D as a reference.

【0019】[0019]

【表3】 [Table 3]

【0020】表3より明らかなように、本実施例の液晶
表示素子A、B、Cは従来から用いられている90゜捻
れ液晶表示素子の輝度を大幅に落とすことがなかった。
従って、応答特性のみを改善することができ、その実用
的価値は極めて高い。本実施例では測定の便宜上、単純
マトリクス型液晶表示素子を用いたが、基板上に多数の
アクティブ素子を配置したアクティブマトリクス型液晶
表示素子でも良い。
As is clear from Table 3, the liquid crystal display elements A, B and C of this embodiment did not significantly reduce the luminance of the 90 ° twisted liquid crystal display element that has been used conventionally.
Therefore, only the response characteristic can be improved, and its practical value is extremely high. In this embodiment, a simple matrix type liquid crystal display element is used for convenience of measurement, but an active matrix type liquid crystal display element having a large number of active elements arranged on a substrate may be used.

【0021】(実施例2)以下の方法により液晶層の厚
さが異なり、図1に示す構成を持った液晶表示素子を作
成した。ITOからなる透明電極(図示せず)を有する
縦30mm×横40mm×厚さ1.1mmの2枚のガラ
ス基板12、16上に日本合成ゴム株式会社製ポリイミ
ド配向膜塗料AL−1057(4.0重量%、γ−ブチ
ロラクトン溶液)をスピンコート法にて塗布し、200
℃、30分の硬化条件にて硬化させて乾燥膜厚60nm
の配向膜を形成した。その後、主視角方向がパネル下方
になるように、図2の如く、種々の捻れ角ω25でラビ
ング21、24を施した後、このラビング処理を施した
2枚のガラス基板12、16を、ガラススペーサー14
であるミクロパール(積水ファインケミカル株式会社
製)を用いて貼り合わせた。この時、スペーサー径を変
えて液晶層の厚さが互いに異なる液晶パネル19を作成
した。その後、チッソ株式会社製液晶であるLIXON
−9150(Δn=0.098)を真空注入法を用いて
ガラス基板間に注入したのち、偏光板11、17(厚さ
200μm)をお互いの偏光軸が直交するように液晶パ
ネル19に貼合して、それぞれのdΔnの異なる液晶表
示素子を作成した。それぞれの液晶表示素子について透
過率測定を行った結果を表4に示す。値は液晶捻れ角が
90゜、素子のdΔnが0.47μmの液晶表示素子の
透過率を1として規格化した。
Example 2 A liquid crystal display device having the structure shown in FIG. 1 in which the thickness of the liquid crystal layer was different was prepared by the following method. Polyimide alignment film paint AL-1057 (4. made by Nippon Synthetic Rubber Co., Ltd.) on two glass substrates 12 and 16 each having a transparent electrode (not shown) made of ITO and having a length of 30 mm, a width of 40 mm, and a thickness of 1.1 mm. 0 wt%, γ-butyrolactone solution) was applied by spin coating to give 200
C., cured under curing conditions of 30 minutes, dry film thickness 60 nm
An alignment film was formed. Then, as shown in FIG. 2, rubbing 21 and 24 are performed at various twist angles ω25 so that the main viewing angle direction is on the lower side of the panel, and then the two glass substrates 12 and 16 subjected to the rubbing treatment are attached to the glass. Spacer 14
Micro Pearl (manufactured by Sekisui Fine Chemical Co., Ltd.) At this time, liquid crystal panels 19 having different liquid crystal layer thicknesses were prepared by changing the spacer diameter. After that, LIXON, a liquid crystal manufactured by Chisso Corporation
After injecting -9150 (Δn = 0.098) between the glass substrates by using a vacuum injection method, the polarizing plates 11 and 17 (thickness 200 μm) are attached to the liquid crystal panel 19 so that their polarization axes are orthogonal to each other. Then, liquid crystal display elements having different dΔn were prepared. Table 4 shows the results obtained by measuring the transmittance of each liquid crystal display element. The values were standardized with the transmittance of a liquid crystal display device having a liquid crystal twist angle of 90 ° and a device dΔn of 0.47 μm as 1.

【0022】[0022]

【表4】 [Table 4]

【0023】表4及び実施例1の結果から明らかなよう
に、液晶捻れ角が70゜以上85゜以下であり、素子の
dΔnが0.35以上0.50未満である液晶表示素子
は、大幅な透過率低下を起こすことがなかった。従っ
て、高速応答化が可能であり、その実用的価値は大き
い。液晶捻れ角が70゜未満の場合には、実施例1から
も推測されるように、駆動電圧の大幅な増加が起こるう
え、複屈折モードによる着色現象も観察されるため実用
的ではない。
As is clear from Table 4 and the results of Example 1, a liquid crystal display device having a liquid crystal twist angle of 70 ° or more and 85 ° or less and a device dΔn of 0.35 or more and less than 0.50 is significantly There was no significant decrease in transmittance. Therefore, high-speed response is possible and its practical value is great. When the twist angle of the liquid crystal is less than 70 °, it is not practical because a large increase in the driving voltage occurs and a coloring phenomenon due to the birefringence mode is observed as can be inferred from Example 1.

【0024】(実施例3)図3は本実施例の液晶表示素
子の構成を示す概略断面図である。ITOからなる透明
電極(図示せず)を有する縦30mm×横40mm×厚
さ1.1mmの2枚のガラス基板32、36上に日本合
成ゴム株式会社製ポリイミド配向膜塗料AL−1057
(4.0重量%、γ−ブチロラクトン溶液)をスピンコ
ート法にて塗布し、200℃、30分の硬化条件にて硬
化させて乾燥膜厚60nmの配向膜33、35を形成し
た。その後、主視角方向がパネル下方になるように、図
2の如く、70゜の捻れ角でラビングを施した後、この
ラビング処理を施した2枚のガラス基板32、36を、
ガラススペーサー34であるミクロパール(積水ファイ
ンケミカル株式会社製)を用いて5μmの間隔に貼り合
わせた。次に、液晶38としてメルク社製液晶ZLI−
4792(屈折率異方性Δn=0.094)を真空注入
法を用いてガラス基板間に注入し、液晶パネル39を作
成した。その後、偏光板31、37をお互いの偏光軸が
直交するように液晶パネル39に貼合し、さらに観察者
側偏光板の外側にアクリル系の拡散板40(厚さ150
μmの平板状)を貼合し液晶表示素子Fを作成した。
(Embodiment 3) FIG. 3 is a schematic sectional view showing the structure of a liquid crystal display device of this embodiment. Polyimide alignment film paint AL-1057 manufactured by Nippon Synthetic Rubber Co., Ltd. on two glass substrates 32 and 36 each having a transparent electrode (not shown) made of ITO and having a length of 30 mm, a width of 40 mm, and a thickness of 1.1 mm.
(4.0 wt%, γ-butyrolactone solution) was applied by spin coating and cured under curing conditions of 200 ° C. for 30 minutes to form alignment films 33 and 35 having a dry film thickness of 60 nm. Then, as shown in FIG. 2, rubbing was performed at a twist angle of 70 ° so that the main viewing angle direction was on the lower side of the panel, and then the two glass substrates 32 and 36 subjected to the rubbing treatment were
The glass spacers 34, Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.), were used to bond them at intervals of 5 μm. Next, as the liquid crystal 38, a liquid crystal ZLI- manufactured by Merck & Co., Inc.
Liquid crystal panel 39 was prepared by injecting 4792 (refractive index anisotropy Δn = 0.094) between glass substrates using a vacuum injection method. After that, the polarizing plates 31 and 37 are attached to the liquid crystal panel 39 so that their polarization axes are orthogonal to each other, and the acrylic diffusion plate 40 (thickness 150 is formed on the outside of the observer side polarizing plate).
A liquid crystal display element F was prepared by laminating a flat plate (having a thickness of μm).

【0025】次に、実施例1と同様の方法にて閾値電
圧、飽和電圧、及び応答特性を測定したところ、閾値電
圧は2.60V、飽和電圧は4.15V、立ち上がり応
答時間は12msec、立ち下がり応答時間は28ms
ecであった。
Next, when the threshold voltage, the saturation voltage, and the response characteristic were measured by the same method as in Example 1, the threshold voltage was 2.60 V, the saturation voltage was 4.15 V, and the rising response time was 12 msec. Falling response time is 28ms
It was ec.

【0026】偏光軸がお互いに直交する2枚の偏光板間
に挟持された捻れネマティック型液晶表示素子において
は、液晶捻れ角ωを小さくするにつれて上方視野角が狭
くなる傾向にあるが、本実施例の液晶表示素子は出射す
る光が拡散板40で拡散されるため、広視野角でかつ高
速応答性を有する液晶表示素子を提供することが出来
る。
In a twisted nematic type liquid crystal display element sandwiched between two polarizing plates whose polarization axes are orthogonal to each other, the upper viewing angle tends to become narrower as the liquid crystal twisting angle ω becomes smaller. Since the emitted light is diffused by the diffusion plate 40 in the liquid crystal display element of the example, it is possible to provide a liquid crystal display element having a wide viewing angle and high-speed response.

【0027】図4はコントラストの視角依存性を表した
ものであり、コントラスト比10:1以上の視野角領域
を表している。ここで、コントラストとは電圧無印加の
時の輝度と5Vの電圧を印加した時の輝度の比の値とし
た。通常、液晶捻れ角を70度まで狭くすると、応答特
性は良くなるものの視角特性が大きく低下する。これに
対して、拡散板を観察者側に配置した本実施例では視角
特性が大幅に改良されている。図4に示される視角範囲
は液晶捻れ角が90度の液晶パネルと同等以上の視角範
囲を表しており、視角を犠牲にすることなく高速化が達
成されていることが分かる。さらに視野角範囲を広げる
目的、または輝度特性の向上を目的として光源側に、液
晶表示素子基板に垂直に入射光が入射するようプリズム
シート等の導光板を配設しても良い。
FIG. 4 shows the viewing angle dependence of contrast, and shows a viewing angle region having a contrast ratio of 10: 1 or more. Here, the contrast is a value of the ratio of the brightness when no voltage is applied and the brightness when a voltage of 5 V is applied. Generally, when the twist angle of the liquid crystal is narrowed to 70 degrees, the response characteristic is improved, but the viewing angle characteristic is largely deteriorated. On the other hand, in the present embodiment in which the diffuser plate is arranged on the viewer side, the viewing angle characteristics are greatly improved. The viewing angle range shown in FIG. 4 represents a viewing angle range equal to or greater than that of a liquid crystal panel having a liquid crystal twist angle of 90 degrees, and it can be seen that speedup is achieved without sacrificing the viewing angle. Further, a light guide plate such as a prism sheet may be disposed on the light source side so that incident light is vertically incident on the liquid crystal display element substrate for the purpose of widening the viewing angle range or improving the luminance characteristic.

【0028】(実施例4)図5は本実施例の液晶表示素
子の構成を示す概略断面図である。液晶パネル59は以
下の方法にて作成した。ITOからなる透明電極(図示
せず)を有する縦30mm×横40mm×厚さ1.1m
mの2枚のガラス基板52、56上に日本合成ゴム株式
会社製ポリイミド配向膜塗料AL−1057(4.0重
量%、γ−ブチロラクトン溶液)をスピンコート法にて
塗布し、200℃、30分の硬化条件にて硬化させて乾
燥膜厚60nmの配向膜53、55を形成した。その
後、主視角方向がパネル下方になるように、図2の如
く、90゜の捻れ角でラビング21、24を施した後、
このラビング処理を施した2枚のガラス基板52、56
を、ガラススペーサー54であるミクロパール(積水フ
ァインケミカル株式会社製)を用いて5μmの間隔に貼
り合わせた。次に、液晶58としてメルク社製液晶ZL
I−4792(Δn=0.094)を真空注入法を用い
てガラス基板間に注入し、液晶パネル59を作成した。
図2に示されるように、偏光板51、57(厚さ200
μm)をお互いの偏光軸が直交するように液晶パネル5
9の前後に配設して液晶表示素子Gを作成した。さら
に、観察者側にアクリル系の拡散板60(厚さ150μ
m)と、光源側にプラスチック製の光制御板61として
住友化学工業株式会社製ルミスティY−0535(厚さ
135μm)を配置した。本実施例で使用した光制御板
61は斜め方向での光透過率が高く、液晶パネル59に
入射する光線は斜め入射の成分が多くなっている。ここ
で斜め方向での光透過率とは、光軸を光制御板の法線の
方向から傾けた時の光透過率をいう。この斜め入射する
光線方向を液晶パネル59の反主視角方向と合致させる
ことにより、高速応答が達成出来る。実施例1と同様の
方法にて液晶表示素子正面での閾値電圧、飽和電圧、及
び応答特性を測定したところ、閾値電圧は2.24V、
飽和電圧は4.15V、立ち上がり応答時間は26ms
ec、立ち下がり応答時間は21msecであった。
(Embodiment 4) FIG. 5 is a schematic sectional view showing the structure of a liquid crystal display device of this embodiment. The liquid crystal panel 59 was created by the following method. 30 mm long × 40 mm wide × 1.1 m thick with a transparent electrode (not shown) made of ITO
Polyimide alignment film paint AL-1057 (4.0 wt%, γ-butyrolactone solution) manufactured by Japan Synthetic Rubber Co., Ltd. was applied onto two glass substrates 52 and 56 of m by spin coating, and the temperature was 200 ° C. and 30 ° C. The alignment films 53 and 55 having a dry film thickness of 60 nm were formed by curing under the curing conditions for a minute. Then, after rubbing 21 and 24 with a twist angle of 90 ° as shown in FIG.
Two glass substrates 52 and 56 that have been subjected to this rubbing treatment
Were bonded to each other at intervals of 5 μm using a glass spacer 54, Micropearl (manufactured by Sekisui Fine Chemical Co., Ltd.). Next, as a liquid crystal 58, a liquid crystal ZL manufactured by Merck Ltd.
I-4792 (Δn = 0.094) was injected between the glass substrates by using a vacuum injection method to form a liquid crystal panel 59.
As shown in FIG. 2, the polarizing plates 51 and 57 (thickness 200
liquid crystal panel 5 so that their polarization axes are orthogonal to each other.
Liquid crystal display elements G were prepared by disposing the liquid crystal display elements G before and after No. 9. Furthermore, the acrylic diffuser plate 60 (thickness 150 μ
m) and a light control plate 61 made of plastic, Lumisty Y-0535 (thickness: 135 μm) manufactured by Sumitomo Chemical Co., Ltd. The light control plate 61 used in this embodiment has a high light transmittance in the oblique direction, and the light ray incident on the liquid crystal panel 59 has many oblique incident components. Here, the light transmittance in the oblique direction means the light transmittance when the optical axis is tilted from the direction of the normal line of the light control plate. By matching the direction of this obliquely incident light beam with the direction of the anti-primary viewing angle of the liquid crystal panel 59, high-speed response can be achieved. When the threshold voltage, the saturation voltage, and the response characteristic in front of the liquid crystal display element were measured by the same method as in Example 1, the threshold voltage was 2.24V,
Saturation voltage is 4.15V, rising response time is 26ms
ec, the fall response time was 21 msec.

【0029】(比較例)光制御板を含まないこと以外は
実施例4と全く同一の液晶表示装置を作製し、他の実施
例と同様の方法にて閾値電圧、飽和電圧、及び応答特性
を測定したところ、閾値電圧は2.15V、飽和電圧は
3.28V、立ち上がり応答時間は22msec、立ち
下がり応答時間は40msecであった。実施例4およ
び比較例より明らかなように、実施例4の液晶表示素子
は高速応答特性を有しており、その価値は大きい。本実
施例では偏光板の偏光軸方向と隣接する基板のラビング
方向とを一致させた配置を採用したが、偏光板の吸収軸
方向と隣接する基板のラビング方向とを一致させても同
様の効果が得られる。
(Comparative Example) A liquid crystal display device exactly the same as in Example 4 was prepared except that the light control plate was not included, and the threshold voltage, the saturation voltage and the response characteristic were measured in the same manner as in the other examples. As a result of measurement, the threshold voltage was 2.15 V, the saturation voltage was 3.28 V, the rising response time was 22 msec, and the falling response time was 40 msec. As is clear from Example 4 and Comparative Example, the liquid crystal display element of Example 4 has a high-speed response characteristic, and its value is great. In this embodiment, the arrangement is adopted in which the polarization axis direction of the polarizing plate and the rubbing direction of the adjacent substrate are matched, but the same effect can be obtained even if the absorption axis direction of the polarizing plate and the rubbing direction of the adjacent substrate are matched. Is obtained.

【0030】(実施例5)図6は本実施例の液晶表示装
置の構成を示す概略断面図である。液晶パネル64は実
施例1と同様に、以下の方法にて作成した。ITOから
なる透明電極(図示せず)を有する縦30mm×横40
mm×厚さ1.1mmの2枚のガラス基板65、69上
に日本合成ゴム株式会社製ポリイミド配向膜塗料AL−
1057(4.0重量%、γ−ブチロラクトン溶液)を
スピンコート法にて塗布し、200℃、30分の硬化条
件にて硬化させて乾燥膜厚60nmの配向膜66、68
を形成した。その後、主視角方向がパネル下方になるよ
うに、90゜の捻れ角でラビングを施した後、このラビ
ング処理を施した2枚のガラス基板を、ガラススペーサ
ー67であるミクロパール(積水ファインケミカル株式
会社製)を用いて5μmの間隔に貼り合わせた。次に、
液晶70としてチッソ株式会社製液晶MT−5062L
A(Δn=0.079)を真空注入法を用いてガラス基
板間に注入し、液晶パネル64を作成した。その後、偏
光板63、71(厚さ200μm)をお互いの偏光軸が
直交するように液晶パネル64の前後に貼合し、光軸7
4と液晶パネルの法線72との成す角73が20゜とな
るようにして液晶表示装置75を作成した。次に、実施
例1と同様の方法にて光軸74上の点から液晶表示素子
H76の閾値電圧、飽和電圧、及び応答特性を測定した
ところ、閾値電圧は1.77、飽和電圧は3.32V、
立ち上がり応答時間は32msec、立ち下がり応答時
間は24msecであった。
(Embodiment 5) FIG. 6 is a schematic sectional view showing the structure of a liquid crystal display device of this embodiment. The liquid crystal panel 64 was prepared by the following method, as in the first embodiment. 30 mm in length × 40 in width having a transparent electrode (not shown) made of ITO
mm-thick 1.1 mm glass substrates 65 and 69 on two sheets of synthetic resin polyimide alignment film AL- manufactured by Japan Synthetic Rubber Co., Ltd.
1057 (4.0% by weight, γ-butyrolactone solution) was applied by spin coating and cured under curing conditions of 200 ° C. for 30 minutes to obtain alignment films 66 and 68 having a dry film thickness of 60 nm.
Was formed. After that, after rubbing at a twist angle of 90 ° so that the main viewing angle direction is below the panel, the two glass substrates subjected to this rubbing treatment are used as glass spacers 67 for Micropearl (Sekisui Fine Chemical Co., Ltd.). (Manufactured by Mitsui Chemicals Co., Ltd.) was used to bond them at intervals of 5 μm. next,
As liquid crystal 70, liquid crystal MT-5062L manufactured by Chisso Corporation
A (Δn = 0.079) was injected between the glass substrates by using a vacuum injection method to form a liquid crystal panel 64. After that, polarizing plates 63 and 71 (thickness: 200 μm) are attached to the front and rear of the liquid crystal panel 64 so that their polarization axes are orthogonal to each other.
A liquid crystal display device 75 was prepared so that the angle 73 formed by 4 and the normal line 72 of the liquid crystal panel was 20 °. Next, when the threshold voltage, the saturation voltage, and the response characteristic of the liquid crystal display element H76 were measured from the point on the optical axis 74 by the same method as in Example 1, the threshold voltage was 1.77 and the saturation voltage was 3. 32V,
The rising response time was 32 msec and the falling response time was 24 msec.

【0031】(実施例6)実施例5の液晶表示装置を用
いて、光軸74と液晶パネルの法線72との成す角73
(以下傾き角と呼ぶ)を変化させて、その応答特性を測
定した。結果を表5に示す。
(Embodiment 6) Using the liquid crystal display device of Embodiment 5, an angle 73 formed by the optical axis 74 and the normal line 72 of the liquid crystal panel is formed.
(Hereinafter referred to as a tilt angle) was changed, and the response characteristic was measured. Table 5 shows the results.

【0032】[0032]

【表5】 [Table 5]

【0033】ここで、傾き角とは液晶パネルの法線72
を光軸74から主視角方向に傾けていった時の角度であ
る。また応答時間とは、駆動電圧の値を素子正面方向
(図6の素子H76の基板の法線方向)から観察した時
の閾値電圧(または飽和電圧)の値から素子正面方向か
ら観察した時の飽和電圧(または閾値電圧)の値に変化
させた時に、電圧値切り替え後、90%の輝度変化に要
する時間とした。従って、所定の傾き角で求めた閾値電
圧と飽和電圧をもとに応答時間を測定すれば、更に小さ
な値が得られる。
Here, the tilt angle means the normal line 72 of the liquid crystal panel.
Is an angle when is tilted from the optical axis 74 in the main viewing angle direction. In addition, the response time is the threshold voltage (or saturation voltage) when the drive voltage value is observed from the element front direction (the normal direction of the substrate of the element H76 in FIG. 6) when observed from the element front direction. When the value was changed to the saturation voltage (or threshold voltage), the time required for 90% luminance change after the voltage value was switched. Therefore, a smaller value can be obtained by measuring the response time based on the threshold voltage and the saturation voltage obtained at a predetermined inclination angle.

【0034】表5から、液晶表示素子正面から観察する
よりも、反主視角方向に傾いた角度で観察するほうが高
い応答特性が得られることが分かる。この時、傾き角は
大きいほうが高速応答には有利であるが、傾き角が大き
くなると輝度低下、コントラスト低下、駆動電圧の上昇
が著しくなるため、10゜以上30゜未満が好ましい。
10゜未満の場合には高速化の効果が小さく、実用的で
はない。
It can be seen from Table 5 that higher response characteristics can be obtained by observing at an angle tilted in the anti-primary viewing angle direction than by observing from the front of the liquid crystal display element. At this time, a larger tilt angle is more advantageous for high-speed response, but a larger tilt angle causes a significant decrease in brightness, a decrease in contrast, and an increase in driving voltage, and therefore is preferably 10 ° or more and less than 30 °.
If it is less than 10 °, the effect of speeding up is small and it is not practical.

【0035】本実施例の液晶表示装置は投射型液晶表示
装置やビデオカメラ用電子ビューファインダーなどのよ
うに、液晶表示素子に視野角特性を要求しない場合に特
に有効であり、光軸に対して液晶表示素子の基板の法線
をずらすことにより、大幅な応答特性の改良を図ること
が出来る。また、コントラスト、色相などの表示品位向
上のために光路中に位相板を配設しても良い。さらに、
本実施例では液晶捻れ角を90゜としたが、80゜以下
にするなど他の高速応答化手段を併用しても良い。ま
た、実施例5および実施例6においては、偏光板を液晶
パネルに貼合して用いたが、液晶パネルとの間に間隙を
おいて配置しても同様の効果が得られる。
The liquid crystal display device of this embodiment is particularly effective when the liquid crystal display element does not require viewing angle characteristics such as a projection type liquid crystal display device and an electronic viewfinder for a video camera, and it is effective with respect to the optical axis. By shifting the normal line of the substrate of the liquid crystal display element, it is possible to significantly improve the response characteristics. Further, a phase plate may be arranged in the optical path in order to improve display quality such as contrast and hue. further,
In this embodiment, the liquid crystal twist angle is 90 °, but other high speed response means such as 80 ° or less may be used together. Further, in Example 5 and Example 6, the polarizing plate was attached to the liquid crystal panel and used, but the same effect can be obtained by disposing a gap between the polarizing plate and the liquid crystal panel.

【0036】[0036]

【発明の効果】以上説明した通り、本発明によれば、簡
単な素子構成で高速応答化が可能であるうえ、従来の高
速応答化手法との併用も可能であり優れた応答特性を有
する液晶表示素子または液晶表示装置を提供することが
可能である。
As described above, according to the present invention, it is possible to realize a high-speed response with a simple device structure, and it is also possible to use it in combination with a conventional high-speed response method, and a liquid crystal having excellent response characteristics. It is possible to provide a display element or a liquid crystal display device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の液晶表示素子の構成を示
す図
FIG. 1 is a diagram showing a configuration of a liquid crystal display element of Example 1 of the present invention.

【図2】 本発明の一実施例の液晶表示素子における偏
光板の偏光軸と、配向膜ラビング方向との関係を説明す
るための図
FIG. 2 is a diagram for explaining a relationship between a polarization axis of a polarizing plate and a rubbing direction of an alignment film in a liquid crystal display element according to an embodiment of the present invention.

【図3】 本発明の実施例3の液晶表示素子の構成を示
す図
FIG. 3 is a diagram showing a configuration of a liquid crystal display element of Example 3 of the present invention.

【図4】 本発明の実施例3の液晶表示素子の視角依存
性を説明するための図
FIG. 4 is a diagram for explaining the viewing angle dependence of the liquid crystal display element according to the third embodiment of the present invention.

【図5】 本発明の実施例4の液晶表示装置の構成を示
す図
FIG. 5 is a diagram showing a configuration of a liquid crystal display device according to a fourth embodiment of the present invention.

【図6】 本発明の実施例5の液晶表示素子の構成を示
す図
FIG. 6 is a diagram showing a configuration of a liquid crystal display element of Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

11、17、31、37、51、57、63、71:偏
光板 12、16、32、36、52、56、65、69:ガ
ラス基板 13、15、33、35、53、55、66、68:配
向膜 14、34、54、67:スペーサー 18、38、58、70:液晶 19、39、59、64:液晶パネル 21:上側基板のラビング方向 22:上側偏光板の偏光軸方向 23:下側偏光板の偏光軸方向 24:下側基板のラビング方向 25:液晶捻り角 40、60:拡散板 61:光制御板 62:光源 72:液晶表示素子基板法線の方向 73:パネル傾き角 74:光軸 75:液晶表示装置 76:液晶表示素子
11, 17, 31, 37, 51, 57, 63, 71: Polarizing plates 12, 16, 32, 36, 52, 56, 65, 69: Glass substrate 13, 15, 33, 35, 53, 55, 66, 68: Alignment film 14, 34, 54, 67: Spacer 18, 38, 58, 70: Liquid crystal 19, 39, 59, 64: Liquid crystal panel 21: Rubbing direction of upper substrate 22: Polarization axis direction of upper polarizing plate 23: Polarization axis direction of lower polarizing plate 24: Rubbing direction of lower substrate 25: Liquid crystal twist angle 40, 60: Diffusing plate 61: Light control plate 62: Light source 72: Liquid crystal display element substrate normal direction 73: Panel tilt angle 74: Optical axis 75: Liquid crystal display device 76: Liquid crystal display element

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第一の表面に透明電極および配向膜を有
し第二の表面に偏光板を有する透光性基板である一組の
基板間に液晶層を挟持してなり、前記液晶層の厚さdと
前記液晶層の屈折率異方性Δnとの積dΔnが0.35
以上0.50未満である捻れネマティック型液晶表示素
子において、液晶の捻れ角が70度以上85度以下であ
ることを特徴とする液晶表示素子。
1. A liquid crystal layer is sandwiched between a pair of substrates which are translucent substrates having a transparent electrode and an alignment film on a first surface and a polarizing plate on a second surface. And the product dΔn of the refractive index anisotropy Δn of the liquid crystal layer is 0.35.
A twisted nematic liquid crystal display element having a twist angle of 70 ° or more and 85 ° or less in a twisted nematic liquid crystal display element of 0.50 or more.
【請求項2】 一組の基板の少なくとも一方の外側の表
面に少なくとも一枚の拡散板を備えた請求項1に記載の
液晶表示素子。
2. The liquid crystal display device according to claim 1, wherein at least one diffusion plate is provided on the outer surface of at least one of the pair of substrates.
【請求項3】 第一の表面に透明電極および配向膜を有
し第二の表面に偏光板を有する透光性基板である一組の
基板間に液晶層を挟持してなる捻れネマティック型液晶
表示素子において、前記一方の偏光板の外面に拡散板
を、および前記もう一方の偏光板の外面に前記液晶表示
素子への入射光を前記基板の法線から傾ける働きを有す
る光制御板を備えたことを特徴とする液晶表示素子。
3. A twisted nematic liquid crystal in which a liquid crystal layer is sandwiched between a pair of substrates which are transparent substrates having a transparent electrode and an alignment film on a first surface and a polarizing plate on a second surface. In the display element, a diffusion plate is provided on the outer surface of the one polarizing plate, and a light control plate having a function of inclining incident light to the liquid crystal display element from the normal line of the substrate is provided on the outer surface of the other polarizing plate. A liquid crystal display device characterized by the above.
【請求項4】 第一の表面に透明電極および配向膜を有
し第二の表面に偏光板を有する透光性基板である一組の
基板間に液晶層を挟持してなる捻れネマティック型液晶
表示素子を備えた液晶表示装置において、前記液晶表示
素子からの出射光の光軸が前記基板の法線と10度以上
30度未満の傾斜角をなすことを特徴とする液晶表示装
置。
4. A twisted nematic type liquid crystal in which a liquid crystal layer is sandwiched between a pair of substrates which are transparent substrates having a transparent electrode and an alignment film on a first surface and a polarizing plate on a second surface. A liquid crystal display device comprising a display element, wherein an optical axis of light emitted from the liquid crystal display element forms an inclination angle of 10 degrees or more and less than 30 degrees with a normal line of the substrate.
JP7217551A 1995-08-25 1995-08-25 Liquid crystal display element and liquid crystal display device Pending JPH0961783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7217551A JPH0961783A (en) 1995-08-25 1995-08-25 Liquid crystal display element and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7217551A JPH0961783A (en) 1995-08-25 1995-08-25 Liquid crystal display element and liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0961783A true JPH0961783A (en) 1997-03-07

Family

ID=16706039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7217551A Pending JPH0961783A (en) 1995-08-25 1995-08-25 Liquid crystal display element and liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0961783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844795B2 (en) * 2002-06-06 2005-01-18 Oki Electric Industry Co., Ltd. SAW filter with an improved attenuation characteristic at a frequency any multiple of an attenuation pole frequency at one or both sides of a pass band

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844795B2 (en) * 2002-06-06 2005-01-18 Oki Electric Industry Co., Ltd. SAW filter with an improved attenuation characteristic at a frequency any multiple of an attenuation pole frequency at one or both sides of a pass band

Similar Documents

Publication Publication Date Title
KR100467819B1 (en) Liquid crystal display device and method of manufacturing the same
US6320634B1 (en) Organic polymer O-plate compensator for improved gray scale performance in twisted nematic liquid crystal displays
KR101011610B1 (en) In-plane switching liquid crystal display with compensation film
JPH06331979A (en) Normally white liquid-crystal display and method for compensation of its phase delay
JPH10268318A (en) Optical device and liquid crystal display device as well as production of optical device
JP2000250045A (en) Liquid crystal display device and its production
WO2000039630A1 (en) Liquid crystal display
KR20010004524A (en) Liquid crystal display device
US7394512B2 (en) Liquid crystal display device
US7382427B2 (en) Liquid crystal display device
US20020167631A1 (en) Liquid crystal display device and method of manufacturing same
JP3395878B2 (en) Liquid crystal display
JPH07253573A (en) Liquid crystal display element
US6538712B1 (en) High pretilt alignment of reactive liquid crystals in liquid crystal displays
JP2000047253A (en) Liquid crystal display device
JP2001242460A (en) Liquid crystal display device
JPH0961783A (en) Liquid crystal display element and liquid crystal display device
US7567320B2 (en) Electro-optical device with liquid crystal
JP3657708B2 (en) Liquid crystal electro-optical device
KR19990006887A (en) LCD and its manufacturing method
JPH07159773A (en) Liquid crystal display device
JPH0519261A (en) Liquid crystal display device
JP3356561B2 (en) Liquid crystal display
JPH0335217A (en) Driving system for liquid crystal display device
JPH0695093A (en) Liquid crystal display element